CAPÍTULO 1 / TEMA 4

LOS NÚMEROS DECIMALES

No todos los problemas matemáticos involucran a los número enteros, muchas veces necesitamos una cantidad intermedia entre ese entero. Para eso están los números decimales. Estos tienen infinidad de aplicaciones en la vida cotidiana, como en la medida de nuestro peso o en los precios de un producto. Aquí aprenderás cuáles son y cómo leerlos. 

Los números decimales son ampliamente utilizados en áreas como la contabilidad y las finanzas para expresar montos de dinero y realizar operaciones algebraicas con estos valores. Dada la gran utilidad e importancia en la vida diaria de los números decimales, es importante que aprendamos a realizar operaciones matemáticas con estos valores.

¿QUÉ SON LOS NÚMEROS DECIMALES?

Los números decimales son aquellos que están compuestos por una parte entera y una parte decimal, ambas separadas por una coma.

Los utilizamos a diario para expresar cantidades que se encuentran entre dos números enteros consecutivos, ya que, como sabemos, entre dos números enteros de una recta numérica existen infinitos valores que pueden expresarse con decimales.

Valor posicional

De acuerdo con la ubicación que ocupe cada dígito en el número decimal su valor posicional será diferente. Observa este ejemplo:

A cada cifra decimal le corresponde un único valor que depende de su posición. Para leer este número podemos optar por cualquiera de las siguientes opciones:

  • Lee la parte entera seguida de la palabra “enteros”. Luego lee la parte decimal como si fuera un número natural y nombra la posición de la última cifra decimal. Ejemplo:

138,451067 se lee “ciento treinta y ocho enteros cuatrocientos cincuenta y un mil sesenta y siete millonésimas“.

  • Lee la parte entera seguida de la palabra “coma”. Después lee la parte decimal como si fuera un número natural. Ejemplo:

138,451067 se lee “ciento treinta y ocho coma cuatrocientos cincuenta y un mil sesenta y siete”.

DECIMALES EXACTOS

Son los números decimales que contienen una cantidad limitada o finita de dígitos en su parte decimal.

– Ejemplo:

  • −0,375 (contiene decimales hasta la milésima).
  • 735.743,84653 (contiene decimales hasta la cienmilésima).
  • 921,6 (contiene decimales hasta la décima).

¿Sabías qué?
Todos los números decimales exactos y periódicos pueden transformarse en una fracción equivalente.
A diario nos encontramos con cifras que son representadas a través de números decimales. Por ejemplo, cuando vamos al mercado hay una gran cantidad de precios expresados en números decimales, para lo cual se puede emplear una coma o un punto. El uso de la coma o el punto decimal dependerá del país en el que te encuentres.

NÚMEROS PERIÓDICOS

Son los números decimales que poseen una cantidad infinita de dígitos en su parte decimal y muestran un patrón de repetición. Los podemos clasificar en periódicos puros y periódicos mixtos.

Números decimales periódicos puros

Son los números decimales en los cuales la parte decimal se repite inmediatamente después de la coma. Se denotan con una línea horizontal o con una arco en la parte superior del dígito o los dígitos que se repitan.

– Ejemplo:

\frac{4}{3}=1,333...=1,\overline{3}

\frac{2}{3}=0,666...=0,\overline{6}

¿Cómo convertir un número decimal periódico puro a fracción?

Para convertir un número decimal periódico puro a su fracción equivalente tenemos que seguir estos pasos:

  1. Escribe todo el número sin la coma.
  2. Resta a esa cantidad la parte entera del número decimal.
  3. Divide entre tantos nueves como decimales periódicos tenga el número.

– Ejemplo:

  • 1,\overline{12}=\frac{112-1}{99}=\frac{111}{99}=\boldsymbol{\frac{37}{33}}
  • 0,\overline{3}=\frac{3-0}{9}=\frac{3}{9}=\boldsymbol{\frac{1}{3}}
  • 34,\overline{36}=\frac{3.436-34}{99}=\frac{3.402}{99}=\boldsymbol{\frac{378}{11}}

Nota que todas las fracciones fueron simplificadas.

Números decimales periódicos mixtos

Son los números cuya parte decimal contienen uno o más dígitos antes de los números periódicos. A los números que se encuentran antes del período se los denomina anteperíodo.

– Ejemplo:

\frac{17}{15}=1,1333...=1,1\overline{3}

\frac{7}{12}=0,58333...=0,58\overline{3}

¿Cómo convertir un número decimal periódico mixto a fracción?

