CAPÍTULO 6 / TEMA 5 (REVISIÓN)

estadística y probabilidad | ¿qué aprendimos?

REPRESENTACIÓN GRÁFICA DE DATOS

Los gráficos son representaciones visuales de alguna información numérica resultante de un proceso estadístico. Son muy efectivos para mostrar relaciones entre diferentes valores y permiten comprender fácilmente distintas situaciones de la realidad. Los datos disponibles de una población se presentan de tal manera que los mismos puedan ser visualizados sistemática y resumidamente. Los gráficos pueden ser de barras, circulares o lineales.

Los gráficos son una gran herramienta visual, porque captan la atención, dan información puntual de los datos y permiten una comparación eficaz.

INTERPRETACIÓN DE DATOS

Los cuadros, los gráficos y las tablas nos brindan información muy valiosa sobre una población determinada. Sin embargo, cuando la cantidad de datos es muy numerosa conviene buscar un valor característico del conjunto, como las que aportan las medidas de tendencia central. La media aritmética o promedio es igual a cociente entre la suma de todos los valores entre la cantidad de valores; la moda es el valor que se presenta con mayor frecuencia; y la mediana, tal como su nombre lo indica, corresponde a un punto medio, equidistante de los extremos.

Un conjunto de datos sin el análisis adecuado solo son valores o números. Requieren de lectura e interpretación adecuada para volverse útiles.

PROBABILIDAD

La probabilidad es un mecanismo matemático que nos permite estudiar sucesos aleatorios, es decir, operaciones cuyos resultados no pueden ser anticipados con seguridad, como lanzar un dado, lanzar una moneda o sacar una carta específica de un mazo. A través del cálculo de probabilidad se puede conocer cuántas posibilidades existen de que un fenómeno tenga lugar o no. A cada una de estas posibilidades se las denomina evento o suceso. El conjunto de eventos posibles constituye lo que se denomina espacio muestral.

Las probabilidades no predicen el futuro, únicamente valoran las diferentes posibilidades de un evento. Esta valoración es producto de un cálculo matemático que va de 0 (imposible) a 1 (totalmente posible).

¿QUÉ ES LA ESTADÍSTICA?

La estadística es una ciencia dentro del área de las matemáticas que se encarga de interpretar los datos obtenidos de la observación de un fenómeno en particular. Busca reunir información sobre determinados individuos o grupos, organizar datos y permitir una correcta interpretación. La finalidad de este proceso es tomar decisiones en base a las predicciones que pueden realizarse.

Los procedimientos estadísticos se hacen sobre el total de una población o sobre una muestra. Por ejemplo, cuando nos hacen un análisis de sangre no toman toda nuestra sangre, solo un poco de esta, es decir, una muestra.

CAPÍTULO 8 / TEMA 5 (REVISIÓN)

estadística y probabilidad │ ¿QUÉ APRENDIMOS?

recolección y conteo de datos

La recolección y conteo de datos es el procedimiento que se lleva a cabo para la obtención de información o respuesta de diferentes variables. Los datos pueden clasificarse como cualitativos cuando expresan cualidades o cuantitativos cuando expresan cantidades. Los datos cuantitativos se diferencian en continuos si tienen cualquier valor dentro de un intervalo; y discretos si solo ciertos valores están en un intervalo.

Los términos “niño” y “adulto” son datos cualitativos sobre una persona, mientras que la estatura, como “1,65 metros” o “1,2 metros” son datos cuantitativos.

gráficos estadísticos

Los gráficos estadísticos son una herramienta fundamental para lograr la correcta interpretación de los datos recolectados, ya que ofrecen un gran recurso visual. Existen diversos tipos de estos como el gráfico de barras, el poligonal o el circular. Los elementos principales de cada uno de estos son el título, el cuerpo y la escala.

Los gráficos de barras representan variables cualitativas o cuantitativas discretas, los poligonales representan magnitudes y frecuencias de diferentes variables y los circulares expresan porcentajes y proporciones de una variable en particular.

medidas de tendencia central

Las medidas de tendencia central se utilizan para poder representar una distribución de datos en un solo valor característico. Para esto puede calcularse la moda (Mo), la mediana (Md) o la media (\fn_phv \small \overline{x}). Estas estimaciones pueden hacerse a partir de la organización de todos los datos.

