CAPÍTULO 8 / TEMA 5 (REVISIÓN)

estadística y probabilidad │ ¿QUÉ APRENDIMOS?

recolección y conteo de datos

La recolección y conteo de datos es el procedimiento que se lleva a cabo para la obtención de información o respuesta de diferentes variables. Los datos pueden clasificarse como cualitativos cuando expresan cualidades o cuantitativos cuando expresan cantidades. Los datos cuantitativos se diferencian en continuos si tienen cualquier valor dentro de un intervalo; y discretos si solo ciertos valores están en un intervalo.

Los términos “niño” y “adulto” son datos cualitativos sobre una persona, mientras que la estatura, como “1,65 metros” o “1,2 metros” son datos cuantitativos.

gráficos estadísticos

Los gráficos estadísticos son una herramienta fundamental para lograr la correcta interpretación de los datos recolectados, ya que ofrecen un gran recurso visual. Existen diversos tipos de estos como el gráfico de barras, el poligonal o el circular. Los elementos principales de cada uno de estos son el título, el cuerpo y la escala.

Los gráficos de barras representan variables cualitativas o cuantitativas discretas, los poligonales representan magnitudes y frecuencias de diferentes variables y los circulares expresan porcentajes y proporciones de una variable en particular.

medidas de tendencia central

Las medidas de tendencia central se utilizan para poder representar una distribución de datos en un solo valor característico. Para esto puede calcularse la moda (Mo), la mediana (Md) o la media (\fn_phv \small \overline{x}). Estas estimaciones pueden hacerse a partir de la organización de todos los datos.

La moda es el valor de más frecuencia, la mediana es el valor central de la distribución de todos los datos y la media se calcula como la sumatoria de todos los valores dividido entre la cantidad total.

eventos y probabilidad

Los eventos aleatorios pueden ser seguros o imposibles, por ejemplo, al lanzar un moneda es seguro que saldrá cara o sello, pero es imposible que salga una tercera opción. La probabilidad de que ocurra un evento se mide al dividir la cantidad de casos favorables entre la cantidad de casos posibles, así, la probabilidad de que salga cara al lanzar una moneda es de 1/2. La probabilidad también se puede expresar como porcentaje. Por otro lado, los diagramas de Venn también nos ayudan a determinar visualmente probabilidades.

En los juegos de azar la suerte tiene un papel importante, no siempre el que tiene mejor habilidad gana.

CAPÍTULO 3 / TEMA 5

fracciones y porcentajes

¿Sabías qué el 70 % de la superficie de nuestro planeta está cubierto por agua? ¡Sí! Pero ¿qué significa 70 %? Los porcentajes son expresiones que, al igual que las fracciones, representan una parte de un todo. También los vemos a menudo en las rebajas en las tiendas del centro comercial o en los impuestos de los productos que compramos. 

relación de las fracciones y el porcentaje

El porcentaje es una parte de un todo igual a 100, es decir, es una razón con denominador 100. Su símbolo es “%” y se puede expresar como una fracción o como un decimal. Por ejemplo, 70 % es igual a escribir 70/100 que a su vez es igual a 0,7.

Puedes ver la relación entre el porcentaje, las fracciones y los número decimales en esta tabla:

Porcentaje Fracción Decimal
Cantidad en relación a 100 Porcentaje/100 0,…

– Ejemplo:

Porcentaje Fracción Decimal
70\: % \frac{70}{100} 0,7
45\: % \frac{45}{100} 0,45

La relación no siempre es lineal, también podemos partir de una fracción y convertirla en porcentaje. Para esto, solo dividimos el numerador entre el denominador, y luego multiplicamos el cociente obtenido por 100.

Fracción Decimal Porcentaje
\frac{1}{2} 1\div 2=0,5 0,5\times 100=50\: %
\frac{5}{6} 5\div 6=0,833 0,833\times 100=83,3\: %

¿Sabías qué?
En los porcentajes se lee “por ciento”. Por ejemplo, el “15 % de los alumnos juegan al fútbol” se lee “el quince por ciento de los alumnos juegan al fútbol”.
Los porcentajes ya eran usados en la Antigüedad y hay registros sobre su aplicación en el Imperio romano. Aunque el símbolo original no era el que conocemos en la actualidad, este hacía alusión a los ceros del 100. De hecho, el símbolo “%” es una representación estética de los ceros de las centenas, pues un porcentaje se lee “por ciento”.

¡Es tu turno!

Convierte estas fracciones a porcentajes:

  • \frac{1}{4}
Solución

\frac{1}{4}=1\div 4=0,25

0,25\times 100=\boldsymbol{25\: %}

  • \frac{2}{25}
Solución

\frac{2}{25}=2\div 25=0,08

0,08\times 100=\boldsymbol{8\: %}

Cálculo de porcentajes

Para calcular el porcentaje de una cantidad, por ejemplo, el 15 % de 80, podemos optar por tres métodos diferentes:

1. Convierte el porcentaje a fracción. Luego multiplica.

15\: % = \frac{15}{100}

\frac{15}{100}\times 80 = \boldsymbol{12}

2. Convierte el porcentaje a decimal. Luego multiplica.

15\: %=\frac{15}{100}=0,15

0,15\times 80=\boldsymbol{12}

3. Usa la regla de tres.

100\: %\rightarrow 80

\: \: 15\: %\rightarrow x

x=\frac{15\: %\times 80}{100\: %}=\boldsymbol{12}

Nota que con cualquiera de los tres métodos el resultado será el mismo: 12.

