CAPÍTULO 5 / TEMA 4 (REVISIÓN)

REPRESENTACIONES GRÁFICAS | ¿QUÉ APRENDIMOS?

PICTOGRAMAS

LOS PICTOGRAMAS SON GRÁFICOS QUE SIRVEN PARA REPRESENTAR A TRAVÉS DE DIBUJOS O SÍMBOLOS SENTIMIENTOS, PERSONAS, ANIMALES, ACCIONES U OBJETOS. EN SITUACIONES DE NUESTRA VIDA COTIDIANA PODEMOS ENCONTRARLOS EN SEÑALES DE TRÁNSITO, CARTELES, HISTORIETAS O EN PRODUCTOS. TAMBIÉN SON ÚTILES CUANDO HACEMOS TABLAS DE DATOS.

LOS PICTOGRAMAS SON USADOS EN LAS HISTORIETAS O CÓMICS PARA EXPRESAR SENTIMIENTOS O ACCIONES DE UN PERSONAJE.

TABLAS

LAS TABLAS DE DATOS SON UN RECURSO MUY ÚTIL PARA MOSTRAR INFORMACIÓN RECOLECTADA DE FORMA RESUMIDA Y CLARA. ESTAS TABLAS SON CUADROS FORMADOS POR COLUMNAS VERTICALES  Y FILAS HORIZONTALES QUE EXPRESAN LOS DATOS. ESTA DEBE SER SENCILLA PARA QUE CUALQUIER LECTOR PUEDA ENTENDERLA. LA UNIÓN DE UNA COLUMNA Y UNA FILA SE DENOMINA CELDA.

PARA LOS CIENTÍFICOS LAS TABLAS SON DE GRAN AYUDA PARA ORGANIZAR MUCHOS DATOS.

FRACCIONES Y SUS GRÁFICAS

LAS FRACCIONES SON NÚMEROS QUE REPRESENTAN UNA PARTE DE UN TODO O ENTERO. EN UN GRÁFICO EL ENTERO SE DIVIDE EN LAS PARTES QUE INDICA EL DENOMINADOR Y SE COLOREAN LAS PARTES QUE INDICA EL NUMERADOR. CUANDO PARTIMOS UN PASTEL EN 8 PARTES IGUALES Y COMEMOS UNA, CUANDO COMPRAMOS MEDIO KILOGRAMO DE PAPAS O CUANDO DECIMOS “SON LAS TRES Y MEDIA” HACEMOS USO DE LAS FRACCIONES.

SI DIVIDIMOS Y CORTAMOS UNA PIZZA EN 2 PARTES IGUALES PARA COMER UNA, LA FRACCIÓN QUE EXPRESA ESA PARTE SERÍA 1/2 Y SE LEE “UN MEDIO”.

CAPÍTULO 5 / TEMA 3

FRACCIONES Y SUS GRÁFICAS

CUANDO CONTAMOS NUESTROS JUGUETES O LÁPICES USAMOS LOS NÚMEROS NATURALES: 1, 2, 3, … PERO ¿QUÉ SUCEDE SI SOLO TENEMOS LA MITAD DE UN LÁPIZ? EN ESTOS CASOS USAMOS UN TIPO DE NÚMEROS LLAMADO FRACCIÓN. LAS FRACCIONES REPRESENTAN UNA PARTE DE UN ENTERO, ESTÁN FORMADAS POR DOS NÚMEROS NATURALES Y SON MÁS COMUNES DE LOS QUE CREES. ¡APRENDAMOS A GRAFICARLAS!

¿QUÉ ES UNA FRACCIÓN?

UNA FRACCIÓN REPRESENTA LA PARTE DE UN TODO O DE UNA UNIDAD DIVIDIDA EN PARTES IGUALES.

UNA NARANJA ENTERA ES IGUAL A UNA UNIDAD O EL “TODO”. OBSERVA LA IMAGEN, ¿LA NARANJA ESTÁ ENTERA? ¡NO! ESTÁ PICADA A LA MITAD Y HAY DOS MITADES. SI COMEMOS UNA DE ESTAS PARTES, DECIMOS QUE COMIMOS “MEDIA NARANJA”. ESTO ES UN EJEMPLO DE FRACCIÓN PORQUE COMIMOS UNA PARTE DE UN TODO. PIENSA: ¿EN QUÉ OTRA OCASIÓN USAMOS FRACCIONES?

VER INFOGRAFÍA

ELEMENTOS DE UNA FRACCIÓN

LA FRACCIÓN TIENE DOS ELEMENTOS SEPARADOS POR UNA RAYA: EL NÚMERO DE ARRIBA SE LLAMA NUMERADOR Y EL DE ABAJO SE LLAMA DENOMINADOR.

  • EL NUMERADOR ES IGUAL A LA CANTIDAD DE PARTES QUE SE HAN TOMADO DEL ENTERO.
  • EL DENOMINADOR ES IGUAL A LA CANTIDAD DE PARTES EN LAS QUE SE HA DIVIDIDO AL ENTERO.

TIPOS DE FRACCIONES

LAS FRACCIONES PUEDEN SER PROPIAS O IMPROPIAS.

  • LAS FRACCIONES PROPIAS TIENEN EL NUMERADOR MENOR AL DENOMINADOR.

POR EJEMPLO: \frac{1}{2}\frac{3}{5} Y \frac{8}{10}.

  • LAS FRACCIONES IMPROPIAS TIENEN EL NUMERADOR MAYOR AL DENOMINADOR.

POR EJEMPLO: \frac{7}{5}\frac{10}{4} Y \frac{5}{3}.

¿SABÍAS QUÉ?
LAS FRACCIONES TAMBIÉN SE PUEDEN EXPRESAR CON UNA DIAGONAL, POR EJEMPLO,\frac{1}{2} ES IGUAL A 1/2.

¿CÓMO GRAFICAR FRACCIONES?

AL SER LAS PARTES DE UN TODO O UNIDAD, PODEMOS DIBUJAR FRACCIONES POR MEDIO DE GRÁFICOS CON FIGURAS GEOMÉTRICAS.

SI QUEREMOS GRAFICAR LA FRACCIÓN \boldsymbol{\frac{1}{2}} LOS PASOS SON LOS SIGUIENTES:

1. DIBUJAMOS CUALQUIER FIGURA GEOMÉTRICA. EN ESTE CASO DIBUJAMOS UN RECTÁNGULO.

2. VEMOS EL DENOMINADOR DE LA FRACCIÓN. EL DENOMINADOR DE LA FRACCIÓN \boldsymbol{\frac{1}{{\color{Red} 2}}} ES 2, ASÍ QUE DIVIDIMOS EL RECTÁNGULO EN 2 PARTES IGUALES.

3. VEMOS EL NUMERADOR DE LA FRACCIÓN. EL NUMERADOR DE LA FRACCIÓN \boldsymbol{\frac{{\color{Red} 1}}{2}} ES 1, ASÍ QUE COLOREAMOS UNA SOLA PARTE DEL RECTÁNGULO.

 

– OTRO EJEMPLO:

GRAFIQUEMOS LA FRACCIÓN \boldsymbol{\frac{3}{4}}.

PRIMERO DIBUJAMOS LA FIGURA GEOMÉTRICA QUE REPRESENTA AL “TODO”.

¿CUÁL ES EL DE DENOMINADOR? EL DENOMINADOR ES 4. ASÍ QUE DIVIDIMOS LA FIGURA EN 4 PARTES IGUALES.

¿CUÁL ES EL NUMERADOR? EL NUMERADOR ES 3. ENTONCES, COLOREAMOS 3 PARTES DE LA FIGURA.

¡ES TU TURNO!

REALIZA EL GRÁFICO DE ESTAS FRACCIONES:

  • \boldsymbol{\frac{2}{5}}
SOLUCIÓN

  • \boldsymbol{\frac{2}{3}}
SOLUCIÓN

LAS FRACCIONES SON UN TIPO ESPECIAL DE NÚMEROS Y SE LEEN DE UNA MANERA DIFERENTE A LOS DEMÁS. PRIMERO LEEMOS EL NUMERADOR COMO CUALQUIER NÚMERO NATURAL. EL DENOMINADOR CAMBIA SEGÚN EL NÚMERO, SI ES 2 SE LEE “MEDIOS”, SI ES 3 SE LEE “TERCIOS” Y SI ES 4 SE LEE “CUARTOS”. ASÍ, LA FRACCIÓN 1/2 SE LEE “UN MEDIO” Y LA FRACCIÓN 1/3 SE LEE “UN TERCIO”.

