CAPÍTULO 6 / TEMA 4 (REVISIÓN)

GRÁFICOS Y ESTADÍSTICA |¿QUÉ APRENDIMOS?

LA ENCUESTA

La encuesta es una técnica de investigación estadística que consiste en aplicar un cuestionario a un grupo de personas para obtener información sobre un tema específico. Las preguntas en un cuestionario pueden ser abiertas cuando el encuestado tiene la libertad de dar cualquier respuesta, o cerradas cuando solo se contestan a partir de varias opciones. A través de esta herramienta se puede conocer la opinión de las personas sobre algún tema y se pueden recabar datos específicos para una investigación. Los resultados de las encuestas a menudo se representan en tablas o en gráficas.

Las encuestas se pueden hacer de forma presencial, por vía telefónica, por correo o por Internet.

TABLAS Y GRÁFICOS

Los datos se pueden organizar de forma más clara y ordenada a través de las tablas de frecuencia, de los gráficos de barra y de los pictogramas. Una tabla de frecuencia permite la organización de los datos de acuerdo su frecuencia respectiva, es decir, el número de veces que se repiten. Estas tablas pueden ser simples o de doble entrada si representan uno o dos conjuntos de datos respectivamente. Por otra parte, un gráfico de barra emplea barras rectangulares para representar la frecuencia de un dato. Finalmente, un pictograma es un diagrama que al igual que las tablas y los gráficos de barra, representa las frecuencias de los datos pero a través de imágenes.

La longitud de los rectángulos en los gráficos de barra indica la frecuencia de la variable.

PROBABILIDAD

Hay eventos en los que no se puede saber con exactitud cuál será su resultado porque dependen del azar: lanzar una moneda, sacar una carta de un mazo, lanzar un dado, etc. Estos son ejemplos de eventos aleatorios que pueden ser más, menos o igual de probables que otros. De acuerdo a la posibilidad u ocurrencia de un fenómeno podemos clasificar los eventos en seguros, cuando siempre ocurren; posibles, cuando podrían ocurrir; e imposibles, cuando nunca ocurren. A menudo practicamos juegos como piedra, papel o tijera donde podemos observar eventos aleatorios.

En un juego aleatorio, el resultado de ganar o no depende de la destreza del jugador y del azar.

CAPÍTULO 6 / TEMA 3

PROBABILIDAD

Lanzar un dado, sacar un número de una esfera de bingo o tomar una carta de un mazo sin ver son algunos eventos en los que no conocemos con certeza qué resultado se va a obtener. Sin embargo, gracias a la probabilidad, sí podemos conocer qué tan probable es que sucedan.

evento aleatorio

Un evento es el resultado o conjunto de resultados que pueden ocurrir en un experimento. Se dice que un evento es aleatorio cuando no es posible determinarlo con exactitud y por ello, está sujeto al azar.

En un experimento aleatorio no se conoce con seguridad cuál será el resultado. Por ejemplo, un evento aleatorio puede ser lanzar una moneda y observar si cae la cara o la cruz. Esto se debe a que en los eventos aleatorios interviene el azar. Aunque nunca conoceremos con certeza cuál será el resultado, sí conocemos los posibles resultados, en este caso sería cara o cruz.

En ocasiones realizamos acciones como lanzar un dado, en donde conocemos de antemano los posibles resultados que se pueden dar (1, 2, 3, 4, 5 o 6), sin embargo; no sabemos exactamente cuál de ellos va a ocurrir.

Los resultados de estas acciones son eventos aleatorios.

Por ejemplo, observa los colores de las esferas que contiene la bolsa:

Al sacar al azar una esfera de la bolsa, puede suceder que la esfera sea verde, roja, violeta o azul, pero no puede suceder que la esfera sea de color amarillo, porque no hay en la bolsa esferas de color amarillo.

Regla de Laplace

El análisis de las probabilidades fue definido por el matemático francés Pierre de Laplace, quien la definió como el cociente entre los casos favorables entre los casos posibles.