¿Qué es el IVA?

El IVA o impuesto al valor agregado es un impuesto directo que pagan los consumidores al Estado por utilizar algún bien o servicio. Cada país tiene un porcentaje de IVA diferente, por ejemplo, en Argentina es de 21 %, en Colombia es de 19 %, en Costa Rica es de 13 % y en Venezuela es de 16 %.

¡Resolvamos algunos problemas!

1. En un curso hay 30 chicos y el 10 % de ellos juega al rugby, el 30 % juega al fútbol y el resto no hace ningún deporte. Responde:

a) ¿Cuántos de ellos juegan al rugby?

b) ¿Cuántos juegan al fútbol?

c) ¿Cuántos no hacen ningún deporte?

  • Datos

Cantidad de chicos: 30

Chicos que juegan al rugby: 10 %

Chicos que juegan al fútbol: 30 %

Chicos que no hacen ningún deporte: ?

  • Reflexión

a. Para saber la cantidad de chicos que juegan al rugby tenemos que multiplicar la cantidad total de chicos (30) por la fracción equivalente al porcentaje, en este caso, 10 % = 10/100.

b. La cantidad de jugadores de fútbol la sabremos si multiplicamos la cantidad total de chicos por la fracción equivalente al porcentaje, en este caso, 30 % = 30/100.

c. Cuando sepamos la cantidad de chicos que juegan al rugby y al fútbol, solo tendremos que restarle esa cantidad al total, es decir, los chicos que no hacen deporte = 30 − (a + b)

  • Cálculo

a. 30\times \frac{10}{100}=\boldsymbol{3}

b. 30\times \frac{30}{100}= \boldsymbol{9}

c. 30-(3+9)=30-12=\boldsymbol{18}

  • Respuestas

a. 3 chicos juegan al rugby.

b. 9 chicos juegan al fútbol.

c. 18 chicos no hacen deporte.


2. A José le hicieron un descuento del 5 % en su compra. Si gastó en ese lugar $ 3.200, ¿qué monto debe pagar?

  • Datos

Cuenta total: $ 3.200

Descuento: 5 %

  • Reflexión

a. Lo primero que tenemos que hacer es calcular el 5 % de 3.200. Para esto solo multiplicamos la cantidad de dinero por la fracción equivalente al porcentaje, que sería 5 % = 5/100.

b. Como se trata de un descuento, tenemos que “quitar” la cantidad que represente ese porcentaje al monto total, por lo tanto, tenemos que restarlo.

  • Cálculo

a. 3.200\times \frac{5}{100}=\boldsymbol{160}

b. 3.200-160=\boldsymbol{3.040}

  • Respuesta

José debe pagar $ 3.040.


3. Un equipo de baloncesto participó en 50 partidos este año y ganó el 30 % de ellos. ¿Cuántos partidos ganó este año?

  • Datos

Partidos jugados: 50

Partidos ganados: 30 %

  • Reflexión

Al tratarse del porcentaje de una cantidad total, basta con multiplicar la cantidad de partidos (50) por la fracción equivalente al porcentaje, es decir, 30 % = 30/100.

  • Cálculo

50\times \frac{30}{100}=\boldsymbol{15}

  • Respuesta

El equipo de baloncesto ganó 15 partidos de 50 jugados este año.

importancia del porcentaje

En la vida cotidiana, el porcentaje tiene distintos usos. Por ejemplo, a la hora de calcular la tasa de interés, al solicitar un crédito, al realizar una encuesta, en los descuentos y recargos en el pago de una cuenta, o cuando esperamos que una aplicación móvil se cargue y vemos una barra que muestra el porcentaje de descarga.

Los porcentajes son útiles cuando comparamos grandes partes de un todo. Por ejemplo, si de un instituto de 800 estudiantes, 360 estudiantes van a la feria de ciencias, y de otro van 360 de 600 estudiantes, es más práctico y claro decir que el 45 % de los estudiantes del primer instituto va a la feria de ciencias y que el 60 % del segundo va a la feria de ciencias.

Los gráficos circulares, también conocidos como gráficos de torta o pastel, se usan para comparar porcentajes con respecto a un total de datos. Para hallar los porcentajes parciales se dividen los 360° del círculo de acuerdo a los valores dados. Para dibujarlas en papel necesitarás un compás y un transportador para saber los grados a marcar por cada porcentaje.

¡A practicar!

1. Calcular los siguientes porcentajes:

  • 12 % de 1.700
Solución
204
  • 3 % de 4.400
Solución
132
  • 15 % de 2.500
Solución
375
  • 50 % de 45.000
Solución
22.500
  • 78 % de 50.000
Solución
39.000

2. Resuelve:

a. Marta tiene 120 figuritas repetidas y le regaló el 20 % a su amiga. ¿Cuántas figuritas le quedan a Marta?

