La recolección y conteo de datos es el procedimiento que se lleva a cabo para la obtención de información o respuesta de diferentes variables. Los datos pueden clasificarse como cualitativos cuando expresan cualidades o cuantitativos cuando expresan cantidades. Los datos cuantitativos se diferencian en continuos si tienen cualquier valor dentro de un intervalo; y discretos si solo ciertos valores están en un intervalo.
gráficos estadísticos
Los gráficos estadísticos son una herramienta fundamental para lograr la correcta interpretación de los datos recolectados, ya que ofrecen un gran recurso visual. Existen diversos tipos de estos como el gráfico de barras, el poligonal o el circular. Los elementos principales de cada uno de estos son el título, el cuerpo y la escala.
medidas de tendencia central
Las medidas de tendencia central se utilizan para poder representar una distribución de datos en un solo valor característico. Para esto puede calcularse la moda (Mo), la mediana (Md) o la media (). Estas estimaciones pueden hacerse a partir de la organización de todos los datos.
eventos y probabilidad
Los eventos aleatorios pueden ser seguros o imposibles, por ejemplo, al lanzar un moneda es seguro que saldrá cara o sello, pero es imposible que salga una tercera opción. La probabilidad de que ocurra un evento se mide al dividir la cantidad de casos favorables entre la cantidad de casos posibles, así, la probabilidad de que salga cara al lanzar una moneda es de 1/2. La probabilidad también se puede expresar como porcentaje. Por otro lado, los diagramas de Venn también nos ayudan a determinar visualmente probabilidades.
¿Sabías qué el 70 % de la superficie de nuestro planeta está cubierto por agua? ¡Sí! Pero ¿qué significa 70 %? Los porcentajes son expresiones que, al igual que las fracciones, representan una parte de un todo. También los vemos a menudo en las rebajas en las tiendas del centro comercial o en los impuestos de los productos que compramos.
relación de las fracciones y el porcentaje
El porcentaje es una parte de un todo igual a 100, es decir, es una razón con denominador 100. Su símbolo es “%” y se puede expresar como una fracción o como un decimal. Por ejemplo, 70 % es igual a escribir 70/100 que a su vez es igual a 0,7.
Puedes ver la relación entre el porcentaje, las fracciones y los número decimales en esta tabla:
Porcentaje
Fracción
Decimal
Cantidad en relación a 100
Porcentaje/100
0,…
– Ejemplo:
Porcentaje
Fracción
Decimal
La relación no siempre es lineal, también podemos partir de una fracción y convertirla en porcentaje. Para esto, solo dividimos el numerador entre el denominador, y luego multiplicamos el cociente obtenido por 100.
Fracción
Decimal
Porcentaje
¿Sabías qué?
En los porcentajes se lee “por ciento”. Por ejemplo, el “15 % de los alumnos juegan al fútbol” se lee “el quince por ciento de los alumnos juegan al fútbol”.
¡Es tu turno!
Convierte estas fracciones a porcentajes:
Solución
Solución
Cálculo de porcentajes
Para calcular el porcentaje de una cantidad, por ejemplo, el 15 % de 80, podemos optar por tres métodos diferentes:
1. Convierte el porcentaje a fracción. Luego multiplica.
2. Convierte el porcentaje a decimal. Luego multiplica.
3. Usa la regla de tres.
Nota que con cualquiera de los tres métodos el resultado será el mismo: 12.
¿Qué es el IVA?
El IVA o impuesto al valor agregado es un impuesto directo que pagan los consumidores al Estado por utilizar algún bien o servicio. Cada país tiene un porcentaje de IVA diferente, por ejemplo, en Argentina es de 21 %, en Colombia es de 19 %, en Costa Rica es de 13 % y en Venezuela es de 16 %.
¡Resolvamos algunos problemas!
1. En un curso hay 30 chicos y el 10 % de ellos juega al rugby, el 30 % juega al fútbol y el resto no hace ningún deporte. Responde:
a) ¿Cuántos de ellos juegan al rugby?
b) ¿Cuántos juegan al fútbol?
c) ¿Cuántos no hacen ningún deporte?