\boldsymbol{probabilida = \frac{casos \: \: favorables}{casos\: \: posibles}}

El estudio de la probabilidad es usado desde una fábrica hasta las empresas de juegos de lotería. En la ciencia, las probabilidades han tenido una importancia incalculable porque permiten realizar estimaciones de eventos en donde participa el azar.

Los eventos pueden ser seguros, posibles o imposibles. Un evento seguro siempre sucede, por ejemplo, lanzar una moneda y que se obtenga cara o sello. Un evento imposible nunca ocurre, como por ejemplo lanzar un dado y obtener el número siete. Un evento posible es el que podría suceder, como sacar una carta de póquer de un mazo y que sea una reina.

OCURRENCIA de un suceso

Los eventos aleatorios pueden ser eventos o sucesos seguros, posibles e imposibles de que ocurran.

  • En un evento seguro el resultado siempre se va a dar.
  • En un evento posible el resultado podría darse.
  • En un evento imposible el resultado no podría darse.

Por ejemplo, observa las frutas que hay en la cesta:

Imagina que tienes los ojos vendados y tomas unas frutas, se pueden dar los diferentes tipos de eventos a continuación:

  • Un evento seguro es agarrar una manzana.
  • Un evento posible es agarrar una manzana roja.
  • Un evento imposible es agarrar una fresa.

Probabilidades de los eventos

Dentro de los posibles eventos podemos distinguir:

  • Evento igual de probable: es aquel resultado que tiene la misma probabilidad que los demás. Por ejemplo, cuando lanzamos una moneda, el evento “cara” tiene las mismas probabilidades que el evento “cruz”.
  • Evento muy probable: es aquel resultado que tiene muchas probabilidades de darse. Por ejemplo, en una caja con 10 tarjetas, 9 de color amarillo y 1 de color rojo, el evento “sacar una tarjeta amarilla” tiene muchas probabilidades de ocurrir.
  • Evento poco probable: es aquel resultado que tiene muy pocas probabilidades de darse. Por ejemplo, en una caja con 10 tarjetas, 9 de color azul y 1 de color verde, el suceso “sacar una tarjeta verde” tiene pocas probabilidades de ocurrir.

¿Sabías qué?
Si reúnes 23 personas al azar es muy probable que una ellas cumpla el mismo día que tú.

juegos aleatorios

Los juegos aleatorios populares en los casinos, como la ruleta y las cartas, son juegos en donde las posibilidades de ganar o perder no solo dependen de la habilidad que tenga el jugador, sino que además interviene el azar, esto se debe a que la probabilidad de ganar o perder es algo que no se puede predecir pero sí calcular de acuerdo a las probabilidades.

Juego de los dados

En este juego participan dos personas, las reglas son muy sencillas: cada jugador tira un dado y el jugador con la puntuación más alta gana.

La probabilidad de victoria es la misma para cada uno de los jugadores.

Para visualizarlo, imaginemos que el dado de un jugador es de color azul y el del oponente verde. Esto nos permite representar de un modo muy visual los 36 posibles desenlaces de una mano. Representamos en azul las victorias del dado azul y en verde las victorias del dado verde, y en blanco los empates. Observa:

Observamos que de los 36 posibles desenlaces 15 son victorias azules y 15 victorias verdes. Es decir, la probabilidad de que gane cada uno de los jugadores es la misma (15/36) y por lo tanto, ninguno tiene ventaja.