Solución

120\times \frac{20}{100}=\boldsymbol{24}

120-24=\boldsymbol{96}

A Marta le quedan 96 figuritas.

b. Gabriela viajó dos quintas partes de lo que debía viajar. ¿Qué porcentaje del viaje realizó?

Solución

\frac{2}{5}=2\div 5=0,4

0,4\times 100 = \boldsymbol{40 \: %}

Gabriela realizó el 40 % del viaje.

c. Se realizó una encuesta a 200 personas sobre los géneros de películas que más les gustan y representaron los resultados en este gráfico circular como porcentajes. Indica a cuántas personas les gusta cada género.

Solución

Comedia: 110 personas

Suspenso: 40 personas

Familiares: 24 personas

Terror: 10 personas

Drama: 16 personas

3. Escribe las siguientes fracciones como porcentajes:

  • \frac{3}{5}
Solución
60 %
  • \frac{12}{20}
Solución
60 %
  • \frac{7}{8}
Solución
87,5 %
RECURSOS PARA DOCENTES

Tarjeta Educativa “Porcentaje”

En esta tarjeta encontrará reglas prácticas para el cálculo de porcentajes, sus características y aplicaciones.

VER

Artículo “Porcentajes”

El artículo habla sobre la presencia de los porcentajes en la vida cotidiana y su uso.

VER

CAPÍTULO 4 / TEMA 6 (REVISIÓN)

ORDEN Y RELACIONES | ¿QUÉ APRENDIMOS?

RECTA NUMÉRICA

La recta numérica es un gráfico en el que podemos representar cualquier número que pertenezca al conjunto de los números reales (\mathbb{R}). Tiene intervalos que señalan las unidades y siempre tienen la misma distancia entre un número y su consecutivo. Por otra parte, los distintos tipos de relaciones que existen entre los números se pueden mostrar por medio de los símbolos “<” y “>” que significan “menor que” y “mayor que” respectivamente.

Una regla graduada es muy parecida a una recta numérica.

ORDEN DE NÚMEROS NATURALES Y DECIMALES

Para ubicar los números naturales en la recta numérica ubicamos el 0 en una posición arbitraria y luego colocamos el resto de los números naturales en intervalos regulares. Si deseamos comparar números naturales usamos los símbolos < y > o la recta numérica, pues todo número que esté más a la derecha en la recta siempre será el mayor. Para ubicar números decimales en la recta numérica, debemos agregar subdivisiones entre los números enteros. Cuando queremos compararlos, primero tomamos en cuenta la parte entera y luego comparamos las cifras decimales de izquierda a derecha.

Sí bien algunos expertos afirman que el número cero (0) no pertenece al conjunto de los números naturales, otros aseguran que sí forma parte.

ORDEN DE FRACCIONES

Las fracciones también tiene un lugar en la recta numérica, para esto tenemos que considerar si la fracción es propia o impropia. De ser propia dividimos a la unidad en tantos segmentos como indique el denominador y contamos tantos segmentos como indique el numerador, luego marcamos la fracción. Si la fracción es impropia, tenemos que convertirla primero en un número mixto, en este caso, seguimos el procedimiento anterior pero a partir de la parte entera que tenga el número mixto.

Si comparamos fracciones con igual numerador y diferente denominador, será mayor aquella que tenga menor denominador.

PROPORCIONALIDAD

La proporcionalidad es una relación que existe entre dos magnitudes que podemos medir, y puede ser directa o inversa. Dos cantidades son directamente proporcionales si cuando una aumenta la otra aumenta o si cuando una disminuye la otra también lo hace. Por otro lado, al convertir medidas lo hacemos por medio de una regla de tres, un método muy útil para saber un valor desconocido entre 2 relaciones.

Siempre que vamos a un kiosco, sabemos que mientras más compremos, más tendremos que pagar; eso es porque la “cantidad que compramos” y la “cantidad que debemos pagar” tienen una relación directamente proporcional.

RELACIONES DE TIEMPO

El tiempo es quizás la magnitud más usada y medida diariamente. Sus unidades son variadas y van desde las menores a un día, como los segundos, los minutos y las horas; hasta las que sobrepasan al día como los meses, años y décadas. Si usamos una regla de tres podemos convertir una unidad a otra sin dificultad. También podemos hacer cálculos de suma y resta con el tiempo, esto nos ayuda a saber cuando empezó un partido de fútbol o qué hora salió un tren, por ejemplo.

Los calendarios o agendas son útiles para planificar las actividades a realizar a lo largo del día.

CAPÍTULO 4 / TEMA 5

RELACIONES DE TIEMPO

El tiempo es una magnitud que nos ayuda a medir la duración de un evento. Gracias al tiempo podemos ordenar sucesos y establecer un pasado, un presente y un futuro. Todas sus unidades de medidas pueden convertirse entre ellas. Aprender sus cálculos básicos permite saber, por ejemplo, en qué momento tenemos que hacer una tarea.

El tiempo es una de las magnitudes más utilizamos cotidianamente, por eso es normal que veas un reloj en todas las casa, escuelas y comercios. Las unidades menores a un día son las horas, minutos y segundo, y para medirlas usamos el reloj o un cronómetro; en cambio, las unidades mayores a un día, como los meses y los años, son medidas con un calendario.