FRACCIONES EN LA VIDA COTIDIANA

LAS FRACCIONES FORMAN PARTE DE NUESTRO DÍA A DÍA. USAMOS FRACCIONES CADA VEZ QUE COMPRAMOS PAN, FRUTAS O VEGETALES, PUES PODEMOS PEDIR MEDIO KILOGRAMO DE ALGO. TAMBIÉN USAMOS FRACCIONES CUANDO DAMOS LA HORA Y DECIMOS, POR EJEMPLO, “SON LAS DOS Y CUARTO” LO QUE SIGNIFICA QUE HA PASADO 1/4 DE HORA DESPUÉS DE LAS 2.

– OTRAS SITUACIONES:

  • AL CORTAR UNA FRUTA EN DOS PARTES Y COMER UNA: 
  • AL CORTAR UNA PIZZA EN 4 PARTES Y COMER 2: 
  • AL COMPRAR PRODUCTOS:  KILO DE HARINA.
  • AL REALIZAR UNA PARTE DE UN RECORRIDO. LAURA RECORRIÓ  DE UNA CARRERA.
EN VARIAS SITUACIONES DE NUESTRA VIDA ENCONTRAMOS FRACCIONES DE FORMA GRÁFICA. UN EJEMPLO COMÚN DE FRACCIONES ES CUANDO REPARTIMOS UN PASTEL. EN LA IMAGEN VEMOS UNO CORTADO EN 8 PARTES IGUALES, ES DECIR, EL DENOMINADOR ES 8. TAMBIÉN VEMOS QUE SE TOMA 1 PARTE, ASÍ QUE EL NUMERADOR ES 1 Y LA FRACCIÓN DE ESE PEDAZO ES 1/8. LA TORTA TIENE FORMA DE CÍRCULO Y ES SIMILAR AL GRÁFICO DE LA FRACCIÓN.

¡A PRACTICAR!

ESCRIBE LA FRACCIÓN PARA CADA GRÁFICO:

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 2

PARTES COLOREADAS: 1

FRACCIÓN: \boldsymbol{\frac{1}{2}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 5

PARTES COLOREADAS: 1

FRACCIÓN: \boldsymbol{\frac{1}{5}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 3

PARTES COLOREADAS: 2

FRACCIÓN: \boldsymbol{\frac{2}{3}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 4

PARTES COLOREADAS: 3

FRACCIÓN: \boldsymbol{\frac{3}{4}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 4

PARTES COLOREADAS: 2

FRACCIÓN: \boldsymbol{\frac{2}{4}}

RECURSOS PARA DOCENTES

Artículo “Fracciones”

Este recurso cuenta con ejemplos didáctico sobre los tipos de fracciones y cómo graficarlos.

VER

CAPÍTULO 5 / TEMA 2

TABLAS

SI TIENES EN LA MESA MUCHOS LÁPICES DE COLORES, ¿PODRÍAS SABER A SIMPLE VISTA CUÁNTOS HAY DE CADA COLOR? ¡ES MUY DIFÍCIL! CUANDO TENEMOS SITUACIONES DE ESTE TIPO PODEMOS USAR UN RECURSO QUE NOS PERMITE ORGANIZAR DATOS DE MANERA SENCILLA Y RESUMIDA: LAS TABLAS DE DATOS. ¡HOY APRENDERÁS A ELABORARLAS!

¿QUÉ ES UNA TABLA DE DATOS?

LAS TABLAS DE DATOS SON ESTRUCTURAS CON COLUMNAS Y FILAS QUE EXPRESAN UNA INFORMACIÓN CLARA.

– EJEMPLO:

EN EL AULA DE 1° GRADO LOS NIÑOS DIJERON EN QUÉ MES CUMPLEN AÑOS Y LOS DATOS LOS COLOCARON EN LA SIGUIENTE TABLA:

CON LOS DATOS ORDENADOS EN UNA TABLA PODEMOS EXTRAER INFORMACIÓN CON PREGUNTAS:

  • ¿EN QUÉ MES DEL AÑO HAY MÁS NIÑOS QUE CUMPLEN AÑOS?

EN EL MES DE MAYO HAY MÁS NIÑOS QUE CUMPLEN AÑOS.

  • ¿CUÁLES SON LOS MESES QUE TIENEN UN SOLO CUMPLEAÑERO?

LOS MESES QUE TIENEN SOLO UN CUMPLEAÑERO SON MARZO, ABRIL, JUNIO, AGOSTO Y DICIEMBRE.

  • ¿EN QUÉ MES CUMPLE AÑOS HUGO?

HUGO CUMPLE AÑOS EN JULIO.

  • ¿EN QUÉ MES DEL AÑO CUMPLE AÑOS PAMELA?

PAMELA CUMPLE AÑOS EN FEBRERO.

¿PARA QUÉ SIRVEN LAS TABLAS?

LAS TABLAS SIRVEN PARA ORGANIZAR DATOS. TAMBIÉN PODEMOS OBSERVAR UNA IMAGEN Y EXTRAER INFORMACIÓN PARA COLOCARLA EN UNA TABLA. ¡VEAMOS!

OBSERVA ESTA IMAGEN, ¿CUÁNTAS PERSONAS HAY? HAY 6 PERSONAS, PERO ¿TODOS SON ADULTOS?, ¿TODOS SON NIÑOS? ¡NO! ASÍ QUE PODEMOS CREAR GRUPOS A PARTIR DE UNA IMAGEN Y ESCRIBIR ESTOS GRUPOS EN UNA TABLA. POR EJEMPLO, UNA TABLA PUEDE MOSTRAR LA CANTIDAD DE PERSONAS ADULTAS Y LA DE NIÑOS; Y OTRA TABLA PUEDE MOSTRAR LA CANTIDAD DE MUJERES Y HOMBRES.

CON ESTA INFORMACIÓN CREAMOS DOS TABLAS CON CATEGORÍAS DIFERENTES:

  • EN ESTA TABLA EXPRESAMOS LA CANTIDAD DE PERSONAS ADULTAS Y NIÑOS.

  • EN ESTA TABLA EXPRESAMOS LA CANTIDAD DE MUJERES Y HOMBRES.

¿SABÍAS QUÉ?
TODAS LAS TABLAS SON CUADROS QUE ORGANIZAN Y RESUMEN UNA INFORMACIÓN RECOLECTADA.

TABLAS: UNA HERRAMIENTA DE CONTEO

LAS TABLAS NOS AYUDAN A ORGANIZAR DATOS QUE YA FUERON CONTADOS. DE ESTE MODO PODEMOS SABER FÁCILMENTE CANTIDADES Y CARACTERÍSTICAS DE UN CONJUNTO. POR EJEMPLO, EN LA IMAGEN HAY MUCHAS FIGURAS, ¿DE CUÁL FIGURA HAY MÁS CANTIDAD? ¿Y DE CUÁL HAY MENOS CANTIDAD? TODA ESTA INFORMACIÓN LA REPRESENTAMOS DE MANERA ORDENADA EN UNA TABLA:

FIGURA ESTRELLA CUADRADO CÍRCULO CORAZÓN TRIÁNGULO
CANTIDAD 6 7 8 5 6

VEMOS QUE LA FIGURA CON MAYOR CANTIDAD ES EL CÍRCULO Y LA DE MENOR CANTIDAD ES EL CORAZÓN. ES MÁS SENCILLO VERLO EN UNA TABLA QUE EN LA IMAGEN.

LAS FILAS Y LAS COLUMNAS

LAS TABLAS DE DATOS ESTÁN COMPUESTAS POR FILAS EN FORMA HORIZONTAL Y COLUMNAS EN FORMA VERTICAL.

– EJEMPLO:

ESTA ES UNA TABLA QUE MUESTRA LA CANTIDAD DE NIÑOS Y NIÑAS DE 1º, 2º Y 3º GRADO QUE NO HICIERON LA TAREA EN UN DÍA.

LA TABLA TIENE 4 FILAS Y 3 COLUMNAS. POR LO GENERAL, LA PRIMERA FILA Y LA PRIMERA COLUMNA SE UTILIZAN PARA ESCRIBIR LAS CATEGORÍAS, POR EJEMPLO, NIÑOS, NIÑAS Y GRADOS.

LA UNIÓN DE UNA FILA Y UNA COLUMNA SE DENOMINA CELDA, LA QUE ESTÁ MARCADA EXPRESA QUE 1 NIÑA DE 2° GRADO NO HIZO LA TAREA ESE DÍA.

UNA UNIÓN DE FILA Y COLUMNA ES IGUAL A UNA INTERSECCIÓN.

¡ES TU TURNO!

OBSERVA DE NUEVO LA TABLA ANTERIOR Y RESPONDE:

  • ¿CUÁNTOS NIÑOS DE 2° GRADO NO HICIERON LA TAREA?
SOLUCIÓN
3
  • ¿CUÁNTOS NIÑAS DE 3° GRADO NO HICIERON LA TAREA?
SOLUCIÓN
6
  • ¿CUÁNTOS NIÑOS Y NIÑAS DE 1° A 3° GRADO NO HICIERON LA TAREA?
SOLUCIÓN
15

TABLAS DE PICTOGRAMAS Y TABLAS DE DATOS

LAS TABLAS DE PICTOGRAMAS EXPRESAN LA MISMA INFORMACIÓN QUE UNA TABLA DE DATOS, LA ÚNICA DIFERENCIA ES QUE USAMOS DIBUJOS O SÍMBOLOS EN LUGAR DE NÚMEROS.