Datos
Cantidad de chicos: 30
Chicos que juegan al rugby: 10 %
Chicos que juegan al fútbol: 30 %
Chicos que no hacen ningún deporte: ?
Reflexión
a. Para saber la cantidad de chicos que juegan al rugby tenemos que multiplicar la cantidad total de chicos (30) por la fracción equivalente al porcentaje, en este caso, 10 % = 10/100.
b. La cantidad de jugadores de fútbol la sabremos si multiplicamos la cantidad total de chicos por la fracción equivalente al porcentaje, en este caso, 30 % = 30/100.
c. Cuando sepamos la cantidad de chicos que juegan al rugby y al fútbol, solo tendremos que restarle esa cantidad al total, es decir, los chicos que no hacen deporte = 30 − (a + b)
Cálculo
a.
b.
c.
Respuestas
a. 3 chicos juegan al rugby.
b. 9 chicos juegan al fútbol.
c. 18 chicos no hacen deporte.
2. A José le hicieron un descuento del 5 % en su compra. Si gastó en ese lugar $ 3.200, ¿qué monto debe pagar?
Datos
Cuenta total: $ 3.200
Descuento: 5 %
Reflexión
a. Lo primero que tenemos que hacer es calcular el 5 % de 3.200. Para esto solo multiplicamos la cantidad de dinero por la fracción equivalente al porcentaje, que sería 5 % = 5/100.
b. Como se trata de un descuento, tenemos que “quitar” la cantidad que represente ese porcentaje al monto total, por lo tanto, tenemos que restarlo.
Cálculo
a.
b.
Respuesta
José debe pagar $ 3.040.
3. Un equipo de baloncesto participó en 50 partidos este año y ganó el 30 % de ellos. ¿Cuántos partidos ganó este año?
Datos
Partidos jugados: 50
Partidos ganados: 30 %
Reflexión
Al tratarse del porcentaje de una cantidad total, basta con multiplicar la cantidad de partidos (50) por la fracción equivalente al porcentaje, es decir, 30 % = 30/100.
Cálculo
Respuesta
El equipo de baloncesto ganó 15 partidos de 50 jugados este año.
importancia del porcentaje
En la vida cotidiana, el porcentaje tiene distintos usos. Por ejemplo, a la hora de calcular la tasa de interés, al solicitar un crédito, al realizar una encuesta, en los descuentos y recargos en el pago de una cuenta, o cuando esperamos que una aplicación móvil se cargue y vemos una barra que muestra el porcentaje de descarga.
Los porcentajes son útiles cuando comparamos grandes partes de un todo. Por ejemplo, si de un instituto de 800 estudiantes, 360 estudiantes van a la feria de ciencias, y de otro van 360 de 600 estudiantes, es más práctico y claro decir que el 45 % de los estudiantes del primer instituto va a la feria de ciencias y que el 60 % del segundo va a la feria de ciencias.
¡A practicar!
1. Calcular los siguientes porcentajes:
12 % de 1.700
Solución
204
3 % de 4.400
Solución
132
15 % de 2.500
Solución
375
50 % de 45.000
Solución
22.500
78 % de 50.000
Solución
39.000
2. Resuelve:
a. Marta tiene 120 figuritas repetidas y le regaló el 20 % a su amiga. ¿Cuántas figuritas le quedan a Marta?
Solución
A Marta le quedan 96 figuritas.
b. Gabriela viajó dos quintas partes de lo que debía viajar. ¿Qué porcentaje del viaje realizó?
Solución
Gabriela realizó el 40 % del viaje.
c. Se realizó una encuesta a 200 personas sobre los géneros de películas que más les gustan y representaron los resultados en este gráfico circular como porcentajes. Indica a cuántas personas les gusta cada género.
Solución
Comedia: 110 personas
Suspenso: 40 personas
Familiares: 24 personas
Terror: 10 personas
Drama: 16 personas
3. Escribe las siguientes fracciones como porcentajes:
Solución
60 %
Solución
60 %
Solución
87,5 %
RECURSOS PARA DOCENTES
Tarjeta Educativa “Porcentaje”
En esta tarjeta encontrará reglas prácticas para el cálculo de porcentajes, sus características y aplicaciones.
