LA RECTA NUMÉRICA
Se trata de una herramienta muy útil para representar de forma ordenada los números reales en una dimensión, de manera que podamos visualizar con facilidad aspectos como la secuencia y la relación entre varios números, así como también soluciones de inecuaciones. Fue propuesta por John Wallis y es la base para la construcción del plano cartesiano.
ELEMENTOS DE UNA RECTA NUMÉRICA
Los elementos que podemos incluir en una recta numérica son muy variables, ya que dependerán del uso que hagamos de ella; pero, en esencia, la recta numérica está conformada por una recta horizontal en la que se indican generalmente los números enteros () con un origen (0) ubicado en el centro. Sin embargo, esta recta no es exclusiva de los números enteros, ya que en ella podemos representar cualquier número real ().
A la izquierda del cero se encuentran los números negativos y hacia la derecha los positivos. Además, suponemos que la prolongación de los extremos de la recta representa el infinito tanto positivo (a la derecha) como negativo (a la izquierda).
Los valores en la recta numérica se pueden representar de uno en uno, pero también se puede seleccionar a conveniencia una escala diferente, por ejemplo, de 0,5 en 0,5; o bien, de 3 en 3. También, podemos subdividir cada espacio en la recta real para representar números decimales o fracciones.
EL ORDEN DE LOS NÚMEROS
En la recta numérica los números están ordenados en forma ascendente de izquierda a derecha, es decir, si se comparan dos números, será mayor el que se localice más a la derecha.
Como ya hemos visto, cada división puede subdividirse para representar fracciones, las cuales pertenecen al conjunto de los números racionales (). Si para una determinada fracción realizamos la división del numerador entre el denominador, encontraremos su expresión decimal equivalente, es decir, toda fracción se puede expresar como un decimal; sin embargo, no todos los decimales tienen una fracción generatriz.
Los números decimales que no podemos expresar en fracciones pertenecen al conjunto de los números irracionales (), por ejemplo, el valor o la constante . A su vez, los números irracionales son un subconjunto de los números reales.
Adición y sustracción con la recta numérica
Podemos utilizar la longitud de segmentos de línea a escala sobre la recta numérica para efectuar operaciones de suma y resta. Por ejemplo:
Si queremos sumar 3 + 5, a partir del 0 representamos de izquierda a derecha un segmento de recta de longitud igual a 3 unidades y seguidamente dibujamos de izquierda a derecha otro segmento de longitud igual a 5 unidades. El resultado, será el valor indicado desde cero hasta donde llegue el último segmento trazado:
Ahora bien, si queremos restar 6 − 4, a partir de 0 debemos dibujar de izquierda a derecha una recta de longitud 6 unidades y luego, donde termina dicha recta, trazamos ahora de derecha a izquierda otra recta de longitud 4 unidades (quedará sobre el primer segmento dibujado). El resultado, será el valor indicado desde cero hasta el punto donde coinciden los dos segmentos de recta:
¿CÓMO UBICAR UN RADICAL EN LA RECTA NUMÉRICA?
Algunos números, en especial los radicales, resultan complicados de ubicar con precisión en la recta real, sin embargo, en algunos casos podemos hacer uso del teorema de Pitágoras y un compás, para determinar la ubicación precisa de estos valores.
Cabe destacar que este método es útil cuando podemos expresar el radical como la suma de dos términos que tienen raíces exactas, digamos: 1, 4, 9, 16, 25, 36, 49… entre otros.
Por ejemplo, si deseamos ubicar en la recta numérica el procedimiento es el siguiente:
- Descomponemos el número dentro del radical como la suma de dos términos con raíces enteras:
- Expresamos cada término como la suma de dos cuadrados, es decir, cada término será la raíz de ese valor elevado al cuadrado:
- Si hacemos la analogía con el teorema de Pitágoras:
- La base de cada cateto a y b son los valores de los términos que están elevados al cuadrado dentro de la raíz, es decir, 3 y 2.
- Para representar el radical en la recta numérica, a partir del cero (0) se construye un rectángulo de base a y altura b (o viceversa); y la diagonal que parte de cero a la otra esquina será la hipotenusa del triángulo rectángulo que quedará con la medida del radical que deseas ubicar.
- Con un compás, hacemos centro en el origen 0 y con abertura equivalente a la diagonal (hipotenusa), trazamos un arco de circunferencia hasta que corte la recta numérica y ese será el valor del radical que deseamos ubicar: .
¡A practicar!
Ubica los siguientes valores en la recta numérica:
a)
b)
c) −0,5
d) Ubica en la recta numérica el valor de