– EJEMPLO:

TABLA DE DATOS:

TABLA DE PICTOGRAMAS:

¡A PRACTICAR!

1. EXPRESAR LA INFORMACIÓN DE ESTAS SITUACIONES EN TABLA DE PICTOGRAMAS Y TABLA DE DATOS.

A) ANTONIA Y JOSÉ FUERON AL PARQUE DE DIVERSIONES. CADA UNO SE SUBIÓ VARIAS VECES A LOS JUEGOS:

  • ANTONIA SUBIÓ 4 VECES A LA RUEDA DE LA FORTUNA Y 3 VECES AL CARRUSEL.
  • JOSÉ SUBIÓ UNA VEZ A LA RUEDA DE LA FORTUNA Y 2 VECES AL CARRUSEL.
SOLUCIÓN

TABLA DE PICTOGRAMA:

RUEDA DE LA FORTUNA CARRUSEL
ANTONIA
JOSÉ

TABLA DE DATOS:

RUEDA DE LA FORTUNA CARRUSEL
ANTONIA 4 3
JOSÉ 1 2

B) OMAR Y DARÍO JUGARON UN PARTIDO DE FÚTBOL. OMAR ANOTÓ 8 GOLES Y DARÍO 5 GOLES.

SOLUCIÓN

TABLA DE PICTOGRAMAS:

GOLES
OMAR
DARÍO

TABLA DE DATOS:

GOLES
OMAR 8
DARÍO 5

C) ANGELINA Y JULIÁN COMPRARON UNA BOLSA DE CARAMELOS. ANGELINA COMIÓ 8 Y JULIÁN COMIÓ 12.

SOLUCIÓN

TABLA DE PICTOGRAMAS:

CARAMELOS
ANGELINA
JULIÁN

TABLA DE DATOS:

CARAMELOS
ANGELINA 8
JULIÁN 12

2. OBSERVA LA SIGUIENTE IMAGEN Y COMPLETA LA TABLA DE DATOS:

SOLUCIÓN
GLOBOS NEGROS GLOBOS DORADOS
9 13
RECURSOS PARA DOCENTES

Artículo “Estadística: tabla de valores”

Con este recurso podrás profundizar sobre el uso de las tablas de datos en la estadística.

VER

CAPÍTULO 5 / TEMA 1

PICTOGRAMAS

HACE MUCHOS AÑOS ATRÁS, LOS HOMBRES UTILIZARON UN SISTEMA PARA COMUNICARSE BASADO EN DIBUJOS. DIBUJABAN TODO LO QUE VEÍAN EN LAS PAREDES DE LAS CAVERNAS. EN LA ACTUALIDAD TAMBIÉN USAMOS DIBUJOS PARA REPRESENTAR ALGUNA INFORMACIÓN, ESTOS SE LLAMAN PICTOGRAMAS.

¿QUÉ ES UN PICTOGRAMA?

EL PICTOGRAMA ES UN GRÁFICO O DIBUJO QUE REPRESENTA DATOS DE LA REALIDAD.

OBSERVA ESTAS IMÁGENES, TODAS TIENEN UN SIGNIFICADO Y TE HACEN PENSAR EN UN SONIDO. LA PRIMERA EN EL SONIDO DE UN MEGÁFONO, LA SEGUNDA EN EL DE UNA BOCA Y SU VOZ, EL TERCERO EN EL TIMBRE DE UNA NOTIFICACIÓN, EL CUARTO EN EL DE UNA BOMBA QUE VA A EXPLOTAR, EL QUINTO EN EL DESPERTADOR DE UN RELOJ Y EL ÚLTIMO EN EL TRUENO QUE VIENE TRAS UN RAYO. ¡TODOS SON PICTOGRAMAS!

¿SBÍAS QUÉ?
LOS PICTOGRAMAS REPRESENTAN OBJETOS, PERSONAS, ANIMALES, SITUACIONES, SENTIMIENTOS O ACCIONES.

USO DEL PICTOGRAMA

LOS PICTOGRAMAS SON UTILIZADOS EN TODO EL MUNDO PARA EXPRESAR UN MENSAJE COMPLETO DE MANERA SENCILLA. LOS DIBUJOS O SÍMBOLOS UTILIZADOS LOS PUEDEN ENTENDER PERSONAS DE TODAS LAS EDADES.

ESTE ES UN PICTOGRAMA EN EL QUE VEMOS UN HOMBRE Y UNA MUJER. POR LO GENERAL, LOS ENCONTRAMOS EN LOS ESPACIOS PÚBLICOS Y EN ZONAS EN LAS QUE SOLO PUEDEN INGRESAR HOMBRES O MUJERES, POR EJEMPLO, EN LOS BAÑOS PÚBLICOS. TAMBIÉN PODEMOS ENCONTRARLOS EN EMPRESAS DONDE LOS HOMBRES TRABAJAN EN UN SECTOR Y LAS MUJERES EN OTRO.

¿DÓNDE PODEMOS ENCONTRAR PICTOGRAMAS?

  • EN LAS SEÑALES DE TRÁNSITO.
  • EN CARTELES DE UN LUGAR PÚBLICO, COMO EN LOS BAÑOS
  • EN HISTORIETAS O CÓMICS.
  • EN PRODUCTOS.
  • EN ESTADÍSTICA, PARA REPRESENTAR DATOS.

PICTOGRAMAS EN LAS VÍAS

LOS PICTOGRAMAS SON MUY UTILIZADOS EN TODOS LOS PAÍSES PARA REPRESENTAR SITUACIONES QUE PODEMOS O NO PODEMOS HACER. LAS SEÑALES DE PROHIBICIÓN SIEMPRE TIENEN UN PICTOGRAMA Y UN CÍRCULO ROJO SOBRE ESTE CON UNA BANDA DEL MISMO COLOR, POR EJEMPLO, EN LA IMAGEN SE NOS INDICA QUE NO PODEMOS BOTAR BASURA.

PICTOGRAMAS COMUNES

ES COMÚN UTILIZAR LOS PICTOGRAMAS EN MATEMÁTICA PARA REPRESENTAR CANTIDAD DE DATOS. VEAMOS:

LOS NIÑOS DE 1° GRADO VAN DE PASEO AL ZOOLÓGICO Y DEBEN LLEVAR FRUTAS PARA COMPARTIR EN SU MERIENDA.

ESTA TABLA EXPRESA LA CANTIDAD DE FRUTAS, CADA FRUTA ES IGUAL A 1. ¿LAS CONTAMOS?

LOS NIÑOS DE 1° GRADO LLEVAN 7 NARANJAS Y 8 BANANAS.

¡A PRACTICAR!

1. LA MAESTRA DE 1° GRADO LES CONSULTÓ A SUS ALUMNOS A QUIENES LES GUSTA PINTAR Y A QUIENES LES GUSTA LEER. LA TABLA MUESTRA LOS RESULTADOS. OBSERVA Y RESPONDE.

  • ¿A CUÁNTOS NIÑOS DE 1° GRADO LES GUSTA PINTAR?
SOLUCIÓN
A 9 NIÑOS DE 1° GRADO LES GUSTA PINTAR.
  • ¿A CUÁNTOS NIÑOS DE 1° GRADO LES GUSTA LEER?
SOLUCIÓN
A 5 NIÑOS DE 1° GRADO LES GUSTA LEER.
  • ¿CUÁNTOS NIÑOS HAY EN TOTAL EN PRIMER GRADO?
SOLUCIÓN
EN 1° GRADO HAY 14 NIÑOS.

2. EL DOCTOR PABLO, REGISTRÓ LA CANTIDAD DE PERSONAS QUE FUERON A SU CONSULTORIO EN UNA SEMANA. OBSERVA LA TABLA Y RESPONDE LAS PREGUNTAS.

  • ¿CUÁNTAS PERSONAS FUERON EL DÍA LUNES?
SOLUCIÓN
EL DÍA LUNES FUERON 4 PERSONAS.
  • ¿CUÁNTOS HOMBRES FUERON EL DÍA MARTES?
SOLUCIÓN
EL DÍA MARTES FUERON 2 HOMBRES.
  • ¿CUÁNTAS MUJERES FUERON EL DÍA VIERNES?
SOLUCIÓN
EL DÍA VIERNES FUERON 2 MUJERES.
  • ¿EN QUÉ DÍA ASISTIERON MÁS PERSONAS?
SOLUCIÓN
EL DÍA VIERNES ASISTIERON MÁS PERSONAS.
  • ¿EN QUÉ DÍA ASISTIERON MENOS PERSONAS?
SOLUCIÓN
EL DÍA JUEVES ASISTIÓ ASISTIERON MENOS PERSONAS.
  • ¿A CUÁNTOS PACIENTES ATENDIÓ EL DOCTOR PABLO TODA LA SEMANA?
SOLUCIÓN
EL DOCTOR PABLO ATENDIÓ A 21 PERSONAS EN TODA LA SEMANA.
RECURSOS PARA DOCENTES

Artículo “Gráficos estadisticos”

Este recurso te brindará más información sobre los gráficos y sus tipos, incluidos los pictogramas.