La recta numérica es un gráfico en el que podemos representar cualquier número que pertenezca al conjunto de los números reales (). Tiene intervalos que señalan las unidades y siempre tienen la misma distancia entre un número y su consecutivo. Por otra parte, los distintos tipos de relaciones que existen entre los números se pueden mostrar por medio de los símbolos “<” y “>” que significan “menor que” y “mayor que” respectivamente.
ORDEN DE NÚMEROS NATURALES Y DECIMALES
Para ubicar los números naturales en la recta numérica ubicamos el 0 en una posición arbitraria y luego colocamos el resto de los números naturales en intervalos regulares. Si deseamos comparar números naturales usamos los símbolos < y > o la recta numérica, pues todo número que esté más a la derecha en la recta siempre será el mayor. Para ubicar números decimales en la recta numérica, debemos agregar subdivisiones entre los números enteros. Cuando queremos compararlos, primero tomamos en cuenta la parte entera y luego comparamos las cifras decimales de izquierda a derecha.
ORDEN DE FRACCIONES
Las fracciones también tiene un lugar en la recta numérica, para esto tenemos que considerar si la fracción es propia o impropia. De ser propia dividimos a la unidad en tantos segmentos como indique el denominador y contamos tantos segmentos como indique el numerador, luego marcamos la fracción. Si la fracción es impropia, tenemos que convertirla primero en un número mixto, en este caso, seguimos el procedimiento anterior pero a partir de la parte entera que tenga el número mixto.
PROPORCIONALIDAD
La proporcionalidad es una relación que existe entre dos magnitudes que podemos medir, y puede ser directa o inversa. Dos cantidades son directamente proporcionales si cuando una aumenta la otra aumenta o si cuando una disminuye la otra también lo hace. Por otro lado, al convertir medidas lo hacemos por medio de una regla de tres, un método muy útil para saber un valor desconocido entre 2 relaciones.
RELACIONES DE TIEMPO
El tiempo es quizás la magnitud más usada y medida diariamente. Sus unidades son variadas y van desde las menores a un día, como los segundos, los minutos y las horas; hasta las que sobrepasan al día como los meses, años y décadas. Si usamos una regla de tres podemos convertir una unidad a otra sin dificultad. También podemos hacer cálculos de suma y resta con el tiempo, esto nos ayuda a saber cuando empezó un partido de fútbol o qué hora salió un tren, por ejemplo.
El tiempo es una magnitud que nos ayuda a medir la duración de un evento. Gracias al tiempo podemos ordenar sucesos y establecer un pasado, un presente y un futuro. Todas sus unidades de medidas pueden convertirse entre ellas. Aprender sus cálculos básicos permite saber, por ejemplo, en qué momento tenemos que hacer una tarea.
UNIDADES DE Tiempo: equivalencias y conversiones
Todo lo que realizamos consume tiempo: sabemos que el recreo dura 10 minutos, que un partido de fútbol dura 90 minutos o que el día tiene 24 horas. Es una variable tan importante, que en todo el mundo se utilizan las mismas unidades para medir el tiempo, a diferencia de otras magnitudes, como la distancia o el volumen. A algunas de sus unidades más importantes puedes verlas en esta tabla, junto a sus equivalencias:
Unidades de tiempo y sus equivalencia
Menores a un día
1 día = 24 horas
1 hora = 60 minutos
1 minuto = 60 segundos
Mayores a un día
1 semana = 7 días
1 mes = 30 o 31 días
1 año = 365 días = 12 meses
Conversión de unidades de tiempo
Podemos hacer conversiones entre dos o más unidades de tiempo por medio de una regla de tres: método en el que establecemos relaciones, multiplicamos en forma diagonal y luego dividimos por la unidad restante.
– Ejemplo 1:
¿Cuánto días hay en 96 horas?
En 96 horas hay 4 días.
– Ejemplo 2:
¿Cuántos meses hay en 20 años?
En 20 años hay 240 meses.