Pares o nones

Este es un juego que se utiliza para elegir entre dos personas a una de las dos, mediante un evento aleatorio: uno de los jugadores escoge “pares” y el otro “nones”, cada uno representa un número del 1 al 5 con una mano en la espalda, cuentan hasta tres y la sacan con cualquier número de dedos extendidos

CAPÍTULO 5 / TEMA 4

PROBABILIDAD

¿ALGUNA VEZ HAS LANZADO UN DADO? ¿SIEMPRE SABES QUE NÚMERO SALDRÁ? ¡NO! ¿VERDAD? AUNQUE SABES QUE PUEDE SALIR UN NÚMERO DEL 1 AL 6 NO TIENES SEGURIDAD DE CUÁL DE ESOS NÚMEROS SERÁ. GRACIAS A LA PROBABILIDAD PODEMOS CALCULAR LA CANTIDAD DE VECES QUE UN EVENTO ALEATORIO COMO ESTE PUEDE OCURRIR O NO.

evento ALEATORIO

UN EVENTO ALEATORIO ES AQUEL QUE PUEDE OCURRIR O NO PUEDE OCURRIR Y EN EL QUE INTERVIENE EL AZAR. ES DECIR, QUE SI REPETIMOS EL MISMO EL EVENTO PODEMOS TENER SIEMPRE DISTINTOS RESULTADOS.

– EJEMPLOS:

  • LANZAR UNA MONEDA.
  • LANZAR UN DADO.
  • ELEGIR UNA CARTA DE UN MAZO.
  • SACAR UN CARAMELO ROJO DE UNA BOLSA CON CARAMELOS DE MÚLTIPLES COLORES.

COMO VES, NO PODEMOS PREDECIR EL RESULTADO DE ESTOS EVENTOS.

LOS DADOS SON OBJETOS CON FORMA DE CUBO Y TIENEN SEIS CARAS. CADA CARA REPRESENTA UN NÚMERO DEL 1 AL 6. ES NORMAL QUE LOS VEAS EN JUEGOS DE MESA COMO EL LUDO, EL MONOPOLIO Y EL PASE INGLÉS. CUANDO LANZAMOS UN DADO ESTAMOS SEGUROS QUE SALDRÁ UNO DE ESOS NÚMEROS, PERO NO SABEMOS CON SEGURIDAD CUÁL, ES DECIR, NO PODEMOS PREDECIR EL RESULTADO. ESO ES LO QUE CONOCEMOS COMO AZAR.

sucesos posibles

OBSERVA ESTAS BOLSAS CON BOLAS DE COLORES. SI SACAMOS UNA BOLA CON LOS OJOS CERRADOS NO SABRÍAMOS DE QUÉ COLOR SALDRÍA LA BOLA. SIN EMBARGO, PODEMOS PREDECIR QUÉ TAN PROBABLE ES QUE SAQUEMOS UN COLOR U OTRO.

– EJEMPLO:

NOTA QUE:

  • HAY 2 BOLAS ROJAS.
  • HAY 10 BOLAS AMARILLAS.

HAY MÁS BOLAS DE COLOR AMARILLO, ASÍ QUE:

 

ES MÁS PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO.

 

NOTA QUE:

  • HAY 6 BOLAS ROJAS.
  • HAY 6 BOLAS AMARILLAS.

HAY IGUAL CANTIDAD DE BOLAS DE COLOR ROJO Y AMARILLO, ASÍ QUE:

 

ES IGUAL DE PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO O DE COLOR ROJO.

 


NOTA QUE:

  • HAY 10 BOLAS ROJAS.
  • HAY 2 BOLAS AMARILLAS.

HAY MENOS BOLAS DE COLOR AMARILLO, ASÍ QUE:

 

ES MENOS PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO.

SEGURO, PROBABLE O IMPOSIBLE

LOS SUCESOS SON CADA UNO DE LOS RESULTADOS POSIBLES DE UN EVENTO ALEATORIO. ESTOS PUEDEN SER SEGUROS, PROBABLES O IMPOSIBLES.

  • LOS SUCESOS SEGUROS OCURREN SIEMPRE.
  • LOS SUCESOS PROBABLES OCURREN A VECES.
  • LOS SUCESOS IMPOSIBLES NO OCURREN NUNCA.

– EJEMPLO:

 ES SEGURO SACAR UNA BOLA AMARILLA.