VER

CAPÍTULO 1 / TEMA 7

RELACIONES

LOS NÚMEROS NATURALES SON LOS QUE USAMOS PARA CONTAR, POR EJEMPLO, LA CANTIDAD DE JUGUETES QUE TENEMOS O LAS HORAS QUE FALTAN PARA SALIR A JUGAR. TODOS ELLOS TIENEN UNA RELACIÓN CON LOS DEMÁS NÚMEROS. PARA ESCRIBIR ESTAS RELACIONES USAMOS ALGUNOS SÍMBOLOS ESPECIALES QUE APRENDERÁS HOY.

RELACIONES ENTRE NÚMEROS

TODOS LOS NÚMEROS NATURALES TIENEN UNA RELACIÓN. EN LA IMAGEN VEMOS UN ORDEN DE 1 EN 1 PORQUE CADA NÚMERO A LA DERECHA TIENE UNA UNIDAD MÁS QUE EL ANTERIOR. SI QUEREMOS SABER QUÉ NÚMERO ES MAYOR O MENOR QUE OTRO PODEMOS UTILIZAR UNA RECTA NUMÉRICA. MIENTRAS MÁS A LA DERECHA DE LA RECTA ESTÉ EL NÚMERO, MAYOR SERÁ SU VALOR.

HAY NÚMEROS QUE REPRESENTAN MÁS CANTIDAD QUE OTROS Y POR LO TANTO, TAMBIÉN HAY NÚMEROS QUE REPRESENTAN MENOS CANTIDAD QUE OTROS. ESTA RELACIÓN SE LLAMA ORDEN Y LA USAMOS CADA VEZ QUE CONTAMOS O COMPARAMOS CIFRAS.

ENTRE DOS NÚMEROS, UNO PUEDE SER MAYOR QUE OTRO, IGUAL A OTRO O MENOR QUE OTRO. CADA RELACIÓN TIENE UN SÍMBOLO ÚNICO PARA QUE PUEDAS DIFERENCIARLO.

MAYOR QUE

CUANDO ESCRIBIMOS NÚMEROS PODEMOS VER QUE UNOS REPRESENTAN MÁS CANTIDADES QUE OTROS. POR EJEMPLO:

  • ¿CUÁNTOS CANGREJOS HAY EN LA CAJA ROJA?

HAY 24 CANGREJOS.

  • ¿CUÁNTO CANGREJOS HAY EN LA CAJA AZUL?

HAY 12 CANGREJOS.

  • ¿CUÁL CAJA TIENE MAYOR CANTIDAD DE CANGREJOS?

LA CAJA ROJA TIENE MAYOR CANTIDAD DE CANGREJOS PORQUE 24 ES MAYOR QUE 12.

 

ESTA RELACIÓN ENTRE DOS NÚMEROS LA PODEMOS ESCRIBIR CON EL SÍMBOLO > QUE SIGNIFICA “MAYOR QUE”.

24 > 12

SI UBICAMOS CADA NÚMERO EN LA RECTA NUMÉRICA TENEMOS QUE:

EL NÚMERO 24 ES MAYOR QUE 12 PORQUE SE ENCUENTRA MÁS A LA DERECHA EN LA RECTA NUMÉRICA.


OTRO EJEMPLO:

OBSERVA ESTOS NÚMEROS, ¿CUÁL ES MAYOR?

365            357

PARA RESPONDER LA PREGUNTA DEBEMOS REPRESENTAR EN LA RECTA NUMÉRICA CADA NÚMERO Y COMPARARLOS:

COMO EL 365 ESTÁ MÁS A LA DERECHA EN LA RECTA, 365 ES MAYOR QUE 357. ENTONCES:

365 > 357

¡A ORDENAR NÚMEROS!

ORDENA DE MAYOR A MENOR ESTOS NÚMEROS. USA EL SÍMBOLO “MAYOR QUE” PARA REPRESENTAR LA RELACIÓN ENTRE CADA UNO DE ELLOS.

125 – 89 – 856 – 632

SOLUCIÓN

856 > 632 > 125 > 89

IGUAL QUE

ES POSIBLE QUE DOS CANTIDADES SEAN IGUALES. POR EJEMPLO:

  • CADA CAJA TIENE CARACOLAS MARINAS, ¿CUÁNTAS HAY EN LA CAJA ROJA?, ¿CUÁNTAS HAY EN LA CAJA AZUL?

EN LAS DOS CAJAS HAY LO MISMO: 15 CARACOLAS MARINAS.

 

CUANDO DOS NÚMEROS SON IGUALES USAMOS EL SÍMBOLO = QUE SIGNIFICA “IGUAL A “.

15 = 15

EL SÍMBOLO DE IGUALDAD TAMBIÉN SIRVE PARA DEMOSTRAR QUE UN NÚMERO ES IGUAL A LA SUMA DE OTROS. EJEMPLO:

15 = 10 + 5

15 = 5 + 5 + 5

15 = 2 + 3 + 2 + 3 + 2 + 3

SI BUSCAMOS REPRESENTAR LA IGUALDAD EN UNA RECTA NUMÉRICA, LOS DOS NÚMEROS SERÁN REPRESENTADOS EN EL MISMO LUGAR.

¡COMPAREMOS NÚMEROS!

INDICA SI ESTAS IGUALDADES SON CORRECTAS:

  • 543 = 500 + 40 + 3
SOLUCIÓN
CORRECTO.
  • 123 = 10 + 2 + 3
SOLUCIÓN
INCORRECTO. LA DESCOMPOSICIÓN ADITIVA DE 123 = 100 + 20 + 3.

LA IGUALDAD

SIEMPRE QUE DOS EXPRESIONES SEAN IGUALES DECIMOS QUE HAY UNA IGUALDAD MATEMÁTICA. EL SIGNO USADO ES =. ESTE SIGNO FUE CREADO POR ROBERT RECORDE EN 1557. ÉL USÓ DOS RECTAS PARALELAS PARA REPRESENTARLO.

MENOR QUE

ALGUNOS NÚMEROS REPRESENTAN MENOS CANTIDADES QUE OTROS. POR EJEMPLO:

  • ¿CUÁNTOS PECES HAY EN LA CAJA ROJA?

HAY 18 PECES.

  • ¿CUÁNTOS PECES HAY EN LA CAJA AZUL?

HAY 21 PECES.

  • ¿CUÁL CAJA TIENE MENOR CANTIDAD DE PECES?

LA CAJA ROJA TIENE MENOR CANTIDAD DE PECES PORQUE 18 ES MENOR QUE 21.

 

ESTA RELACIÓN ENTRE DOS NÚMEROS LA PODEMOS ESCRIBIR CON EL SÍMBOLO QUE SIGNIFICA “MENOR QUE”.

18 < 21

SI UBICAMOS CADA NÚMERO EN LA RECTA NUMÉRICA TENEMOS QUE:

EL NÚMERO 18 ES MENOR QUE 21 PORQUE SE ENCUENTRA MÁS A LA IZQUIERDA EN LA RECTA NUMÉRICA.


OTRO EJEMPLO:

OBSERVA ESTOS NÚMEROS, ¿CUÁL ES MENOR?

433            448

PARA RESPONDER LA PREGUNTA DEBEMOS REPRESENTAR EN LA RECTA NUMÉRICA CADA NÚMERO Y COMPARARLOS:

COMO EL 433 ESTÁ MÁS A LA IZQUIERDA EN LA RECTA, 433 ES MENOR QUE 448. ENTONCES:

433 < 448

¿SABÍAS QUÉ?
LA ABERTURA DE LOS SÍMBOLOS < Y > SIEMPRE IRÁ HACIA EL NÚMERO MAYOR, Y LA PUNTA IRÁ HACIA EL NÚMERO MENOR.

¡A ORDENAR NÚMEROS!

ORDENA DE MENOR A MAYOR ESTOS NÚMEROS. USA EL SÍMBOLO “MENOR QUE” PARA REPRESENTAR LA RELACIÓN ENTRE CADA UNO DE ELLOS.