– Ejemplo 3:
¿Cuántas horas tiene una semana?
Una semana (7 días) tiene 168 horas.
Otras unidades de tiempo
Para las medidas de tiempo más grandes, las equivalencias más prácticas son:
1 lustro = 5 años
1 década = 10 años
1 siglo = 100 años
1 milenio = 1.000 años
¿Sabías qué?
Hay una unidad de tiempo mucho menor que el segundo: el microsegundo. Su símbolo es µs y es igual a una millonésima parte de un segundo, es decir, 10−6 s.
el reloj
El reloj es una instrumento para medir el tiempo, gracias a él sabemos las horas, los minutos y los segundos de un día. Pueden ser digitales o analógicos.
Este es un reloj analógico e indica que son “las 6 y 15 minutos”.
Este es un reloj digital e indica que son “las 10 y 20 minutos de la mañana”.
Abreviaturas am y pm
La abreviatura am significa que la hora leída corresponde a antes del mediodía.
La abreviatura pm significa que la hora leída corresponde a después del mediodía.
Sistema horario de 24 horas
Los relojes analógcos tienen un sistema de 12 horas, por lo que necesitan hacer dos ciclos completos para cubrir un día. En cambio, los relojes digitales pueden tener, además de un sistema de 12 horas, un sistema de 24 horas que se caracteriza por dividir al día en las 24 horas totales que lo conforman, por lo que no utiliza las abreviaturas am y pm.
La siguiente tabla muestra la relación entre ambos formatos:
Formato 24 horas
Formato 12 horas
00:00 h
12:00 am
01:00 h
01:00 am
02:00 h
02:00 am
03:00 h
03:00 am
04:00 h
04:00 am
05:00 h
05:00 am
06:00 h
06:00 am
07:00 h
07:00 am
08:00 h
08:00 am
09:00 h
09:00 am
10:00 h
10:00 am
11:00 h
11:00 am
12:00 h
12:00 pm
13:00 h
01:00 pm
14:00 h
02:00 pm
15:00 h
03:00 pm
16:00 h
04:00 pm
17:00 h
05:00 pm
18:00 h
06:00 pm
19:00 h
07:00 pm
20:00 h
08:00 pm
21:00 h
09:00 pm
22:00 h
10:00 pm
23:00 h
11:00 pm
operaciones con unidades de tiempo
Suma
Los pasos a seguir para sumar horas y minutos son los siguientes:
Sumamos los minutos y luego las horas.
Si los minutos son 60, colocamos 00 en la columna de los minutos y sumamos 1 hora en la columnas de las horas.
Si los minutos son más de 60, restamos 60 a ese resultado y sumamos 1 hora en la columnas de las horas.
Escribimos la hora final.
– Ejemplo 1:
¿Cuánto es 2:36 + 5:15?
Así que:
2 h y 36 min + 5 h y 15 min = 7 h y 51 min
También podemos representarlo de esta manera:
02:36 + 05:15 = 07:51
– Ejemplo 2:
Marta salió de su casa a las 3: 45 pm y luego de 2 horas y 15 minutos llegó a la casa de su abuela, ¿a qué hora llegó?
Datos
Hora de salida: 3 h y 45 min
Duración del recorrido: 2 h y 15 min
Analiza
Tenemos que sumar la hora de salida con el tiempo que duró en el recorrido para saber la hora de llegada. Para esto sumamos primero los minutos y luego las horas.
Calcula
Primero sumamos los minutos: 45 min + 15 min = 60 min. Como 60 min son iguales a 1 h, escribimos 00 y sumamos 1 hora a la columna de las horas.
Luego sumamos las horas: 1 h + 3 h + 2 h = 6 h.
Responde
Marta llegó a las 6 pm en punto.
– Ejemplo 3:
Carla entró a un examen a las 8:50 am y tardó 2 horas y 39 minutos en hacerlo, ¿a qué hora salió del examen?
Datos
Hora de entrada: 8 h y 50 min
Duración en el examen: 2 h y 39 min
Analiza
Si sumamos la hora de entrada con el tiempo que duró en el examen tendremos la hora de salida del examen. Primero sumamos los minutos y luego las horas.