 ES PROBABLE SACAR UNA BOLA VERDE.

 ES IMPOSIBLE SACAR UNA BOLA AZUL.

¿SABÍAS QUÉ?
LOS SUCESOS QUE OCURREN CON SEGURIDAD SE LLAMAN “SUCESOS DETERMINISTAS”, POR EJEMPLO, LA HORA EN LA QUE ABRE UN BANCO SIEMPRE ES LA MISMA. 
ALFONSO TIENE BLOQUES DE COLOR AMARILLO, AZUL, ROJO, VERDE, BLANCO Y NEGRO PARA JUGAR. SI ESTÁN TODOS EN UNA CAJA Y SACA DE A UNO SIN VER ES SEGURO QUE ALFONSO ELEGIRÁ UN BLOQUE DE CUALQUIERA DE ESOS COLORES, ES PROBABLE QUE ELIJA UN BLOQUE AMARILLO, PERO ES IMPOSIBLE QUE ELIJA UN BLOQUE DE COLOR ANARANJADO O GRIS.

RECOPILACIÓN DE DATOS

TODOS LOS DATOS PUEDEN ORGANIZARSE EN UNA TABLA, EN UNA TABLA DE PICTOGRAMAS O EN UN GRÁFICO DE BARRAS. POR EJEMPLO, SI QUEREMOS ORGANIZAR LOS BLOQUES PARA JUGAR POR COLOR TENEMOS QUE CONTAR UNO POR UNO Y HACER GRUPOS DE COLORES. LUEGO LOS REPRESENTAMOS. POR EJEMPLO:

  • TABLA
COLOR DEL BLOQUE CANTIDAD DE BLOQUES
AMARILLO 16
AZUL 28
ROJO 32
VERDE 20

 

  • TABLA DE PICTOGRAMA
COLOR DEL BLOQUE CANTIDAD DE BLOQUES
AMARILLO
AZUL
ROJO
VERDE
CLAVE

= 4 BLOQUES

 

  • GRÁFICO DE BARRAS

NOTA QUE TANTO LA TABLA, COMO LA TABLA DE PICTOGRAMAS Y EL GRÁFICO DE BARRAS REPRESENTAN LOS MISMOS DATOS.

¡A PRACTICAR!

  1. COMPLETA CON “SEGURO”, “PROBABLE” O “IMPOSIBLE” LAS SIGUIENTES ORACIONES.
  • ES ____ LANZAR UN DADO Y QUE SALGA EL NÚMERO 7.
SOLUCIÓN
IMPOSIBLE
  • ES ____ LANZAR UNA MONEDA Y QUE SALGA CARA.
SOLUCIÓN
PROBABLE
  • ES ____ LANZAR UN DADO Y QUE SALGA UN NÚMERO MENOR A 7.
SOLUCIÓN
SEGURO

 

2. OBSERVA ESTA RULETA. LUEGO RESPONDE LAS PREGUNTAS.

  • ¿CUÁNTAS ZONAS ROJAS HAY?
    SOLUCIÓN
    3
  • ¿CUÁNTAS ZONAS VERDES HAY?
    SOLUCIÓN
    2
  • ¿CUÁNTAS ZONAS MORADAS HAY?
    SOLUCIÓN
    2
  • ¿CUÁNTAS ZONAS AMARILLAS HAY?
    SOLUCIÓN
    1
  • ¿CUÁL COLOR ES MÁS PROBABLE QUE SALGA LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL ROJO.
  • ¿CUÁL COLOR ES MENOS PROBABLE QUE SALGA LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL AMARILLO.
  • ¿CUÁLES COLORES TIENEN IGUAL PROBABILIDAD DE SALIR LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL VERDE Y EL MORADO.
RECURSOS PARA DOCENTES

Artículo “Probabilidad”

Este artículo servirá de ayuda para profundizar sobre los conceptos básicos de la probabilidad.

VER