UNIDADES DE Tiempo: equivalencias y conversiones

Todo lo que realizamos consume tiempo: sabemos que el recreo dura 10 minutos, que un partido de fútbol dura 90 minutos o que el día tiene 24 horas. Es una variable tan importante, que en todo el mundo se utilizan las mismas unidades para medir el tiempo, a diferencia de otras magnitudes, como la distancia o el volumen. A algunas de sus unidades más importantes puedes verlas en esta tabla, junto a sus equivalencias:

Unidades de tiempo y sus equivalencia
Menores a un día

 

1 día = 24 horas

1 hora = 60 minutos

1 minuto = 60 segundos

Mayores a un día

 

1 semana = 7 días

1 mes = 30 o 31 días

1 año = 365 días = 12 meses

Conversión de unidades de tiempo

Podemos hacer conversiones entre dos o más unidades de tiempo por medio de una regla de tres: método en el que establecemos relaciones, multiplicamos en forma diagonal y luego dividimos por la unidad restante.

– Ejemplo 1:

¿Cuánto días hay en 96 horas?

En 96 horas hay 4 días.


– Ejemplo 2:

¿Cuántos meses hay en 20 años?

En 20 años hay 240 meses.


– Ejemplo 3:

¿Cuántas horas tiene una semana?

Una semana (7 días) tiene 168 horas.

Otras unidades de tiempo

Para las medidas de tiempo más grandes, las equivalencias más prácticas son:

  • 1 lustro = 5 años
  • 1 década = 10 años
  • 1 siglo = 100 años
  • 1 milenio = 1.000 años

¿Sabías qué?
Hay una unidad de tiempo mucho menor que  el segundo: el microsegundo. Su símbolo es µs y es igual a una millonésima parte de un segundo, es decir, 10−6 s.
En un calendario o agenda representamos todos los días del mes. Son útiles para planificar las actividades a realizar cada día; incluso, algunas agendas dividen cada día en horas, de manera que podamos organizar aún mejor nuestro tiempo. También son útiles para conocer las fechas de cada mes y los días feriados que hay en cada uno de ellos.

el reloj

El reloj es una instrumento para medir el tiempo, gracias a él sabemos las horas, los minutos y los segundos de un día. Pueden ser digitales o analógicos.

Este es un reloj analógico e indica que son “las 6 y 15 minutos”.

 Este es un reloj digital e indica que son “las 10 y 20 minutos de la mañana”.

Abreviaturas am y pm

  • La abreviatura am significa que la hora leída corresponde a antes del mediodía.
  • La abreviatura pm significa que la hora leída corresponde a después del mediodía.

Sistema horario de 24 horas

Los relojes analógcos tienen un sistema de 12 horas, por lo que necesitan hacer dos ciclos completos para cubrir un día. En cambio, los relojes digitales pueden tener, además de un sistema de 12 horas, un sistema de 24 horas que se caracteriza por dividir al día en las 24 horas totales que lo conforman, por lo que no utiliza las abreviaturas am y pm.

La siguiente tabla muestra la relación entre ambos formatos:

Formato 24 horas Formato 12 horas
00:00 h 12:00 am
01:00 h 01:00 am
02:00 h 02:00 am
03:00 h 03:00 am
04:00 h 04:00 am
05:00 h 05:00 am
06:00 h 06:00 am
07:00 h 07:00 am
08:00 h 08:00 am
09:00 h 09:00 am
10:00 h 10:00 am
11:00 h 11:00 am
12:00 h 12:00 pm
13:00 h 01:00 pm
14:00 h 02:00 pm
15:00 h 03:00 pm
16:00 h 04:00 pm
17:00 h 05:00 pm
18:00 h 06:00 pm
19:00 h 07:00 pm
20:00 h 08:00 pm
21:00 h 09:00 pm
22:00 h 10:00 pm
23:00 h 11:00 pm

operaciones con unidades de tiempo

Suma

Los pasos a seguir para sumar horas y minutos son los siguientes:

  1. Sumamos los minutos y luego las horas.
  2. Si los minutos son 60, colocamos 00 en la columna de los minutos y sumamos 1 hora en la columnas de las horas.
  3. Si los minutos son más de 60, restamos 60 a ese resultado y sumamos 1 hora en la columnas de las horas.
  4. Escribimos la hora final.

– Ejemplo 1:

¿Cuánto es 2:36 + 5:15?

Así que:

2 h y 36 min + 5 h y 15 min = 7 h y 51 min

También podemos representarlo de esta manera:

02:36 + 05:15 = 07:51


– Ejemplo 2:

Marta salió de su casa a las 3: 45 pm y luego de 2 horas y 15 minutos llegó a la casa de su abuela, ¿a qué hora llegó?

  • Datos

Hora de salida: 3 h y 45 min

Duración del recorrido: 2 h y 15 min

  • Analiza

Tenemos que sumar la hora de salida con el tiempo que duró en el recorrido para saber la hora de llegada. Para esto sumamos primero los minutos y luego las horas.

  • Calcula

Primero sumamos los minutos: 45 min + 15 min = 60 min. Como 60 min son iguales a 1 h, escribimos 00 y sumamos 1 hora a la columna de las horas.

