CAPÍTULO 1 / TEMA 4

LOS NÚMEROS DECIMALES

No todos los problemas matemáticos involucran a los número enteros, muchas veces necesitamos una cantidad intermedia entre ese entero. Para eso están los números decimales. Estos tienen infinidad de aplicaciones en la vida cotidiana, como en la medida de nuestro peso o en los precios de un producto. Aquí aprenderás cuáles son y cómo leerlos. 

Los números decimales son ampliamente utilizados en áreas como la contabilidad y las finanzas para expresar montos de dinero y realizar operaciones algebraicas con estos valores. Dada la gran utilidad e importancia en la vida diaria de los números decimales, es importante que aprendamos a realizar operaciones matemáticas con estos valores.

¿QUÉ SON LOS NÚMEROS DECIMALES?

Los números decimales son aquellos que están compuestos por una parte entera y una parte decimal, ambas separadas por una coma.

Los utilizamos a diario para expresar cantidades que se encuentran entre dos números enteros consecutivos, ya que, como sabemos, entre dos números enteros de una recta numérica existen infinitos valores que pueden expresarse con decimales.

Valor posicional

De acuerdo con la ubicación que ocupe cada dígito en el número decimal su valor posicional será diferente. Observa este ejemplo:

A cada cifra decimal le corresponde un único valor que depende de su posición. Para leer este número podemos optar por cualquiera de las siguientes opciones:

  • Lee la parte entera seguida de la palabra “enteros”. Luego lee la parte decimal como si fuera un número natural y nombra la posición de la última cifra decimal. Ejemplo:

138,451067 se lee “ciento treinta y ocho enteros cuatrocientos cincuenta y un mil sesenta y siete millonésimas“.

  • Lee la parte entera seguida de la palabra “coma”. Después lee la parte decimal como si fuera un número natural. Ejemplo:

138,451067 se lee “ciento treinta y ocho coma cuatrocientos cincuenta y un mil sesenta y siete”.

DECIMALES EXACTOS

Son los números decimales que contienen una cantidad limitada o finita de dígitos en su parte decimal.

– Ejemplo:

  • −0,375 (contiene decimales hasta la milésima).
  • 735.743,84653 (contiene decimales hasta la cienmilésima).
  • 921,6 (contiene decimales hasta la décima).

¿Sabías qué?
Todos los números decimales exactos y periódicos pueden transformarse en una fracción equivalente.
A diario nos encontramos con cifras que son representadas a través de números decimales. Por ejemplo, cuando vamos al mercado hay una gran cantidad de precios expresados en números decimales, para lo cual se puede emplear una coma o un punto. El uso de la coma o el punto decimal dependerá del país en el que te encuentres.

NÚMEROS PERIÓDICOS

Son los números decimales que poseen una cantidad infinita de dígitos en su parte decimal y muestran un patrón de repetición. Los podemos clasificar en periódicos puros y periódicos mixtos.

Números decimales periódicos puros

Son los números decimales en los cuales la parte decimal se repite inmediatamente después de la coma. Se denotan con una línea horizontal o con una arco en la parte superior del dígito o los dígitos que se repitan.

– Ejemplo:

\frac{4}{3}=1,333...=1,\overline{3}

\frac{2}{3}=0,666...=0,\overline{6}

¿Cómo convertir un número decimal periódico puro a fracción?

Para convertir un número decimal periódico puro a su fracción equivalente tenemos que seguir estos pasos:

  1. Escribe todo el número sin la coma.
  2. Resta a esa cantidad la parte entera del número decimal.
  3. Divide entre tantos nueves como decimales periódicos tenga el número.

– Ejemplo:

  • 1,\overline{12}=\frac{112-1}{99}=\frac{111}{99}=\boldsymbol{\frac{37}{33}}
  • 0,\overline{3}=\frac{3-0}{9}=\frac{3}{9}=\boldsymbol{\frac{1}{3}}
  • 34,\overline{36}=\frac{3.436-34}{99}=\frac{3.402}{99}=\boldsymbol{\frac{378}{11}}

Nota que todas las fracciones fueron simplificadas.

Números decimales periódicos mixtos

Son los números cuya parte decimal contienen uno o más dígitos antes de los números periódicos. A los números que se encuentran antes del período se los denomina anteperíodo.

– Ejemplo:

\frac{17}{15}=1,1333...=1,1\overline{3}

\frac{7}{12}=0,58333...=0,58\overline{3}

¿Cómo convertir un número decimal periódico mixto a fracción?