489 – 511 – 263 – 384

SOLUCIÓN

263 < 384 < 489 < 511

LOS SÍMBOLOS DE RELACIÓN SIRVEN PARA QUE COMPAREMOS CANTIDADES. ES POSIBLE QUE NO NOS DEMOS CUENTA, PERO SIEMPRE LOS USAMOS. POR EJEMPLO, MIENTRAS MÁS AÑOS TENEMOS, MÁS ALTOS SOMOS. SI MARCAMOS EN LA PARED NUESTRA ESTATURA VEREMOS QUE CADA AÑO LA MEDIDA ES MAYOR QUE LA ANTERIOR, O VISTO DE OTRO MODO, QUE LA ESTATURA ANTERIOR ES MENOR QUE LA ACTUAL.

 

¡A PRACTICAR!

1. COLOCA EL SÍMBOLO DE RELACIÓN QUE CORRESPONDA:

  • 64 ___ 89
SOLUCIÓN
64 < 89 
  • 159 ___ 685
SOLUCIÓN
159 < 685
  • 745 ___ 700 + 40 + 5
SOLUCIÓN
745 = 700 + 40 + 5
  • 4 + 40 ___ 20 + 7
SOLUCIÓN
4 + 40 = 44 > 27 = 20 + 7
  • 999 ___ 654
SOLUCIÓN
999 > 654
  • 80 + 4 ___ 84
SOLUCIÓN
80 + 4 = 84

 

2. ESCRIBE SI LA RELACIÓN ES VERDADERA O FALSA.

  • 5 = 8
SOLUCIÓN
FALSO. 5 < 8
  • 85 < 85
SOLUCIÓN
FALSO. 85 = 85
  • 196 < 852
SOLUCIÓN
VERDADERO.
  • 458 > 655
SOLUCIÓN
FALSO. 458 < 655
  • 351 < 536
SOLUCIÓN
VERDADERO.
  • 758 = 663
SOLUCIÓN
FALSO. 758 > 663

 

3. ORDENA DE MENOR A MAYOR:

78 – 96 – 499 – 164 – 8 – 968 – 781 – 63 – 19 – 82

SOLUCIÓN
8 < 19 < 63 < 78 < 82 < 96 < 164 < 499 < 781 < 968
RECURSOS PARA DOCENTES

Artículo “Comparar y ordenar números”

En el siguiente artículo hay más ejercicios para la práctica de la relación de números: mayor que y menor que.

VER

CAPÍTULO 5 / TEMA 5 (REVISIÓN)

ESTADÍSTICA Y PROBABILIDAD | ¿QUÉ APRENDIMOS?

LOS PICTOGRAMAS

EL SER HUMANO SIEMPRE HA INTENTADO COMUNICARSE A TRAVÉS DE PINTURAS EN CAVERNAS O CON TALLADOS EN METALES Y MADERA. HOY DÍA TAMBIÉN LO HACEMOS Y EXPRESAMOS NUESTROS SENTIMIENTOS O DESEOS POR MEDIO DE IMÁGENES, COSA QUE LLAMAMOS “PICTOGRAMAS“. ESTOS PICTOGRAMAS SON USADOS EN SEÑALES DE TRÁNSITO, CARTELES PUBLICITARIOS, HISTORIETAS, AVISOS Y GRÁFICOS DE DE INFORMACIÓN QUE PUEDEN SER ENTENDIDOS POR TODAS LAS PERSONAS DEL MUNDO DE FORMA CLARA.

LOS PICTOGRAMAS SON UTILIZADOS EN LAS SEÑALES DE TRÁNSITO COMO ESTE.

TABLAS

LOS DATOS RECOLECTADOS TRAS UNA ENCUESTA PUEDEN ORGANIZARSE EN UNA TABLA. UNA TABLA ES UN CUADRO FORMADO POR FILAS, COLUMNAS Y CELDAS. LAS COLUMNAS SON LAS HILERAS VERTICALES, LAS FILAS SON LAS HILERAS HORIZONTALES Y LAS CELDAS RESULTAN DE LA UNIÓN ENTRE UNA FILA Y UNA COLUMNA. PUEDEN HACERSE CON NÚMEROS, CON PICTOGRAMAS Y CON MÁS DE DOS DATOS.

LAS TABLAS SON DE GRAN AYUDA PARA CONTROLAR EL DINERO QUE TENEMOS Y EL QUE GASTAMOS.

GRÁFICO DE BARRAS

LOS GRÁFICOS DE BARRAS MUESTRAN CON RECTÁNGULOS UNA INFORMACIÓN. ESTOS GRÁFICOS EXPRESAN A TRAVÉS DE BARRAS EL VALOR DE UNA CATEGORÍA Y SON MUY ÚTILES PARA VER DE FORMA RÁPIDA CUÁL TIENE UN MAYOR VALOR O UN MENOR VALOR. PARA REALIZARLO EN NECESARIO QUE PRIMERO ORGANICEMOS LOS DATOS EN UNA TABLA.

LOS GRÁFICOS DE BARRAS PUEDEN SER VERTICALES, HORIZONTALES O APILADOS.

PROBABILIDAD

LA PROBABILIDAD ESTUDIA LA POSIBILIDAD DE QUE UN EVENTO OCURRA O NO. POR EJEMPLO, SI LANZAMOS UN PAR DE DADOS NO SABEMOS CON SEGURIDAD QUÉ NÚMERO SALDRÁ, PERO SÍ SABEMOS QUE SALDRÁ EN CADA UNO UN NÚMERO MENOR A 7. ESTOS SON SUCESOS ALEATORIOS EN LOS QUE INTERVIENE EL AZAR, ES DECIR, QUE NO PODEMOS PREDECIR.

LOS JUEGOS DE CARTAS Y DADOS SON JUEGOS DE AZAR. HAY PROBABILIDAD DE QUE SALGA CUALQUIER CARTA DEL MAZO, ASÍ COMO CUALQUIER NÚMERO MENOR A 7 EN CADA DADO.

CAPÍTULO 5 / TEMA 4

PROBABILIDAD

¿ALGUNA VEZ HAS LANZADO UN DADO? ¿SIEMPRE SABES QUE NÚMERO SALDRÁ? ¡NO! ¿VERDAD? AUNQUE SABES QUE PUEDE SALIR UN NÚMERO DEL 1 AL 6 NO TIENES SEGURIDAD DE CUÁL DE ESOS NÚMEROS SERÁ. GRACIAS A LA PROBABILIDAD PODEMOS CALCULAR LA CANTIDAD DE VECES QUE UN EVENTO ALEATORIO COMO ESTE PUEDE OCURRIR O NO.

evento ALEATORIO

UN EVENTO ALEATORIO ES AQUEL QUE PUEDE OCURRIR O NO PUEDE OCURRIR Y EN EL QUE INTERVIENE EL AZAR. ES DECIR, QUE SI REPETIMOS EL MISMO EL EVENTO PODEMOS TENER SIEMPRE DISTINTOS RESULTADOS.

– EJEMPLOS:

  • LANZAR UNA MONEDA.
  • LANZAR UN DADO.
  • ELEGIR UNA CARTA DE UN MAZO.
  • SACAR UN CARAMELO ROJO DE UNA BOLSA CON CARAMELOS DE MÚLTIPLES COLORES.

COMO VES, NO PODEMOS PREDECIR EL RESULTADO DE ESTOS EVENTOS.

LOS DADOS SON OBJETOS CON FORMA DE CUBO Y TIENEN SEIS CARAS. CADA CARA REPRESENTA UN NÚMERO DEL 1 AL 6. ES NORMAL QUE LOS VEAS EN JUEGOS DE MESA COMO EL LUDO, EL MONOPOLIO Y EL PASE INGLÉS. CUANDO LANZAMOS UN DADO ESTAMOS SEGUROS QUE SALDRÁ UNO DE ESOS NÚMEROS, PERO NO SABEMOS CON SEGURIDAD CUÁL, ES DECIR, NO PODEMOS PREDECIR EL RESULTADO. ESO ES LO QUE CONOCEMOS COMO AZAR.

sucesos posibles

OBSERVA ESTAS BOLSAS CON BOLAS DE COLORES. SI SACAMOS UNA BOLA CON LOS OJOS CERRADOS NO SABRÍAMOS DE QUÉ COLOR SALDRÍA LA BOLA. SIN EMBARGO, PODEMOS PREDECIR QUÉ TAN PROBABLE ES QUE SAQUEMOS UN COLOR U OTRO.

– EJEMPLO:

NOTA QUE:

  • HAY 2 BOLAS ROJAS.
  • HAY 10 BOLAS AMARILLAS.

HAY MÁS BOLAS DE COLOR AMARILLO, ASÍ QUE:

 

ES MÁS PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO.

 

NOTA QUE:

  • HAY 6 BOLAS ROJAS.
  • HAY 6 BOLAS AMARILLAS.

HAY IGUAL CANTIDAD DE BOLAS DE COLOR ROJO Y AMARILLO, ASÍ QUE:

 

ES IGUAL DE PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO O DE COLOR ROJO.