Luego sumamos las horas: 1 h + 3 h + 2 h = 6 h.

  • Responde

Marta llegó a las 6 pm en punto.


– Ejemplo 3:

Carla entró a un examen a las 8:50 am y tardó 2 horas y 39 minutos en hacerlo, ¿a qué hora salió del examen?

  • Datos

Hora de entrada: 8 h y 50 min

Duración en el examen: 2 h y 39 min

  • Analiza

Si sumamos la hora de entrada con el tiempo que duró en el examen tendremos la hora de salida del examen. Primero sumamos los minutos y luego las horas.

  • Calcula

Sumamos los minutos: 50 + 39 = 89. Pero ya sabemos que 60 minutos forman una hora, así que tenemos que “sacar” 60 min de 89 min, es decir, 89 − 60 = 29.

Escribimos 29 min en la columna de los minutos y sumamos 1 h en la columna de las horas.

Luego sumamos las horas: 1 h + 8 h + 2 h = 11 h.

  • Responde

Carla salió a las 11:29 am.

Una de las primeras formas de medir el tiempo fue por medio de un reloj solar. Este funciona gracias a la sombra que genera el Sol durante el día sobre un estilo ubicado encima de una superficie. El movimiento diurno del Sol hace que la sombra cambie de dirección y de este modo se podía saber con bastante precisión la hora del día.

Resta

Los pasos a seguir para restar horas y minutos son los siguientes:

  1. Restamos los minutos.
  2. Si el minuendo es menor que el sustraendo, sumamos 60 minutos (que es igual a 1 hora) a ese minuendo. Luego restamos una hora de la columna de las horas.
  3. Restamos las horas.
  4. Escribimos el resultado.

– Ejemplo 1:

¿Cuánto es 4:11 – 2:47?

Lo primero que debemos hacer es colocar una hora sobre otra.

Como 11 es menor que 47 y no lo puede restar, tomamos “prestado” 60 minutos (1 hora) de la columna de las horas, es decir, sumamos a 11 min + 60 min = 71 min. Luego restamos esa hora de la columna de las horas: 4 h − 1 h = 3 h.

Ahora sí podemos hacer la resta de minutos: 71 min − 47 min = 24 min.

Después restamos las horas: 3 h − 2 h = 1 h.

Entonces:

4 h y 11 min − 2 h y 47 min = 1 h y 24 min

También lo podemos escribir así:

4:11 − 2:47 = 1:24


– Ejemplo 2:

Después de 45 min, un tren llegó a las 16 h y 15 min, ¿a qué hora salió el tren?

  • Datos

Duración de recorrido: 45 min

Hora de llegada: 16 h y 15 min

  • Analiza

Hay que restar el tiempo recorrido a la hora de llegada para saber la hora exacta de salida.

  • Calcula

Como 15 es menor que 45, tomamos prestado 60 minutos (1 hora) de la columna de las horas. Por lo tanto: 15 min + 60 min = 75 min. Al prestar 1 hora, tenemos que restarla de la columna de las horas, así que: 16 h − 1 h = 15 h. Luego hacemos la resta de minutos y horas.

  • Responde

El tren salió a las 15:30.


– Ejemplo 3:

Francisco tomó el bus para visitar a sus primos en otra ciudad. El bus salió a las 8:30 am y llegó a las 10:45 am ¿cuánto duró el viaje?

  • Datos

Hora de salida: 8 h y 30 min

Hora de llegada: 10 h y 45 min

  • Analiza

Si restamos la hora de salida a la hora de llegada tendremos la diferencia de tiempo entre ambas. Restamos primero los minutos y luego las horas.

  • Calcula

  • Responde

El viaje duró 2 h y 15 min.

¡A practicar!

1. Resuelve las operaciones de tiempo:

  • 8:45 + 2:45
Solución
8:45 + 2:45 = 11:30
  • 4:25 − 3:42
Solución
4:25 − 3:42 = 00:43
  • 10:20 + 6:15
Solución
10:20 + 6:15 = 16:35
  • 8:23 − 5:15
Solución
8:23 − 5:15 = 3:08
  • 1:50 + 9:38
Solución
1:50 + 9:38 = 11:28
  • 12:12 − 6:30
Solución
12:12 − 6:30 = 5:42

 

2. Responde:

  • ¿Cuántas horas hay en 5 días?
Solución
120 horas.
  • ¿Cuántos días hay en 1 década?
Solución
3.650 días.
  • ¿Cuántos segundos hay en 2 horas?
Solución
7.200 segundos.
  • ¿Cuántos meses hay en 2 lustros?
Solución
240 meses.
  • ¿Cuántas décadas hay en 3 siglos?
Solución
30 décadas.
RECURSOS PARA DOCENTES

Artículo “Operaciones en el sistema sexagesimal”

Este artículo explica la forma de realizar operaciones con unidades de tiempo en el sistema sexagesimal.

VER

Artículo “Medidas de tiempo”

Con este recurso podrás ampliar la información sobre cómo hacer operaciones de suma y resta con las medidas de tiempo.

VER

CAPÍTULO 5 / TEMA 7 (REVISIÓN)

GEOMETRÍA | ¿QUÉ APRENDIMOS?