Calcula
Sumamos los minutos: 50 + 39 = 89. Pero ya sabemos que 60 minutos forman una hora, así que tenemos que “sacar” 60 min de 89 min, es decir, 89 − 60 = 29.
Escribimos 29 min en la columna de los minutos y sumamos 1 h en la columna de las horas.
Luego sumamos las horas: 1 h + 8 h + 2 h = 11 h.
Responde
Carla salió a las 11:29 am.
Resta
Los pasos a seguir para restar horas y minutos son los siguientes:
Restamos los minutos.
Si el minuendo es menor que el sustraendo, sumamos 60 minutos (que es igual a 1 hora) a ese minuendo. Luego restamos una hora de la columna de las horas.
Restamos las horas.
Escribimos el resultado.
– Ejemplo 1:
¿Cuánto es 4:11 – 2:47?
Lo primero que debemos hacer es colocar una hora sobre otra.
Como 11 es menor que 47 y no lo puede restar, tomamos “prestado” 60 minutos (1 hora) de la columna de las horas, es decir, sumamos a 11 min + 60 min = 71 min. Luego restamos esa hora de la columna de las horas: 4 h − 1 h = 3 h.
Ahora sí podemos hacer la resta de minutos: 71 min − 47 min = 24 min.
Después restamos las horas: 3 h − 2 h = 1 h.
Entonces:
4 h y 11 min − 2 h y 47 min = 1 h y 24 min
También lo podemos escribir así:
4:11 − 2:47 = 1:24
– Ejemplo 2:
Después de 45 min, un tren llegó a las 16 h y 15 min, ¿a qué hora salió el tren?
Datos
Duración de recorrido: 45 min
Hora de llegada: 16 h y 15 min
Analiza
Hay que restar el tiempo recorrido a la hora de llegada para saber la hora exacta de salida.
Calcula
Como 15 es menor que 45, tomamos prestado 60 minutos (1 hora) de la columna de las horas. Por lo tanto: 15 min + 60 min = 75 min. Al prestar 1 hora, tenemos que restarla de la columna de las horas, así que: 16 h − 1 h = 15 h. Luego hacemos la resta de minutos y horas.
Responde
El tren salió a las 15:30.
– Ejemplo 3:
Francisco tomó el bus para visitar a sus primos en otra ciudad. El bus salió a las 8:30 am y llegó a las 10:45 am ¿cuánto duró el viaje?
Datos
Hora de salida: 8 h y 30 min
Hora de llegada: 10 h y 45 min
Analiza
Si restamos la hora de salida a la hora de llegada tendremos la diferencia de tiempo entre ambas. Restamos primero los minutos y luego las horas.
Calcula
Responde
El viaje duró 2 h y 15 min.
¡A practicar!
1. Resuelve las operaciones de tiempo:
8:45 + 2:45
Solución
8:45 + 2:45 = 11:30
4:25 − 3:42
Solución
4:25 − 3:42 = 00:43
10:20 + 6:15
Solución
10:20 + 6:15 = 16:35
8:23 − 5:15
Solución
8:23 − 5:15 = 3:08
1:50 + 9:38
Solución
1:50 + 9:38 = 11:28
12:12 − 6:30
Solución
12:12 − 6:30 = 5:42
2. Responde:
¿Cuántas horas hay en 5 días?
Solución
120 horas.
¿Cuántos días hay en 1 década?
Solución
3.650 días.
¿Cuántos segundos hay en 2 horas?
Solución
7.200 segundos.
¿Cuántos meses hay en 2 lustros?
Solución
240 meses.
¿Cuántas décadas hay en 3 siglos?
Solución
30 décadas.
RECURSOS PARA DOCENTES
Artículo “Operaciones en el sistema sexagesimal”
Este artículo explica la forma de realizar operaciones con unidades de tiempo en el sistema sexagesimal.