 


NOTA QUE:

  • HAY 10 BOLAS ROJAS.
  • HAY 2 BOLAS AMARILLAS.

HAY MENOS BOLAS DE COLOR AMARILLO, ASÍ QUE:

 

ES MENOS PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO.

SEGURO, PROBABLE O IMPOSIBLE

LOS SUCESOS SON CADA UNO DE LOS RESULTADOS POSIBLES DE UN EVENTO ALEATORIO. ESTOS PUEDEN SER SEGUROS, PROBABLES O IMPOSIBLES.

  • LOS SUCESOS SEGUROS OCURREN SIEMPRE.
  • LOS SUCESOS PROBABLES OCURREN A VECES.
  • LOS SUCESOS IMPOSIBLES NO OCURREN NUNCA.

– EJEMPLO:

 ES SEGURO SACAR UNA BOLA AMARILLA.

 ES PROBABLE SACAR UNA BOLA VERDE.

 ES IMPOSIBLE SACAR UNA BOLA AZUL.

¿SABÍAS QUÉ?
LOS SUCESOS QUE OCURREN CON SEGURIDAD SE LLAMAN “SUCESOS DETERMINISTAS”, POR EJEMPLO, LA HORA EN LA QUE ABRE UN BANCO SIEMPRE ES LA MISMA. 
ALFONSO TIENE BLOQUES DE COLOR AMARILLO, AZUL, ROJO, VERDE, BLANCO Y NEGRO PARA JUGAR. SI ESTÁN TODOS EN UNA CAJA Y SACA DE A UNO SIN VER ES SEGURO QUE ALFONSO ELEGIRÁ UN BLOQUE DE CUALQUIERA DE ESOS COLORES, ES PROBABLE QUE ELIJA UN BLOQUE AMARILLO, PERO ES IMPOSIBLE QUE ELIJA UN BLOQUE DE COLOR ANARANJADO O GRIS.

RECOPILACIÓN DE DATOS

TODOS LOS DATOS PUEDEN ORGANIZARSE EN UNA TABLA, EN UNA TABLA DE PICTOGRAMAS O EN UN GRÁFICO DE BARRAS. POR EJEMPLO, SI QUEREMOS ORGANIZAR LOS BLOQUES PARA JUGAR POR COLOR TENEMOS QUE CONTAR UNO POR UNO Y HACER GRUPOS DE COLORES. LUEGO LOS REPRESENTAMOS. POR EJEMPLO:

  • TABLA
COLOR DEL BLOQUE CANTIDAD DE BLOQUES
AMARILLO 16
AZUL 28
ROJO 32
VERDE 20

 

  • TABLA DE PICTOGRAMA
COLOR DEL BLOQUE CANTIDAD DE BLOQUES
AMARILLO
AZUL
ROJO
VERDE
CLAVE

= 4 BLOQUES

 

  • GRÁFICO DE BARRAS

NOTA QUE TANTO LA TABLA, COMO LA TABLA DE PICTOGRAMAS Y EL GRÁFICO DE BARRAS REPRESENTAN LOS MISMOS DATOS.

¡A PRACTICAR!

  1. COMPLETA CON “SEGURO”, “PROBABLE” O “IMPOSIBLE” LAS SIGUIENTES ORACIONES.
  • ES ____ LANZAR UN DADO Y QUE SALGA EL NÚMERO 7.
SOLUCIÓN
IMPOSIBLE
  • ES ____ LANZAR UNA MONEDA Y QUE SALGA CARA.
SOLUCIÓN
PROBABLE
  • ES ____ LANZAR UN DADO Y QUE SALGA UN NÚMERO MENOR A 7.
SOLUCIÓN
SEGURO

 

2. OBSERVA ESTA RULETA. LUEGO RESPONDE LAS PREGUNTAS.

  • ¿CUÁNTAS ZONAS ROJAS HAY?
    SOLUCIÓN
    3
  • ¿CUÁNTAS ZONAS VERDES HAY?
    SOLUCIÓN
    2
  • ¿CUÁNTAS ZONAS MORADAS HAY?
    SOLUCIÓN
    2
  • ¿CUÁNTAS ZONAS AMARILLAS HAY?
    SOLUCIÓN
    1
  • ¿CUÁL COLOR ES MÁS PROBABLE QUE SALGA LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL ROJO.
  • ¿CUÁL COLOR ES MENOS PROBABLE QUE SALGA LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL AMARILLO.
  • ¿CUÁLES COLORES TIENEN IGUAL PROBABILIDAD DE SALIR LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL VERDE Y EL MORADO.
RECURSOS PARA DOCENTES

Artículo “Probabilidad”

Este artículo servirá de ayuda para profundizar sobre los conceptos básicos de la probabilidad.

VER

CAPÍTULO 5 / TEMA 3

GRÁFICO DE BARRAS

EXISTEN MUCHAS FORMAS DE REPRESENTAR UNA INFORMACIÓN, YA SEA POR TABLAS, PICTOGRAMAS O GRÁFICOS DE BARRAS. ¿SABES QUÉ SON LOS GRÁFICOS DE BARRAS? ESTOS GRÁFICOS SE UTILIZAN PARA EXPRESAR DATOS DE FORMA RÁPIDA POR MEDIO DE BARRAS VERTICALES U HORIZONTALES. ¡APRENDAMOS PARA QUÉ SIRVEN Y CUÁLES SON SUS ELEMENTOS!

¿QUÉ ES UN GRÁFICO DE BARRAS?

EL GRÁFICO DE BARRAS ES UNA MANERA DE MOSTRAR UNA INFORMACIÓN CLARA Y ORDENADA. CONSISTE EN UN CONJUNTOS DE BARRAS DONDE CADA UNA REPRESENTA UNA CATEGORÍA. LAS ALTURAS DE LAS BARRAS NOS AYUDAN A COMPARAR DATOS.

EL GRÁFICO DE BARRAS ES TAMBIÉN CONOCIDO COMO DIAGRAMA DE BARRAS. LAS BARRAS PUEDEN SER VERTICALES, COMO LAS DE LA IMAGEN; PERO TAMBIÉN PUEDEN SER HORIZONTALES. EL COLOR Y LA ALTURA DE CADA BARRA NOS PERMITE HACER COMPARACIONES. POR EJEMPLO, LA BARRA VERDE ES MÁS ALTA QUE LA ROJA, ASÍ QUE REPRESENTA UN VALOR MAYOR.

TIPOS DE GRÁFICOS DE BARRAS

LOS GRÁFICOS DE BARRAS PUEDEN SER VERTICALES, HORIZONTALES Y APILADOS.

FUNCIÓN DEL GRÁFICO DE BARRAS

LOS GRÁFICOS DE BARRAS FUNCIONAN PARA COMPARAR DATOS DE FORMA RÁPIDA.

– EJEMPLO:

SE LE PREGUNTARON A LOS ALUMNOS DE 2º GRADO CUÁL ES SU DEPORTE FAVORITO. LAS RESPUESTAS SE REPRESENTAN EN ESTE GRÁFICO DE BARRAS:

AL OBSERVAR EL GRÁFICO VEMOS QUE:

  • EL FÚTBOL FUE ELEGIDO POR 6 ALUMNOS.
  • EL BALONCESTO FUE ELEGIDO POR 2 ALUMNOS.
  • EL BÉISBOL FUE ELEGIDO POR 5 ALUMNOS.
  • EL TENIS FUE ELEGIDO POR 8 ALUMNOS.

¡ES TU TURNO!

OBSERVA LA TABLA ANTERIOR. RESPONDE:

  • ¿CUÁL FUE EL DEPORTE MÁS ELEGIDO POR LOS ALUMNOS?
    SOLUCIÓN
    EL TENIS.
  • ¿CUÁL FUE EL DEPORTE MENOS ELEGIDO POR LOS ALUMNOS?
    SOLUCIÓN
    EL BALONCESTO.

ELEMENTOS DEL GRÁFICO DE BARRAS

LOS ELEMENTOS DEL GRÁFICO DE BARRAS INDICAN LA FUNCIÓN DE CADA PARTE DEL MISMO. VEAMOS:

¿SABÍAS QUÉ?
TODAS LAS BARRAS DE ESTE GRÁFICO TIENEN EL MISMO ANCHO Y NO SE SUPERPONEN.

PROBLEMAS CON GRÁFICOS DE BARRAS

VEAMOS ALGUNOS PROBLEMAS PARA RESOLVER CON GRÁFICOS DE BARRAS. ¿TE ANIMAS?

EL SIGUIENTE GRÁFICO EXPRESA LA CANTIDAD DE LIBROS QUE HAN LEÍDO LOS NIÑOS AMIGOS DE TANIA.

¡ES TU TURNO!