CUADRÍCULA

Desde la elaboración de planos y dibujos a escalas en hojas cuadriculadas, hasta la localización de estrellas en la galaxia, la unión de rectas perpendiculares nos ayuda a distinguir la posición de cualquier objeto. Una cuadrícula es un sistema de coordenadas compuesto por líneas perpendiculares verticales y horizontales, que funciona como sistema de referencias y permite ubicar elementos en un espacio definido. El conjunto de líneas horizontales y verticales, también llamadas ejes, suelen nombrarse con números y letras. 

Un claro ejemplo de cuadrícula es un tablero de ajedrez. En este cada cuadro representa una posición que puede ser ocupada por alguna pieza del juego.

TIPOS DE LÍNEAS

Las líneas son un conjunto de puntos ubicados uno junto al otro que generan un trazo continuo. Si los puntos están orientados en una misma dirección, entonces, forman una línea recta. Las líneas rectas son continuas e infinitas, no tienen ni principio ni final y se pueden clasificar según la forma en que interaccionan entre ellas en rectas paralelas (aquellas que nunca se cortan), rectas secantes perpendiculares (aquellas que se cortan formando ángulos rectos) y rectas secantes oblicuas (aquellas que se cortan sin formar ángulos rectos).

Un ejemplo de líneas rectas paralelas son las vías de un ferrocarril. Cuando se cortan con otras forman líneas secantes.

LOS ÁNGULOS Y SUS TIPOS

Un ángulo es una porción del plano delimitado por dos semirrectas. Cada semirrecta es uno de los lados del ángulo y coinciden en un punto de origen al que se denomina vértice. A la distancia entre lado y lado del ángulo se la denomina amplitud, y esta se mide en grados (°). Si queremos medir o trazar un ángulo es indispensable el uso del transportador. Según su amplitud, un ángulo puede ser convexo, cóncavo, nulo, completo, llano, agudo, recto u obtuso.

Las escuadras nos permiten estimar ángulos, pues tienen un ángulo de 90° y dos ángulos de 45°.

LOS TRIÁNGULOS

Los triángulos son polígonos regulares cerrados de tres lados, tres ángulos y tres vértices. Los ángulos interiores de un triángulo siempre suman 180° y los ángulos exteriores suman 360°. Son varios los criterios de clasificación que permiten agrupar a los triángulos de acuerdo a ciertas particularidades, los más utilizados son: la medida de sus lados y la medida de sus ángulos. Según la medida de sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos; mientras que, según la medida de sus ángulos se clasifican en acutángulo, obtusángulo y rectángulo.

Un mismo triángulo puede ser clasificado por más de un criterio, por ejemplo: todos los triángulos equiláteros son, a su vez, triángulos acutángulos, ya que sus tres ángulos iguales miden 60°.

CUADRILÁTEROS

Los cuadriláteros tienen cuatro lados, cuatro ángulos internos, cuatro ángulos externos, cuatro vértices y dos diagonales. Estos se clasifican en paralelogramos, trapecios y trapezoides. Los paralelogramos son aquellos cuadriláteros que poseen dos pares de lados opuestos paralelos y que comparten algunas propiedades específicas; los trapecios, por su parte, son figuras que presentan un par de lados opuestos paralelos a los que se suele denominar base; y los trapezoides son aquellos cuyos lados no son paralelos.

En primer lugar, los cuadriláteros pueden clasificarse en dos grandes grupos: paralelogramos y no paralelogramos. Las pantallas de nuestros móviles y tabletas son ejemplos de un paralelogramo.

POLIEDROS

Los poliedros son cuerpos geométricos tridimensionales con caras planas formados por polígonos. Cada una de las caras de un poliedro es un polígono (triángulo, cuadrado, rombo, etc.). Los poliedros pueden ser regulares cuando sus caras están compuestas por el mismo polígono regular; o irregulares si sus caras presentan diferentes formas. En estos poliedros el número de caras no presenta límites como ocurre con los poliedros regulares y se dividen en prismas (tienen dos bases) y pirámides (tienen una sola base).

Existen cinco poliedros regulares cuyas caras están conformados por polígonos regulares. Estos son conocidos como sólidos platónicos.

CAPÍTULO 5 / TEMA 5 (REVISIÓN)

ESTADÍSTICA Y PROBABILIDAD | ¿QUÉ APRENDIMOS?

LOS PICTOGRAMAS

EL SER HUMANO SIEMPRE HA INTENTADO COMUNICARSE A TRAVÉS DE PINTURAS EN CAVERNAS O CON TALLADOS EN METALES Y MADERA. HOY DÍA TAMBIÉN LO HACEMOS Y EXPRESAMOS NUESTROS SENTIMIENTOS O DESEOS POR MEDIO DE IMÁGENES, COSA QUE LLAMAMOS “PICTOGRAMAS“. ESTOS PICTOGRAMAS SON USADOS EN SEÑALES DE TRÁNSITO, CARTELES PUBLICITARIOS, HISTORIETAS, AVISOS Y GRÁFICOS DE DE INFORMACIÓN QUE PUEDEN SER ENTENDIDOS POR TODAS LAS PERSONAS DEL MUNDO DE FORMA CLARA.