Desde la elaboración de planos y dibujos a escalas en hojas cuadriculadas, hasta la localización de estrellas en la galaxia, la unión de rectas perpendiculares nos ayuda a distinguir la posición de cualquier objeto. Una cuadrícula es un sistema de coordenadas compuesto por líneas perpendiculares verticales y horizontales, que funciona como sistema de referencias y permite ubicar elementos en un espacio definido. El conjunto de líneas horizontales y verticales, también llamadas ejes, suelen nombrarse con números y letras.
TIPOS DE LÍNEAS
Las líneas son un conjunto de puntos ubicados uno junto al otro que generan un trazo continuo. Si los puntos están orientados en una misma dirección, entonces, forman una línea recta. Las líneas rectas son continuas e infinitas, no tienen ni principio ni final y se pueden clasificar según la forma en que interaccionan entre ellas en rectas paralelas (aquellas que nunca se cortan), rectas secantes perpendiculares (aquellas que se cortan formando ángulos rectos) y rectas secantes oblicuas (aquellas que se cortan sin formar ángulos rectos).
LOS ÁNGULOS Y SUS TIPOS
Un ángulo es una porción del plano delimitado por dos semirrectas. Cada semirrecta es uno de los lados del ángulo y coinciden en un punto de origen al que se denomina vértice. A la distancia entre lado y lado del ángulo se la denomina amplitud, y esta se mide en grados (°). Si queremos medir o trazar un ángulo es indispensable el uso del transportador. Según su amplitud, un ángulo puede ser convexo, cóncavo, nulo, completo, llano, agudo, recto u obtuso.
LOS TRIÁNGULOS
Los triángulos son polígonos regulares cerrados de tres lados, tres ángulos y tres vértices. Los ángulos interiores de un triángulo siempre suman 180° y los ángulos exteriores suman 360°. Son varios los criterios de clasificación que permiten agrupar a los triángulos de acuerdo a ciertas particularidades, los más utilizados son: la medida de sus lados y la medida de sus ángulos. Según la medida de sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos; mientras que, según la medida de sus ángulos se clasifican en acutángulo, obtusángulo y rectángulo.
CUADRILÁTEROS
Los cuadriláteros tienen cuatro lados, cuatro ángulos internos, cuatro ángulos externos, cuatro vértices y dos diagonales. Estos se clasifican en paralelogramos, trapecios y trapezoides. Los paralelogramos son aquellos cuadriláteros que poseen dos pares de lados opuestos paralelos y que comparten algunas propiedades específicas; los trapecios, por su parte, son figuras que presentan un par de lados opuestos paralelos a los que se suele denominar base; y los trapezoides son aquellos cuyos lados no son paralelos.
POLIEDROS
Los poliedros son cuerpos geométricos tridimensionales con caras planas formados por polígonos. Cada una de las caras de un poliedro es un polígono (triángulo, cuadrado, rombo, etc.). Los poliedros pueden ser regulares cuando sus caras están compuestas por el mismo polígono regular; o irregulares si sus caras presentan diferentes formas. En estos poliedros el número de caras no presenta límites como ocurre con los poliedros regulares y se dividen en prismas (tienen dos bases) y pirámides (tienen una sola base).
EL SER HUMANO SIEMPRE HA INTENTADO COMUNICARSE A TRAVÉS DE PINTURAS EN CAVERNAS O CON TALLADOS EN METALES Y MADERA. HOY DÍA TAMBIÉN LO HACEMOS Y EXPRESAMOS NUESTROS SENTIMIENTOS O DESEOS POR MEDIO DE IMÁGENES, COSA QUE LLAMAMOS “PICTOGRAMAS“. ESTOS PICTOGRAMAS SON USADOS EN SEÑALES DE TRÁNSITO, CARTELES PUBLICITARIOS, HISTORIETAS, AVISOS Y GRÁFICOS DE DE INFORMACIÓN QUE PUEDEN SER ENTENDIDOS POR TODAS LAS PERSONAS DEL MUNDO DE FORMA CLARA.