La moda es el valor de más frecuencia, la mediana es el valor central de la distribución de todos los datos y la media se calcula como la sumatoria de todos los valores dividido entre la cantidad total.

eventos y probabilidad

Los eventos aleatorios pueden ser seguros o imposibles, por ejemplo, al lanzar un moneda es seguro que saldrá cara o sello, pero es imposible que salga una tercera opción. La probabilidad de que ocurra un evento se mide al dividir la cantidad de casos favorables entre la cantidad de casos posibles, así, la probabilidad de que salga cara al lanzar una moneda es de 1/2. La probabilidad también se puede expresar como porcentaje. Por otro lado, los diagramas de Venn también nos ayudan a determinar visualmente probabilidades.

En los juegos de azar la suerte tiene un papel importante, no siempre el que tiene mejor habilidad gana.

CAPÍTULO 6 / TEMA 1

REPRESENTACIÓN GRÁFICA DE DATOS

Habrás observado que muchas veces la información en los medios de comunicación está acompañada por una variedad de gráficos. Los gráficos son representaciones visuales de un conjunto de datos; por ejemplo, la cantidad de habitantes de cada ciudad del país o el porcentaje del crecimiento interanual de una economía. Son muy efectivos para mostrar relaciones entre diferentes valores y permiten comprender fácilmente distintas situaciones de la realidad.

Es frecuente encontrar gráficos en los análisis estadísticos que refuercen de forma visual la información necesaria. Estas representaciones se adaptan en cada caso a aquello que se busca transmitir y al objetivo de la investigación. Dichos resultados se presentan de forma rápida, directa, atractiva y comprensible para un conjunto amplio de personas.

LOS DATOS Y LAS GRÁFICAS

Un dato no es más que una información que permite describir alguna característica de una situación de estudio. Este puede ser un número, una palabra o cualquier símbolo. Si un dato describe una cualidad se dice que es cualitativo, pero si señala una cantidad se llama cuantitativo. Por ejemplo:

Datos cualitativos Datos cuantitativos
– Profesión: {médico, policía, ingeniero}

– Color de ojos: {negro, azul, verde, marrón}

– Estado civil: {soltero, casado, viudo}

– Edad: {10 años, 11 años, 13 años}

– Peso: {40 kg, 37 kg, 41 kg}

– Cantidad de hermanos: {1, 3, 4}

Cuando tenemos una cantidad numerosa de datos recurrimos a las tablas. Allí, organizamos en filas y columnas los valores obtenidos y luego los clasificamos de acuerdo a los objetivos de la investigación. Posteriormente graficamos la información, pues estas gráficas brindan una mayor rapidez en la comprensión de los datos porque los presentan de forma clara, organizada y llamativa.

– Ejemplo:

30 personas fueron encuestadas acerca de cuál era su fruta favorita. Las respuestas obtenidas fueron las siguientes:

Manzana Pera Ananá Ananá Naranja Naranja
Banana Fresa Naranja Manzana Naranja Manzana
Naranja Durazno Manzana Ananá Naranja Pera
Banana Fresa Banana Fresa Manzana Fresa
Ananá Naranja Manzana Ananá Naranja Banana

Con estos datos podemos realizar una tabla que muestre la frecuencia o al cantidad de veces que cada fruta se repite.

Fruta Frecuencia
Manzana 6
Banana 4
Naranja 8
Pera 2
Ananá 5
Fresa 4
Durazno 1
Total 30

Si bien los datos se ven claramente en esta tabla, podemos graficarlos para que sea aún más sencillo visualizar cuáles son las frutas más o menos preferidas por este grupo de personas.

Elementos de los gráficos

Existen diferentes tipos de gráficos y la selección dependerá de la información que se quiera mostrar, sin embargo todos los gráficos tienen algunos elementos en común:

  • Título: todo gráfico debe tener un título para saber rápidamente de qué se trata. El mismo se ubica en la parte superior de la gráfica, debe ser claro, breve e informar sobre el contenido del cuadro.
  • Cuerpo: el cuerpo varía en función al estilo de gráfico que se seleccione, entre los más usados se encuentran el lineal, el de barras y el circular.

VER INFOGRAFÍA

TIPOS DE GRÁFICOS

Gráficos de barras

En este tipo de gráficos se construyen barras cuyas longitudes permiten comparar las categorías, observar los diferentes valores y obtener información con respecto a lapsos de tiempo. Las variables estudiadas se colocan en el eje horizontal y las frecuencias se colocan en el eje vertical, luego ubicamos los puntos y trazamos barras verticales para cada variable.

– Ejemplo:

Esta gráfica muestra la cantidad de hombres y mujeres en cada grado de un colegio.