Para convertir un número decimal periódico mixto a su fracción equivalente tenemos que seguir estos pasos:

  1. Escribe todo el número sin la coma.
  2. Resta a esa cantidad el número decimal sin la coma y sin el período.
  3. Divide entre tantos nueves como decimales periódicos tenga el número junto a tantos ceros como tenga el anteperíodo.

– Ejemplo:

  • 7,0\overline{5}=\frac{705-70}{90}=\frac{635}{90}=\boldsymbol{\frac{127}{18}}
  • 3,2\overline{45}=\frac{3.245-32}{990}=\frac{3.213}{990}=\boldsymbol{\frac{357}{110}}
  • 6,53\overline{1}=\frac{6.531-653}{900}=\frac{5.878}{900}=\boldsymbol{\frac{2.939}{450}}

DECIMALES NO EXACTOS Y NO PERIÓDICOS

Son todos los números decimales con infinitos dígitos no periódicos en su parte decimal. Este tipo de números decimales conforman el conjunto de los números irracionales.

– Ejemplo:

\pi =3,1415...

\sqrt{2}=1,4142...

El número pi (π) es un número decimal que contiene infinitos dígitos no periódicos en su parte decimal, por lo tanto, pertenece al conjunto de los números irracionales. Este valor es una constante que se obtiene si dividimos el perímetro de cualquier circunferencia entre su diámetro. Se suele aproximar su parte decimal hasta la centésima, por ejemplo, π = 3,14.

¡A practicar!

1. ¿Cómo se leen estos números?

a) 45,98

Solución
Cuarenta y cinco enteros noventa y ocho centésimas.

b) 903,65322

Solución
Novecientos tres enteros sesenta y cinco mil trescientos veintidós cienmilésimas.

c) 0,07

Solución
Siete centésimas.

2. Escribe en forma de número decimal las siguientes fracciones. Señala si son exactos o periódicos. Si son periódicos indica si son puros o mixtos.

a) \frac{19}{15}

Solución
\frac{19}{15}=1,2\overline{6}

Número decimal periódico mixto.

b) \frac{4}{11}

Solución

\frac{4}{11}=0,\overline{36}

Número decimal periódico puro.

c) \frac{57}{20}

Solución

\frac{57}{20}=2,85

Número decimal exacto.

d) \frac{13}{6}

Solución

\frac{13}{6}=2,1\overline{6}

Número decimal periódico mixto.

e) \frac{4}{3}

Solución

\frac{4}{3}=1,\overline{3}

Número decimal periódico puro.

f) \frac{43}{8}

Solución

\frac{43}{8}=5,375

Número decimal exacto.

RECURSOS PARA DOCENTES

Artículo “Números decimales”

En este artículo encontrará información sobre las características de los números decimales, el sistema de numeración posicional y la clasificación de los números decimales.

VER

Artículo “¿Cómo Transformar un número decimal a fracción?”

Este contenido ofrece una detallada explicación sobre el procedimiento para obtener fracciones equivalentes de algunas expresiones decimales.

VER

Artículo “¿Qué es un número decimal?”

Este artículo ofrece información completa sobre los números decimales: su composición, sistema de numeración posicional y operaciones aritméticas con los números decimales.

VER

CAPÍTULO 1 / TEMA 6

CONJUNTO

A DIARIO PODEMOS ENCONTRAR QUE LOS OBJETOS QUE USAMOS TIENEN CARACTERÍSTICAS EN COMÚN. POR EJEMPLO, EN LOS SUPERMERCADOS VEMOS ESTANTES DE PRODUCTOS POR GRUPOS: LOS VEGETALES, LOS VÍVERES, LOS REFRIGERADOS, LAS GOLOSINAS, LOS REFRESCOS, ENTRE OTROS. ESTOS GRUPOS SE LLAMAN CONJUNTOS ¡APRENDAMOS CÓMO REPRESENTARLOS!

¿QUÉ ES UN CONJUNTO?

UN CONJUNTO ES UN GRUPO DE OBJETOS QUE COMPARTEN UNA CARACTERÍSTICA EN COMÚN. LOS OBJETOS QUE CONFORMAN EL CONJUNTO SE LLAMAN ELEMENTOS Y PUEDEN SER DE CUALQUIER TIPO: LETRAS, NÚMEROS, ALIMENTOS, DEPORTES, PERSONAS O JUEGOS.

  • A ES EL CONJUNTO DE LOS ANIMALES.

 

  • N ES EL CONJUNTO DE LOS NÚMEROS.