TABLAS
LOS DATOS RECOLECTADOS TRAS UNA ENCUESTA PUEDEN ORGANIZARSE EN UNA TABLA. UNA TABLA ES UN CUADRO FORMADO POR FILAS, COLUMNAS Y CELDAS. LAS COLUMNAS SON LAS HILERAS VERTICALES, LAS FILAS SON LAS HILERAS HORIZONTALES Y LAS CELDAS RESULTAN DE LA UNIÓN ENTRE UNA FILA Y UNA COLUMNA. PUEDEN HACERSE CON NÚMEROS, CON PICTOGRAMAS Y CON MÁS DE DOS DATOS.
GRÁFICO DE BARRAS
LOS GRÁFICOS DE BARRAS MUESTRAN CON RECTÁNGULOS UNA INFORMACIÓN. ESTOS GRÁFICOS EXPRESAN A TRAVÉS DE BARRAS EL VALOR DE UNA CATEGORÍA Y SON MUY ÚTILES PARA VER DE FORMA RÁPIDA CUÁL TIENE UN MAYOR VALOR O UN MENOR VALOR. PARA REALIZARLO EN NECESARIO QUE PRIMERO ORGANICEMOS LOS DATOS EN UNA TABLA.
PROBABILIDAD
LA PROBABILIDAD ESTUDIA LA POSIBILIDAD DE QUE UN EVENTO OCURRA O NO. POR EJEMPLO, SI LANZAMOS UN PAR DE DADOS NO SABEMOS CON SEGURIDAD QUÉ NÚMERO SALDRÁ, PERO SÍ SABEMOS QUE SALDRÁ EN CADA UNO UN NÚMERO MENOR A 7. ESTOS SON SUCESOS ALEATORIOS EN LOS QUE INTERVIENE EL AZAR, ES DECIR, QUE NO PODEMOS PREDECIR.
¿ALGUNA VEZ HAS LANZADO UN DADO? ¿SIEMPRE SABES QUE NÚMERO SALDRÁ? ¡NO! ¿VERDAD? AUNQUE SABES QUE PUEDE SALIR UN NÚMERO DEL 1 AL 6 NO TIENES SEGURIDAD DE CUÁL DE ESOS NÚMEROS SERÁ. GRACIAS A LA PROBABILIDAD PODEMOS CALCULAR LA CANTIDAD DE VECES QUE UN EVENTO ALEATORIO COMO ESTE PUEDE OCURRIR O NO.
evento ALEATORIO
UN EVENTO ALEATORIO ES AQUEL QUE PUEDE OCURRIR O NO PUEDE OCURRIR Y EN EL QUE INTERVIENE EL AZAR. ES DECIR, QUE SI REPETIMOS EL MISMO EL EVENTO PODEMOS TENER SIEMPRE DISTINTOS RESULTADOS.
– EJEMPLOS:
LANZAR UNA MONEDA.
LANZAR UN DADO.
ELEGIR UNA CARTA DE UN MAZO.
SACAR UN CARAMELO ROJO DE UNA BOLSA CON CARAMELOS DE MÚLTIPLES COLORES.
COMO VES, NO PODEMOS PREDECIR EL RESULTADO DE ESTOS EVENTOS.
sucesos posibles
OBSERVA ESTAS BOLSAS CON BOLAS DE COLORES. SI SACAMOS UNA BOLA CON LOS OJOS CERRADOS NO SABRÍAMOS DE QUÉ COLOR SALDRÍA LA BOLA. SIN EMBARGO, PODEMOS PREDECIR QUÉ TAN PROBABLE ES QUE SAQUEMOS UN COLOR U OTRO.
– EJEMPLO:
NOTA QUE:
HAY 2 BOLAS ROJAS.
HAY 10 BOLAS AMARILLAS.
HAY MÁS BOLAS DE COLOR AMARILLO, ASÍ QUE:
ES MÁS PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO.
NOTA QUE:
HAY 6 BOLAS ROJAS.
HAY 6 BOLAS AMARILLAS.
HAY IGUAL CANTIDAD DE BOLAS DE COLOR ROJO Y AMARILLO, ASÍ QUE:
ES IGUAL DE PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO O DE COLOR ROJO.
NOTA QUE:
HAY 10 BOLAS ROJAS.
HAY 2 BOLAS AMARILLAS.