DESPUÉS DE OBSERVAR EL GRÁFICO DE BARRAS PUEDES RESPONDER ESTAS PREGUNTAS:

  • ¿CUÁNTOS LIBROS LEYÓ JULIANA?
    SOLUCIÓN
    JULIANA LEYÓ 12 LIBROS.
  • ¿CUÁNTOS LIBROS LEYÓ CAMILA?
    SOLUCIÓN
    CAMILA LEYÓ 4 LIBROS.
  • ¿CUÁNTOS LIBROS LEYÓ LEONEL?
    SOLUCIÓN
    LEONEL LEYÓ 10 LIBROS.
  • ¿QUIÉN LEYÓ MÁS LIBROS?
    SOLUCIÓN
    JULIANA LEYÓ MÁS LIBROS.
  • ¿QUIÉN LEYÓ MENOS LIBROS?
    SOLUCIÓN
    CAMILA LEYÓ MENOS LIBROS.

 

2. EL KIOSCO DE MERCEDES VENDIÓ EN UN DÍA LOS SIGUIENTES PRODUCTOS:

¡ES TU TURNO!

DESPUÉS DE OBSERVAR EL GRÁFICO DE BARRAS PUEDES RESPONDER ESTAS PREGUNTAS:

  • ¿CUÁL PRODUCTO FUE EL MÁS VENDIDO?
    SOLUCIÓN
    LOS JUGOS.
  • ¿CUÁL PRODUCTO FUE EL MENOS VENDIDO?
    SOLUCIÓN
    LOS CHOCOLATES.
  • ¿CUÁNTOS JUGOS, CHOCOLATES Y FRUTAS SE VENDIERON?
    SOLUCIÓN
    MERCEDES VENDIÓ 4 CHOCOLATES, 10 JUGOS Y 8 FRUTAS.

 

3. EL SIGUIENTE GRÁFICO MUESTRA LA CANTIDAD DE TORNEOS DE AJEDREZ GANADOS DURANTE TRES AÑOS POR TOMÁS.

¡ES TU TURNO!

DESPUÉS DE OBSERVAR EL GRÁFICO DE BARRAS PUEDES RESPONDER ESTAS PREGUNTAS:

  • ¿EN QUÉ AÑO LE FUE MEJOR A TOMÁS? ¿CUÁNTOS TORNEOS GANÓ ESE AÑO?
    SOLUCIÓN
    A TOMÁS LE FUE MEJOR EN EL TERCER AÑO. GANÓ 8 TORNEOS.
  • ¿CUÁL FUE EL AÑO QUE NO LE FUE BIEN Y CUÁNTOS TORNEOS GANÓ ESE AÑO?
    SOLUCIÓN
    A TOMÁS NO LE FUE BIEN EL SEGUNDO AÑO. GANÓ 5 TORNEOS.
  • ¿CUÁNTOS TORNEOS GANÓ EN TOTAL DURANTE LOS TRES AÑOS?
    SOLUCIÓN
    DURANTE LOS TRES AÑOS TOMÁS GANÓ 19 TORNEOS.
RECURSOS PARA DOCENTES

Artículo “Gráficos estadísticos”

Con este recurso se podrá profundizar sobre los distintos tipos de gráficos estadísticos, incluyendo los gráficos de barras.

VER

CAPÍTULO 5 / TEMA 2

TABLAS

SI QUEREMOS INFORMAR SOBRE UN TEMA ESPECÍFICO TENEMOS QUE RECOLECTAR DATOS, POR EJEMPLO, PARA SABER LA CANTIDAD DE HOMBRES Y MUJERES EN UNA ESCUELA DEBEMOS CONTARLOS UNO POR UNO. ESTA INFORMACIÓN SE PUEDE GRAFICAR DE FORMA RESUMIDA Y CLARA EN UNA TABLA. LAS TABLAS PUEDEN SER CON NÚMEROS, PICTOGRAMAS O DE DOBLE ENTRADA.

ES NORMAL QUE VEAMOS TABLAS EN LOS AEROPUERTOS. ESTAS TABLAS MUESTRAN LA HORA DE SALIDA Y LA HORA DE LLEGADA DE UN VUELO. TAMBIÉN NOS DA INFORMACIÓN SOBRE EL AVIÓN Y LAS CIUDADES O PAÍSES ENTRE LAS CUALES SE HACE EL VIAJE. ES POSIBLE QUE TAMBIÉN VEAS TABLAS EN LAS TERMINALES O EN LOS MERCADOS CON LOS PRECIOS DE LOS PRODUCTOS.

¿QUÉ ES UNA TABLA?

ES UN GRÁFICO CON FORMA CUADRADA O RECTANGULAR. SIRVE PARA ORGANIZAR Y RESUMIR INFORMACIÓN. ESTÁ FORMADA POR FILAS, COLUMNAS Y CELDAS.

GRADO NOMBRE Y APELLIDO EDAD
MARÍA PÉREZ 8
JOSÉ COLINA 7
CARLA GONZÁLEZ 8

 

  • LAS FILAS SON LAS HILERAS HORIZONTALES.

  • LAS COLUMNAS SON LAS HILERAS VERTICALES.

  • LAS CELDAS SON LAS CASILLAS QUE RESULTAN DE LA UNIÓN ENTRE UNA FILA Y UNA COLUMNA.

TABLA DE DATOS

LAS TABLAS DE DATOS EXPONEN INFORMACIÓN RECOLECTADA. VEAMOS UNA TABLA SIMPLE CON UNA INFORMACIÓN SOBRE UNA FAMILIA.

– EJEMPLO:

PRIMOS DE LUCAS EDAD
ANGÉLICA 5
JOSÉ 9
MARIO 13
CARLA 15

ESTA TABLA EXPRESA UNA INFORMACIÓN SENCILLA, LAS EDADES DE LO PRIMOS DE LUCAS: 5, 9, 13 Y 15. AL MISMO TIEMPO PODEMOS LEER OTRA INFORMACIÓN: LUCAS TIENE 4 PRIMOS.

TAMBIÉN PODEMOS EXPRESAR UNA MAYOR CANTIDAD DE DATOS DE MANERA ORGANIZADA.

– EJEMPLO:

OBSERVA ESTA IMAGEN. ¿QUÉ CANTIDAD HAY DE CADA FRUTA Y VEGETAL?

LA CANTIDAD DE FRUTAS Y VEGETALES LA PODEMOS REPRESENTAR EN UNA TABLA COMO ESTA:

FRUTA O VEGETAL CANTIDAD
MANZANAS 6
PERAS 4
ZANAHORIAS 9
FRESAS 9

¿SABÍAS QUÉ?
LAS COLUMNAS TAMBIÉN SON LLAMADAS “CAMPOS”.

¿CÓMO LEER UNA TABLA DE DATOS?

1. OBSERVA LA PRIMERA FILA. ESTA ES LA FILA DE ENCABEZADO Y MUESTRA LAS CATEGORÍAS DE LOS DATOS. POR EJEMPLO, EN ESTA TABLA LAS CATEGORÍAS SON “DEPORTE FAVORITO” Y “CANTIDAD DE ESTUDIANTES”.

DEPORTE FAVORITO CANTIDAD DE ESTUDIANTES
FÚTBOL 12
BALONCESTO 8
NATACIÓN 5
TENIS 2
BÉISBOL 10
NINGUNO 5

 

2. CADA DATO DE UNA COLUMNA CORRESPONDE AL DATO DE LA OTRA COLUMNA. ASÍ, POR EJEMPLO, SI QUEREMOS SABER LA CANTIDAD DE ESTUDIANTES QUE PREFIEREN EL BALONCESTO, SOLO TENEMOS QUE OBSERVAR LA FILA DE ESE DEPORTE: PARA 8 ESTUDIANTES EL BALONCESTO ES SU DEPORTE FAVORITO.

DEPORTE FAVORITO CANTIDAD DE ESTUDIANTES
FÚTBOL 12
BALONCESTO 8
NATACIÓN 5
TENIS 2
BÉISBOL 10
NINGUNO 5

¡ES TU TURNO!

OBSERVA DE NUEVO LA TABLA ANTERIOR Y RESPONDE:

  • ¿CUÁNTOS ESTUDIANTES PREFIEREN JUGAR BÉISBOL?
    SOLUCIÓN
    10
  • ¿CUÁL ES EL DEPORTE FAVORITO DE LA MAYORÍA DE ESTUDIANTES?
    SOLUCIÓN
    FÚTBOL
  • ¿CUÁNTOS ESTUDIANTES NO TIENEN ALGÚN DEPORTE FAVORITO?
    SOLUCIÓN
    5
  • ¿CUÁNTOS ESTUDIANTES HAY EN TOTAL?
    SOLUCIÓN
    12 + 8 + 5 + 2 + 10 + 5 = 42
    HAY 42 ESTUDIANTES.