LOS PICTOGRAMAS SON UTILIZADOS EN LAS SEÑALES DE TRÁNSITO COMO ESTE.

TABLAS

LOS DATOS RECOLECTADOS TRAS UNA ENCUESTA PUEDEN ORGANIZARSE EN UNA TABLA. UNA TABLA ES UN CUADRO FORMADO POR FILAS, COLUMNAS Y CELDAS. LAS COLUMNAS SON LAS HILERAS VERTICALES, LAS FILAS SON LAS HILERAS HORIZONTALES Y LAS CELDAS RESULTAN DE LA UNIÓN ENTRE UNA FILA Y UNA COLUMNA. PUEDEN HACERSE CON NÚMEROS, CON PICTOGRAMAS Y CON MÁS DE DOS DATOS.

LAS TABLAS SON DE GRAN AYUDA PARA CONTROLAR EL DINERO QUE TENEMOS Y EL QUE GASTAMOS.

GRÁFICO DE BARRAS

LOS GRÁFICOS DE BARRAS MUESTRAN CON RECTÁNGULOS UNA INFORMACIÓN. ESTOS GRÁFICOS EXPRESAN A TRAVÉS DE BARRAS EL VALOR DE UNA CATEGORÍA Y SON MUY ÚTILES PARA VER DE FORMA RÁPIDA CUÁL TIENE UN MAYOR VALOR O UN MENOR VALOR. PARA REALIZARLO EN NECESARIO QUE PRIMERO ORGANICEMOS LOS DATOS EN UNA TABLA.

LOS GRÁFICOS DE BARRAS PUEDEN SER VERTICALES, HORIZONTALES O APILADOS.

PROBABILIDAD

LA PROBABILIDAD ESTUDIA LA POSIBILIDAD DE QUE UN EVENTO OCURRA O NO. POR EJEMPLO, SI LANZAMOS UN PAR DE DADOS NO SABEMOS CON SEGURIDAD QUÉ NÚMERO SALDRÁ, PERO SÍ SABEMOS QUE SALDRÁ EN CADA UNO UN NÚMERO MENOR A 7. ESTOS SON SUCESOS ALEATORIOS EN LOS QUE INTERVIENE EL AZAR, ES DECIR, QUE NO PODEMOS PREDECIR.

LOS JUEGOS DE CARTAS Y DADOS SON JUEGOS DE AZAR. HAY PROBABILIDAD DE QUE SALGA CUALQUIER CARTA DEL MAZO, ASÍ COMO CUALQUIER NÚMERO MENOR A 7 EN CADA DADO.

CAPÍTULO 5 / TEMA 4

PROBABILIDAD

¿ALGUNA VEZ HAS LANZADO UN DADO? ¿SIEMPRE SABES QUE NÚMERO SALDRÁ? ¡NO! ¿VERDAD? AUNQUE SABES QUE PUEDE SALIR UN NÚMERO DEL 1 AL 6 NO TIENES SEGURIDAD DE CUÁL DE ESOS NÚMEROS SERÁ. GRACIAS A LA PROBABILIDAD PODEMOS CALCULAR LA CANTIDAD DE VECES QUE UN EVENTO ALEATORIO COMO ESTE PUEDE OCURRIR O NO.

evento ALEATORIO

UN EVENTO ALEATORIO ES AQUEL QUE PUEDE OCURRIR O NO PUEDE OCURRIR Y EN EL QUE INTERVIENE EL AZAR. ES DECIR, QUE SI REPETIMOS EL MISMO EL EVENTO PODEMOS TENER SIEMPRE DISTINTOS RESULTADOS.

– EJEMPLOS:

  • LANZAR UNA MONEDA.
  • LANZAR UN DADO.
  • ELEGIR UNA CARTA DE UN MAZO.
  • SACAR UN CARAMELO ROJO DE UNA BOLSA CON CARAMELOS DE MÚLTIPLES COLORES.

COMO VES, NO PODEMOS PREDECIR EL RESULTADO DE ESTOS EVENTOS.

LOS DADOS SON OBJETOS CON FORMA DE CUBO Y TIENEN SEIS CARAS. CADA CARA REPRESENTA UN NÚMERO DEL 1 AL 6. ES NORMAL QUE LOS VEAS EN JUEGOS DE MESA COMO EL LUDO, EL MONOPOLIO Y EL PASE INGLÉS. CUANDO LANZAMOS UN DADO ESTAMOS SEGUROS QUE SALDRÁ UNO DE ESOS NÚMEROS, PERO NO SABEMOS CON SEGURIDAD CUÁL, ES DECIR, NO PODEMOS PREDECIR EL RESULTADO. ESO ES LO QUE CONOCEMOS COMO AZAR.

sucesos posibles

OBSERVA ESTAS BOLSAS CON BOLAS DE COLORES. SI SACAMOS UNA BOLA CON LOS OJOS CERRADOS NO SABRÍAMOS DE QUÉ COLOR SALDRÍA LA BOLA. SIN EMBARGO, PODEMOS PREDECIR QUÉ TAN PROBABLE ES QUE SAQUEMOS UN COLOR U OTRO.

– EJEMPLO:

NOTA QUE:

  • HAY 2 BOLAS ROJAS.
  • HAY 10 BOLAS AMARILLAS.