HAY MENOS BOLAS DE COLOR AMARILLO, ASÍ QUE:
ES MENOS PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO.
SEGURO, PROBABLE O IMPOSIBLE
LOS SUCESOS SON CADA UNO DE LOS RESULTADOS POSIBLES DE UN EVENTO ALEATORIO. ESTOS PUEDEN SER SEGUROS, PROBABLES O IMPOSIBLES.
LOS SUCESOS SEGUROS OCURREN SIEMPRE.
LOS SUCESOS PROBABLES OCURREN A VECES.
LOS SUCESOS IMPOSIBLES NO OCURREN NUNCA.
– EJEMPLO:
ES SEGUROSACAR UNA BOLA AMARILLA.
ES PROBABLE SACAR UNA BOLA VERDE.
ES IMPOSIBLESACAR UNA BOLA AZUL.
¿SABÍAS QUÉ?
LOS SUCESOS QUE OCURREN CON SEGURIDAD SE LLAMAN “SUCESOS DETERMINISTAS”, POR EJEMPLO, LA HORA EN LA QUE ABRE UN BANCO SIEMPRE ES LA MISMA.
RECOPILACIÓN DE DATOS
TODOS LOS DATOS PUEDEN ORGANIZARSE EN UNA TABLA, EN UNA TABLA DE PICTOGRAMAS O EN UN GRÁFICO DE BARRAS. POR EJEMPLO, SI QUEREMOS ORGANIZAR LOS BLOQUES PARA JUGAR POR COLOR TENEMOS QUE CONTAR UNO POR UNO Y HACER GRUPOS DE COLORES. LUEGO LOS REPRESENTAMOS. POR EJEMPLO:
TABLA
COLOR DEL BLOQUE
CANTIDAD DE BLOQUES
AMARILLO
16
AZUL
28
ROJO
32
VERDE
20
TABLA DE PICTOGRAMA
COLOR DEL BLOQUE
CANTIDAD DE BLOQUES
AMARILLO
AZUL
ROJO
VERDE
CLAVE
= 4 BLOQUES
GRÁFICO DE BARRAS
NOTA QUE TANTO LA TABLA, COMO LA TABLA DE PICTOGRAMAS Y EL GRÁFICO DE BARRAS REPRESENTAN LOS MISMOS DATOS.
¡A PRACTICAR!
COMPLETA CON “SEGURO”, “PROBABLE” O “IMPOSIBLE” LAS SIGUIENTES ORACIONES.
ES ____ LANZAR UN DADO Y QUE SALGA EL NÚMERO 7.
SOLUCIÓN
IMPOSIBLE
ES ____ LANZAR UNA MONEDA Y QUE SALGA CARA.
SOLUCIÓN
PROBABLE
ES ____ LANZAR UN DADO Y QUE SALGA UN NÚMERO MENOR A 7.
SOLUCIÓN
SEGURO
2. OBSERVA ESTA RULETA. LUEGO RESPONDE LAS PREGUNTAS.
¿CUÁNTAS ZONAS ROJAS HAY?
SOLUCIÓN
3
¿CUÁNTAS ZONAS VERDES HAY?
SOLUCIÓN
2
¿CUÁNTAS ZONAS MORADAS HAY?
SOLUCIÓN
2
¿CUÁNTAS ZONAS AMARILLAS HAY?
SOLUCIÓN
1
¿CUÁL COLOR ES MÁS PROBABLE QUE SALGA LUEGO DE GIRAR LA RULETA?
SOLUCIÓN
EL ROJO.
¿CUÁL COLOR ES MENOS PROBABLE QUE SALGA LUEGO DE GIRAR LA RULETA?
SOLUCIÓN
EL AMARILLO.
¿CUÁLES COLORES TIENEN IGUAL PROBABILIDAD DE SALIR LUEGO DE GIRAR LA RULETA?
SOLUCIÓN
EL VERDE Y EL MORADO.
RECURSOS PARA DOCENTES
Artículo “Probabilidad”
Este artículo servirá de ayuda para profundizar sobre los conceptos básicos de la probabilidad.