LA IDEA DE AGRUPAR OBJETOS CON CARACTERÍSTICAS COMUNES ES PARTE DE NUESTRA VIDA COTIDIANA. VEMOS CONJUNTOS DE ZAPATOS EN LAS ZAPATERÍAS, CONJUNTOS DE FRUTAS O VERDURAS EN LAS VERDULERÍAS, CONJUNTOS DE FLORES EN UN JARDÍN, CONJUNTOS DE VÍVERES EN UN MERCADO, CONJUNTOS DE NIÑOS EN LAS ESCUELAS Y CONJUNTOS DE LIBROS EN UNA BIBLIOTECA.

ELEMENTOS DE UN CONJUNTO

SON TODOS LOS OBJETOS QUE CONFORMAN UN CONJUNTO. POR EJEMPLO:

  • U ES EL CONJUNTO DE LOS ÚTILES ESCOLARES. TIENE 9 ELEMENTOS.

  • S ES EL CONJUNTO DE LOS DÍAS DE LA SEMANAS. TIENE 7 ELEMENTOS.

 

AQUÍ PODEMOS VER ROLLOS DE TELA QUE SON ELEMENTOS SIMILARES AGRUPADOS. ¿POR QUÉ ES UN CONJUNTO? PORQUE TODOS LOS ROLLOS QUE SE OBSERVAN COMPARTEN LA MISMA CARACTERÍSTICA. ESTOS TIENEN QUE ESTAR JUNTOS PARA QUE PUEDAN EXPRESARSE COMO UN CONJUNTO. A PESAR DE QUE TENGAN DIFERENTES COLORES, TEXTURAS, RELIEVES, COMPARTEN ALGO EN COMÚN: SON UN TIPO DE TELA.

REPRESENTACIÓN DE CONJUNTOS

PODEMOS REPRESENTAR LOS CONJUNTOS DE DOS MANERAS:

1. DIAGRAMA DE VENN

P ES EL CONJUNTO DE LOS NÚMEROS PARES. ESTE CONJUNTO TIENE SEIS ELEMENTOS: 2, 4, 6, 8, 10 Y 12.

2. LLAVES

P = {2, 4, 6, 8, 10, 12}

P ES EL CONJUNTO DE LOS NÚMEROS PARES. ESTE CONJUNTO TIENE SEIS ELEMENTOS: 2, 4, 6, 8, 10 Y 12.

 

¿SABÍAS QUÉ?
CUANDO UN CONJUNTO SOLO TIENE UN ELEMENTO SE LO LLAMA CONJUNTO UNITARIO.

SUBCONJUNTOS

SON CONJUNTOS DENTRO DE OTRO CONJUNTO. ESTOS COMPARTEN OTRA CARACTERÍSTICA EN COMÚN.

OBSERVA EL CONJUNTO F DE LAS FRUTAS Y VEGETALES.

ESTE CONJUNTO TIENE 12 ELEMENTOS. PERO ADEMÁS DE SER FRUTAS O VEGETALES, VARIOS DE ELLOS TIENEN OTRA CARACTERÍSTICA EN COMÚN: EL COLOR.

ENTONCES, DENTRO DEL CONJUNTO F HAY SUBCONJUNTOS V, R Y A.

ASÍ COMO REPRESENTAMOS CONJUNTOS Y SUBCONJUNTOS CON DIAGRAMAS DE VENN, TAMBIÉN PODEMOS MOSTRARLOS CON LLAVES:

  • CONJUNTO

F = {GUISANTES, PEPINO, LECHUGA, UVAS, FRESA, MANZANA, TOMATE, FRAMBUESA, KIWI, PIÑA, LIMÓN, BANANAS}

  • SUBCONJUNTOS

V = {GUISANTES, PEPINO, LECHUGA}

R = {FRESA, TOMATE, MANZANA}

A = {PIÑA, LIMÓN, BANANAS}

EL GRUPO DE NIÑOS MÚSICOS ES UN CONJUNTO DE 6 ELEMENTOS. DENTRO DE ESTE CONJUNTO TAMBIÉN PODEMOS ENCONTRAR TRES SUBCONJUNTOS EN LOS QUE ALGUNOS ELEMENTOS VAN A COMPARTIR UNA CARACTERÍSTICA. POR EJEMPLO, AQUÍ PODRÍAMOS CLASIFICAR SUBCONJUNTOS DE AQUELLOS QUE TOCAN INSTRUMENTOS DE VIENTO, DE PERCUSIÓN O DE CUERDA.