HAY MÁS BOLAS DE COLOR AMARILLO, ASÍ QUE:

 

ES MÁS PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO.

 

NOTA QUE:

  • HAY 6 BOLAS ROJAS.
  • HAY 6 BOLAS AMARILLAS.

HAY IGUAL CANTIDAD DE BOLAS DE COLOR ROJO Y AMARILLO, ASÍ QUE:

 

ES IGUAL DE PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO O DE COLOR ROJO.

 


NOTA QUE:

  • HAY 10 BOLAS ROJAS.
  • HAY 2 BOLAS AMARILLAS.

HAY MENOS BOLAS DE COLOR AMARILLO, ASÍ QUE:

 

ES MENOS PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO.

SEGURO, PROBABLE O IMPOSIBLE

LOS SUCESOS SON CADA UNO DE LOS RESULTADOS POSIBLES DE UN EVENTO ALEATORIO. ESTOS PUEDEN SER SEGUROS, PROBABLES O IMPOSIBLES.

  • LOS SUCESOS SEGUROS OCURREN SIEMPRE.
  • LOS SUCESOS PROBABLES OCURREN A VECES.
  • LOS SUCESOS IMPOSIBLES NO OCURREN NUNCA.

– EJEMPLO:

 ES SEGURO SACAR UNA BOLA AMARILLA.

 ES PROBABLE SACAR UNA BOLA VERDE.

 ES IMPOSIBLE SACAR UNA BOLA AZUL.

¿SABÍAS QUÉ?
LOS SUCESOS QUE OCURREN CON SEGURIDAD SE LLAMAN “SUCESOS DETERMINISTAS”, POR EJEMPLO, LA HORA EN LA QUE ABRE UN BANCO SIEMPRE ES LA MISMA. 
ALFONSO TIENE BLOQUES DE COLOR AMARILLO, AZUL, ROJO, VERDE, BLANCO Y NEGRO PARA JUGAR. SI ESTÁN TODOS EN UNA CAJA Y SACA DE A UNO SIN VER ES SEGURO QUE ALFONSO ELEGIRÁ UN BLOQUE DE CUALQUIERA DE ESOS COLORES, ES PROBABLE QUE ELIJA UN BLOQUE AMARILLO, PERO ES IMPOSIBLE QUE ELIJA UN BLOQUE DE COLOR ANARANJADO O GRIS.

RECOPILACIÓN DE DATOS

TODOS LOS DATOS PUEDEN ORGANIZARSE EN UNA TABLA, EN UNA TABLA DE PICTOGRAMAS O EN UN GRÁFICO DE BARRAS. POR EJEMPLO, SI QUEREMOS ORGANIZAR LOS BLOQUES PARA JUGAR POR COLOR TENEMOS QUE CONTAR UNO POR UNO Y HACER GRUPOS DE COLORES. LUEGO LOS REPRESENTAMOS. POR EJEMPLO:

  • TABLA
COLOR DEL BLOQUE CANTIDAD DE BLOQUES
AMARILLO 16
AZUL 28
ROJO 32
VERDE 20

 

  • TABLA DE PICTOGRAMA
COLOR DEL BLOQUE CANTIDAD DE BLOQUES
AMARILLO
AZUL
ROJO
VERDE
CLAVE

= 4 BLOQUES

 

  • GRÁFICO DE BARRAS

NOTA QUE TANTO LA TABLA, COMO LA TABLA DE PICTOGRAMAS Y EL GRÁFICO DE BARRAS REPRESENTAN LOS MISMOS DATOS.

¡A PRACTICAR!

  1. COMPLETA CON “SEGURO”, “PROBABLE” O “IMPOSIBLE” LAS SIGUIENTES ORACIONES.
  • ES ____ LANZAR UN DADO Y QUE SALGA EL NÚMERO 7.
SOLUCIÓN
IMPOSIBLE
  • ES ____ LANZAR UNA MONEDA Y QUE SALGA CARA.
SOLUCIÓN
PROBABLE
  • ES ____ LANZAR UN DADO Y QUE SALGA UN NÚMERO MENOR A 7.
SOLUCIÓN
SEGURO

 

2. OBSERVA ESTA RULETA. LUEGO RESPONDE LAS PREGUNTAS.

  • ¿CUÁNTAS ZONAS ROJAS HAY?
    SOLUCIÓN
    3
  • ¿CUÁNTAS ZONAS VERDES HAY?
    SOLUCIÓN
    2
  • ¿CUÁNTAS ZONAS MORADAS HAY?
    SOLUCIÓN
    2
  • ¿CUÁNTAS ZONAS AMARILLAS HAY?
    SOLUCIÓN
    1
  • ¿CUÁL COLOR ES MÁS PROBABLE QUE SALGA LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL ROJO.
  • ¿CUÁL COLOR ES MENOS PROBABLE QUE SALGA LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL AMARILLO.
  • ¿CUÁLES COLORES TIENEN IGUAL PROBABILIDAD DE SALIR LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL VERDE Y EL MORADO.
RECURSOS PARA DOCENTES

Artículo “Probabilidad”

Este artículo servirá de ayuda para profundizar sobre los conceptos básicos de la probabilidad.

VER