TABLA DE PICTOGRAMAS

ASÍ COMO COLOCAMOS LOS DATOS EN FORMA DE NÚMEROS, TAMBIÉN PODEMOS COLOCAR PICTOGRAMAS PARA REPRESENTAR LOS DATOS. POR EJEMPLO: CELESTE, ARIEL, LETICIA Y RAMIRO CONTARON LAS MONEDAS QUE LES QUEDARON PARA LOS JUEGOS. LOS RESULTADOS FUERON LOS SIGUIENTES:

NOMBRE MONEDAS
CELESTE
ARIEL
LETICIA
RAMIRO
CLAVE

 = 1 MONEDA

¡ES TU TURNO!

OBSERVA LA TABLA DE PICTOGRAMAS Y RESPONDE LAS PREGUNTAS:

  • ¿CUÁNTAS MONEDAS TIENE CELESTE?
    SOLUCIÓN
    6
  • ¿CUÁNTAS MONEDAS TIENE ARIEL?
    SOLUCIÓN
    3
  • ¿CUÁNTAS MONEDAS TIENE LETICIA?
    SOLUCIÓN
    5
  • ¿CUÁNTAS MONEDAS TIENE RAMIRO?
    SOLUCIÓN
    6
  • ¿QUIÉNES TIENEN MÁS MONEDAS?
    SOLUCIÓN
    CELESTE Y RAMIRO.
  • ¿QUIÉN TIENE MENOS MONEDAS?
    SOLUCIÓN
    ARIEL.

TABLA DE DOBLE ENTRADA

LAS TABLAS DE DOBLE ENTRADA MUESTRAN LA RELACIÓN ENTRE DOS O MÁS CATEGORÍAS.

– EJEMPLO:

EN EL SALÓN DE 2º GRADO SE LE PREGUNTARON A TODOS LOS ALUMNOS SI LES GUSTABA O NO LES GUSTABA EL ARTE. LAS RESPUESTAS SE GRAFICARON EN ESTA TABLA:

LES GUSTA EL ARTE NO LES GUSTA EL ARTE
NIÑOS 10 5
NIÑAS 12 8

EN ESTA TABLA PODEMOS VER LA CANTIDAD DE NIÑOS Y NIÑAS A LOS QUE LES GUSTA EL ARTE. TAMBIÉN PODEMOS VER LA CANTIDAD DE NIÑOS Y NIÑAS A LOS QUE NO LES GUSTA EL ARTE.

¡ES TU TURNO!

OBSERVA LA TABLA DE DOBLE ENTRADA Y RESPONDE LAS PREGUNTAS:

  • ¿A CUÁNTAS NIÑAS LES GUSTA EL ARTE?
    SOLUCIÓN
    12
  • ¿A CUÁNTOS NIÑOS LES GUSTA EL ARTE?
    SOLUCIÓN
    10
  • ¿A CUÁNTOS NIÑOS NO LES GUSTA EL ARTE?
    SOLUCIÓN
    5
  • ¿A CUÁNTAS NIÑAS NO LES GUSTA EL ARTE?
    SOLUCIÓN
    8
  • ¿A CUÁNTOS NIÑOS Y NIÑAS LES GUSTA EL ARTE?
    SOLUCIÓN
    10 + 12 = 22
    A 22 NIÑAS NO LES GUSTA EL ARTE.
  • ¿A CUÁNTOS NIÑOS Y NIÑAS NO LES GUSTA EL ARTE?
    SOLUCIÓN
    8 + 5 = 13
    A 13 NIÑOS Y NIÑAS NO LES GUSTA EL ARTE.
  • ¿CUÁNTAS NIÑAS HAY EN EL SALÓN DE 2º GRADO?
    SOLUCIÓN
    12 + 8 = 20
    HAY 20 NIÑAS.
  • ¿CUÁNTOS NIÑOS HAY EN EL SALÓN DE 2º GRADO?
    SOLUCIÓN
    10 + 5 = 15
    HAY 15 NIÑOS.
  • ¿CUÁNTOS NIÑOS Y NIÑAS HAY EN EL SALÓN DE 2º GRADO?
    SOLUCIÓN
    10 + 12 + 5 + 8 = 35
    HAY 35 NIÑOS Y NIÑAS.

TABLAS CON OPERACIONES

LAS TABLAS TAMBIÉN SON MUY ÚTILES PARA REPRESENTAR OPERACIONES MATEMÁTICAS COMO LA SUMA Y LA MULTIPLICACIÓN. EN ESTA TABLA VEMOS QUE CADA CELDA DE COLOR ES EL RESULTADO DE LA SUMA ENTRE UN DATO DE LA FILA DE ENCABEZADO Y LA COLUMNA DE ENCABEZADO. POR EJEMPLO, 3 + 6 = 9.

RECURSOS PARA DOCENTES

Artículo “Estadística: tabla de valores”

Con este recurso se podrá profundizar sobre el uso de las tablas de datos en la estadística.

VER

CAPÍTULO 4 / TEMA 5 (REVISIÓN)

GEOMETRÍA DE LAS FORMAS | ¿qué aprendimos?

EL PUNTO Y LA LÍNEA

EL PUNTO ES EL ENTE FUNDAMENTAL DE LA GEOMETRÍA. UNA SUCESIÓN INFINITA DE PUNTOS FORMA UNA LÍNEA. SEGÚN LAS DIRECCIÓN QUE TENGAN ESTOS PUNTOS LAS LÍNEAS PUEDEN SER RECTAS, COMO LAS DEL BORDE DE UNA PANTALLA DE CELULAR; O PUEDEN SER CURVAS, COMO EL BORDE UN GLOBO. CUANDO EL PUNTO DE INICIO Y FIN SON EL MISMO EN UNA LÍNEA, DECIMOS QUE LA LÍNEA ES CERRADA, PERO SI ESTOS PUNTOS NO COINCIDEN, LA LÍNEA ES ABIERTA.

CUANDO OBSERVAMOS UN PAISAJE PODEMOS VER MUCHAS LÍNEAS FORMADAS POR LA NATURALEZA.

FIGURAS PLANAS

LAS FIGURAS PLANAS SOLO TIENEN DOS DIMENSIONES: ALTO Y ANCHO. EXISTEN DOS TIPOS DE FIGURAS PLANAS, LAS POLIGONALES Y LOS CÍRCULOS. LAS PRIMERAS ESTÁN FORMADAS POR LÍNEAS POLIGONALES CERRADAS, COMO UN CUADRADO O RECTÁNGULO. LAS SEGUNDAS ESTÁN FORMADAS POR LÍNEAS CURVAS CERRADAS, COMO EL CÍRCULO. TODOS LOS PUNTOS QUE CORRESPONDEN A LA LÍNEA CURVA SE ENCUENTRAN A LA MISMA DISTANCIA DEL CENTRO DE FIGURA. ESTA LÍNEA QUE DELIMITA AL CÍRCULO SE LLAMA CIRCUNFERENCIA.

UNA LUPA TIENE FORMA DE CÍRCULO.

FIGURAS TRIDIMENSIONALES

LAS FIGURAS TRIDIMENSIONALES OCUPAN UN LUGAR EN EL ESPACIO Y TIENEN TRES DIMENSIONES: ALTO, LARGO Y ANCHO. LAS FIGURAS TRIDIMENSIONALES TAMBIÉN SON LLAMADAS CUERPOS GEOMÉTRICOS Y EXISTEN DOS TIPOS: LOS POLIEDROS Y LOS CUERPOS REDONDOS. LOS PRIMEROS ESTÁN CONFORMADOS POR CARAS PLANAS COMO EL PRISMA Y LA PIRÁMIDE; Y LOS SEGUNDOS TIENEN SUPERFICIES CURVAS, COMO EL CILINDRO, LA ESFERA Y EL CONO.

LOS CUERPOS GEOMÉTRICOS NO SE PUEDEN TRAZAR EN UNA REGIÓN DEL PLANO SINO QUE SE CONSTRUYEN PARA QUE TENGAN SUS DIMENSIONES REALES.

POSICIÓN Y DESPLAZAMIENTO

LOS CUERPOS GEOMÉTRICOS, LOS PUNTOS, LAS FIGURAS Y LOS OBJETOS TIENEN UNA DETERMINADA POSICIÓN EN EL ESPACIO, PERO LA POSICIÓN NO SIEMPRE ES LA MISMA. DOS DE LOS MOVIMIENTOS MÁS COMUNES SON LA TRASLACIÓN Y LA ROTACIÓN. POR OTRO LADO, ES POSIBLE UBICAR CADA PUNTO EN EL ESPACIO GRACIAS A LOS EJES CARTESIANOS, UN CONJUNTO DE LÍNEAS QUE SE CRUZAN PARA DARNOS LAS COORDENADAS O POSICIÓN DE UN PUNTO.

LA ROTACIÓN Y LA TRASLACIÓN DE ELEMENTOS GEOMÉTRICOS SE ASEMEJAN A LOS MOVIMIENTOS QUE REALIZA LA TIERRA.