Para convertir un número decimal periódico mixto a su fracción equivalente tenemos que seguir estos pasos:

  1. Escribe todo el número sin la coma.
  2. Resta a esa cantidad el número decimal sin la coma y sin el período.
  3. Divide entre tantos nueves como decimales periódicos tenga el número junto a tantos ceros como tenga el anteperíodo.

– Ejemplo:

  • 7,0\overline{5}=\frac{705-70}{90}=\frac{635}{90}=\boldsymbol{\frac{127}{18}}
  • 3,2\overline{45}=\frac{3.245-32}{990}=\frac{3.213}{990}=\boldsymbol{\frac{357}{110}}
  • 6,53\overline{1}=\frac{6.531-653}{900}=\frac{5.878}{900}=\boldsymbol{\frac{2.939}{450}}

DECIMALES NO EXACTOS Y NO PERIÓDICOS

Son todos los números decimales con infinitos dígitos no periódicos en su parte decimal. Este tipo de números decimales conforman el conjunto de los números irracionales.

– Ejemplo:

\pi =3,1415...

\sqrt{2}=1,4142...

El número pi (π) es un número decimal que contiene infinitos dígitos no periódicos en su parte decimal, por lo tanto, pertenece al conjunto de los números irracionales. Este valor es una constante que se obtiene si dividimos el perímetro de cualquier circunferencia entre su diámetro. Se suele aproximar su parte decimal hasta la centésima, por ejemplo, π = 3,14.

¡A practicar!

1. ¿Cómo se leen estos números?

a) 45,98

Solución
Cuarenta y cinco enteros noventa y ocho centésimas.

b) 903,65322

Solución
Novecientos tres enteros sesenta y cinco mil trescientos veintidós cienmilésimas.

c) 0,07

Solución
Siete centésimas.

2. Escribe en forma de número decimal las siguientes fracciones. Señala si son exactos o periódicos. Si son periódicos indica si son puros o mixtos.

a) \frac{19}{15}

Solución
\frac{19}{15}=1,2\overline{6}

Número decimal periódico mixto.

b) \frac{4}{11}

Solución

\frac{4}{11}=0,\overline{36}

Número decimal periódico puro.

c) \frac{57}{20}

Solución

\frac{57}{20}=2,85

Número decimal exacto.

d) \frac{13}{6}

Solución

\frac{13}{6}=2,1\overline{6}

Número decimal periódico mixto.

e) \frac{4}{3}

Solución

\frac{4}{3}=1,\overline{3}

Número decimal periódico puro.

f) \frac{43}{8}

Solución

\frac{43}{8}=5,375

Número decimal exacto.

RECURSOS PARA DOCENTES

Artículo “Números decimales”

En este artículo encontrará información sobre las características de los números decimales, el sistema de numeración posicional y la clasificación de los números decimales.

VER

Artículo “¿Cómo Transformar un número decimal a fracción?”

Este contenido ofrece una detallada explicación sobre el procedimiento para obtener fracciones equivalentes de algunas expresiones decimales.

VER

Artículo “¿Qué es un número decimal?”

Este artículo ofrece información completa sobre los números decimales: su composición, sistema de numeración posicional y operaciones aritméticas con los números decimales.

VER

CAPITULO 5 / TEMA 5

Circunferencia y círculo

El círculo es la superficie contenida dentro de una circunferencia. En algunas ocasiones suelen confundirse estos términos por error, pero lo cierto es que gozan de características únicas que desde tiempos antiguos han cautivado a los matemáticos. Su conocimiento es importante para entender conceptos como el número pi.

Diferencia entre la circunferencia y el círculo

Aunque son conceptos que están estrechamente relacionados, circunferencia y círculo son dos cosas geométricamente diferentes. La circunferencia es la línea o perímetro que bordea y delimita la superficie de un círculo. Todos los puntos de la circunferencia se encuentran a una misma distancia del centro. El círculo, por otra parte, es una figura geométrica que está delimitada por una circunferencia.

¿Sabías qué?
El matemático griego Eratóstenes de Cirene fue la primera persona en calcular la circunferencia de la Tierra en el 230 a. C.

En este sentido, cuando hablamos de circunferencia nos referimos a una curva cerrada y cuando hablamos de círculo nos referimos a una superficie o área que está contenida dentro de una circunferencia.

Instrumento muy útil

Desde su invención en el año 200 a. C. por parte de los chinos, el compás ha sido uno de los inventos más usados en la geometría y en otras áreas. Su utilidad ha ido más allá del trazado de arcos y circunferencias, también permite transportar medidas y puede emplearse en la construcción de polígonos y en el cálculo de distancias empleado por la navegación.