CUANTIFICADORES

LOS CUANTIFICADORES SIRVEN PARA SABER LA CANTIDAD DE VECES QUE UN ELEMENTO CUMPLE CON UNA CONDICIÓN. LOS EXPRESAMOS CON TÉRMINOS COMO “TODOS“, “ALGUNOS” O “NINGUNO“.

OBSERVA EL CONJUNTO T.

EN EL CONJUNTO T TODOS SON TRIÁNGULOS.

EN EL CONJUNTO T ALGUNOS TRIÁNGULOS SON ROJOS.

EN EL CONJUNTO T NINGÚN TRIÁNGULO ES AMARILLO.

 

– OTRO EJEMPLO:

OBSERVA EL CONJUNTO Q.

 

EN EL CONJUNTO Q TODOS SON ANIMALES.

EN EL CONJUNTO Q ALGUNOS PUEDEN VOLAR.

EN EL CONJUNTO Q NINGUNO TIENE SEIS PATAS.

 

CUANTIFICADORES: ¿QUÉ SON?

LOS CUANTIFICADORES NOS INDICAN LA CANTIDAD DE ELEMENTOS DE UN CONJUNTO  QUE CUMPLEN CON UNA PROPIEDAD PARTICULAR. EN ESTE CASO, VEMOS UN CONJUNTO DE 6 NIÑOS, ES DECIR DE 6 ELEMENTOS. SI NOS PREGUNTAMOS CUÁNTOS DE ELLOS ESTÁN FELICES, AL VER SUS CARAS PODRÍAMOS DECIR QUE TODOS. ALLÍ USAMOS UN CUANTIFICADOR PARA DETERMINAR LA CANTIDAD DE ELEMENTOS DEL CONJUNTO QUE COMPARTEN UN MISMO ESTADO DE ÁNIMO.

¡A PRACTICAR!

1. OBSERVA LOS CONJUNTOS Y RESPONDE LAS PREGUNTAS CON LOS CUANTIFICADORES NECESARIOS.

A = { LORO, GATO, HORMIGA, CUERVO, GAVIOTA, JIRAFA }

  • ¿CUÁNTOS ELEMENTOS PUEDEN VOLAR?
SOLUCIÓN
ALGUNOS
  • ¿CUÁNTOS ELEMENTOS PUEDEN LADRAR?
SOLUCIÓN
NINGUNO
  • ¿CUANTOS ELEMENTOS SON ANIMALES?
SOLUCIÓN
TODOS

 

B = {CÍRCULO, TRIÁNGULO, CUADRADO, RECTÁNGULO}

  • ¿CUANTOS ELEMENTOS SON FRUTAS?
SOLUCIÓN
NINGUNO
  • ¿CUÁNTOS ELEMENTOS SON FIGURAS GEOMÉTRICAS?
SOLUCIÓN
TODOS
  • ¿CUÁNTOS ELEMENTOS TIENEN CUATRO LADOS?
SOLUCIÓN
ALGUNOS

 

2. OBSERVA EL CONJUNTO A DE LOS ANIMALES. CREA DOS SUBCONJUNTOS: CONJUNTO B DE LOS ANIMALES QUE PUEDEN VOLAR Y CONJUNTO C DE LOS ANIMALES QUE PUEDEN NADAR.

A = {ÁGUILA, BALLENA, ORCA, LORO, PEZ GLOBO, GAVIOTA}

SOLUCIÓN

B = {ÁGUILA, LORO, GAVIOTA}

C = {BALLENA, ORCA, PEZ GLOBO}

 

3. OBSERVA EL CONJUNTO T DE LOS MEDIOS DE TRANSPORTE. CREA DOS SUBCONJUNTOS: CONJUNTO D DE LOS TRANSPORTES TERRESTRES Y CONJUNTO F DE LOS MEDIOS DE TRANSPORTES AÉREOS.

T = {AUTOMÓVIL, MOTO, AVIÓN, BICICLETA, HELICÓPTERO, METRO}

SOLUCIÓN

D = {AUTOMÓVIL, MOTO, BICICLETA, METROS}

F = {AVIÓN, HELICÓPTERO}

 

4. ¿CUÁLES SUBCONJUNTOS SE PUEDEN FORMAR EN EL CONJUNTO L DE LAS LETRAS?

SOLUCIÓN

SUBCONJUNTO V DE LAS VOCALES.

V = {A, E, I, O, U}

SUBCONJUNTO C DE LAS CONSONANTES.

C = {B, C, D, F}

RECURSOS PARA DOCENTES

Artículo “Relación entre conjuntos”

En el siguiente artículo encontrarás más información sobre conjuntos y la forma en la que se relacionan entre ellos.

VER