Elementos de la circunferencia

Los elementos principales de una circunferencia se detallan a continuación:

  • Centro: es el punto que se ubica a la misma distancia de todos los puntos que conforman la circunferencia.
  • Radio: es el segmento de recta que une al centro con cualquiera de los puntos de la circunferencia.
  • Cuerda: es la recta que une dos puntos de la circunferencia.
  • Diámetro: es el segmento de recta que une dos puntos de la circunferencia y pasa por el centro. Su longitud es igual al doble del radio.
  • Semicircunferencia: es la mitad de la circunferencia. El diámetro divide a la circunferencia en dos semicircunferencias.
  • Arco: es una porción de la circunferencia que se encuentra delimitada por una cuerda. Generalmente, a cada cuerda se le asocia el menor arco que delimita.

Relaciones entre rectas y circunferencias

Entre una circunferencia y una recta pueden darse tres tipos diferentes de relación:

  • Recta exterior: es aquella recta que nunca corta a la circunferencia.
  • Recta tangente: es aquella recta que corta a la circunferencia en uno de sus puntos.
  • Recta secante: es aquella recta que corta a la circunferencia en dos de sus puntos.

VER INFOGRAFÍA

Desde la Antigüedad, los geómetras se enfocaron en calcular la longitud de la circunferencia. Esta línea curva cerrada sin importar su tamaño siempre mide algo más que el triple de su diámetro. En este contexto, se emplea el número pi (π), un número con infinitos decimales que se obtiene al dividir la longitud de la circunferencia por su diámetro.

Trazado de circunferencias

Para trazar circunferencias empleamos el compás y debemos seguir los siguientes pasos:

  1. Conocer la distancia que hay desde el centro de la circunferencia hasta alguno de sus puntos (el radio). Para esto puedes usar una regla y abrir el compás a dicha distancia. Otra forma de hacerlo es trazar el segmento de recta igual a la longitud del radio deseado, colocar la aguja de acero sobre uno de los extremos y abrir el compás hasta que la mina de grafito toque el otro extremo.
  2. Apretar con suavidad la aguja de acero contra el papel para que no se mueva y girar el otro brazo de forma firme para trazar la circunferencia.
  3. Marcar el centro de la circunferencia que será el mismo punto donde se apoyó la aguja de acero durante el trazado de la circunferencia.

Área del círculo

Para calcular el área de un círculo simplemente necesitamos conocer la longitud de su radio. La fórmula es la siguiente:

A=\pi \times r^{2}

Donde:

A = área del círculo
π = número pi
r = longitud del radio

Como el número pi (π) es un número irracional, sus decimales son infinitos (3,141592653589793238…), por lo tanto, para efectos de cálculo de área se suele aproximar a 3,14.

¿Sabías qué?
Existe otra fórmula para calcular el área del círculo en función de su diámetro: A = \frac{\pi }{4}\times d^{2}.

– Calcula el área del siguiente círculo.

De acuerdo a la figura, la longitud del radio es 5 cm, por lo tanto, podemos aplicar la fórmula de área.

A=\pi \times r^{2}

A=3,14 \times (5 \, cm)^{2}

A=3,14 \times 25 \, cm^{2}

A=\mathbf{78,5 \, cm^{2}}

El sistema sexagesimal es uno de los sistemas usados para medir ángulos y tiempo. En el caso de los ángulos, el sistema emplea una circunferencia para establecer sus unidades de medición. Un grado (°) equivale a la 360 parte de una circunferencia, un minuto (′) equivale a la 60 parte de un grado y un segundo (″) equivale a la 60 parte de un minuto.

¡A practicar!

1. Calcula el área de los siguientes círculos.

a) 

Solución
A = 50,24 cm2

b)

Solución
A = 254,34 cm2

c)

Solución
A = 12,56 m2

d)

Solución
A = 314 mm2

e)

Solución
A =153,86 cm2

2. ¿Cuánto debe medir el radio de una circunferencia para que su área sea igual a 113,04 cm2?
a) 5 cm
b) 3 cm
c) 6 cm
d) 11 cm

Solución
c) 6 cm

RECURSOS PARA DOCENTES

Artículo “Circunferencia”

El artículo explica los elementos principales de la circunferencia y la relación que tiene esta con el número pi. En el artículo también se explica como calcular la longitud de una circunferencia y determinar el área de un círculo.

VER

Artículo “Círculo”

El artículo plantea de forma resumida cada uno de los elementos de un círculo como el semicírculo y el segmento circular. También presenta ilustraciones de cada uno para explicar el concepto de manera más clara.

VER

Infografía “Número pi (π)”

En esta infografía se explica más a detalle qué es el número pi, su desarrollo a través del tiempo y las diferentes aplicaciones del mismo.

VER