Con esta gráfica vemos de forma muy clara la cantidad de hombres y mujeres que hay en cada grado. Nota que las barras de colores azul corresponden a los hombres y las barras de color naranja corresponden a las mujeres.

De acuerdo a la tabla, el grado con mayor cantidad de hombres es 6º (20), y el grado con menor cantidad de hombres es 1º (9).

¡Es tu turno!

Realiza la tabla de datos de acuerdo a la gráfica anterior.

Solución
Grado Hombres Mujeres Total
9 11 20
10 15 25
14 14 28
15 17 32
14 10 24
20 11 31
18 15 33
Total 100 93 193

¿Sabías qué?
Los gráficos de barras pueden ser verticales, horizontales, agrupados o apilados.

Gráficos lineales

Los gráficos lineales, también llamados gráficos poligonales, se representan en un plano (dos dimensiones) mediante el uso de un sistema de coordenadas. Para construirlos basta con ubicar los puntos en el plano y luego unirlos por medio de líneas.

– Ejemplo:

Con los mismos datos del ejemplo anterior en el que realizamos un gráfico de barras podemos dibujar un gráfico lineal.

Gráficos circulares

También son conocidos como gráficos de torta o pastel. Se usan para comparar porcentajes con respecto a un total de datos. Son útiles cuando deseas mostrar una sola serie de datos, por ejemplo, el sexo de la población. Para hallar los porcentajes parciales se dividen los 360° del círculo de acuerdo a los valores dados.

– Ejemplo:

La siguiente tabla muestra la cantidad de huéspedes en un hotel según su nacionalidad:

Nacionalidad Cantidad de turistas
Colombiana 12
Argentina 23
Chilena 5
Venezolana 15
Italiana 18
Total 73

Es normal colocar los valores de porcentajes en los gráficos de este tipo, para calcularlos solo dividimos la cantidad de cada nacionalidad entre el total de turista. Luego multiplicamos por 100. La suma de todos los porcentajes debe ser igual a 100 %.

Nacionalidad Cantidad de turistas Porcentaje
Colombiana 12 (12/73) × 100 = 16,44 %
Argentina 23 (23/73) × 100 = 31,50 %
Chilena 5 (5/73) × 100 = 6,85 %
Venezolana 15 (15/73) × 100 = 20,55 %
Italiana 18 (18/73) × 100 = 24,66 %
Total 73 100 %

Ahora, para ilustrar los datos en un círculo multiplicamos la fracción de cada nacionalidad por 360°. La suma de todos los grados debe ser igual a 360°. Por conveniencia redondeamos a la unidad cada producto.

Nacionalidad Cantidad de turistas Grados
Colombiana 12 (12/73) × 360° = 59,18° ≈ 59°
Argentina 23 (23/73) × 360° = 113,42° ≈ 113°
Chilena 5 (5/73) × 360° = 24,66° ≈ 25°
Venezolana 15 (15/73) × 360° = 73,97° ≈ 74°
Italiana 18 (18/73) × 360° = 88,77° ≈ 89°
Total 73 360°

De ese modo, tras dibujar la circunferencia, medimos con el transportador los grados correspondientes a cada porción y anotamos el porcentaje redondeado que lo representa.

¿Qué es una muestra?

Se denomina población al conjunto de elementos estudiados, es decir, al total. Una muestra es una parte de esa población, es decir, es una porción seleccionada que resulta representativa del conjunto. Se toman muestras cuando la población que se quiere estudiar es muy amplia e inabarcable, entonces se decide realizar una selección estratégica que recorte la cantidad de individuos a estudiar y que mantengan los rasgos representativos de toda la población analizada.

IMPORTANCIA DE REPRESENTAR DATOS EN GRÁFICOS

La estadística, entre otras cosas, se encarga de recopilar, analizar y sistematizar datos. Luego, debe comunicar la información generada en este proceso. La presentación de datos es uno de los aspectos mayormente utilizados en la estadística descriptiva. Los gráficos son muy importantes ya que posibilitan un abordaje dinámico, claro y entretenido.

En este sentido, los gráficos son una gran herramienta ya que permiten:

  • Registrar datos de manera clara y concreta.
  • Comunicar la información en forma sencilla.
  • Comprender la estructura del conjunto de datos.
La cartografía tiene como objetivo la concepción, redacción y realización de los mapas, es decir, la representación plana y simplificada de toda o de una parte de la superficie terrestre. Los mapas estadísticos o cartogramas son aquellos que presentan datos por regiones o zonas. Al igual que en un mapa topográfico, los colores y las tramas indican áreas que están en el mismo rango de valores.

 

¡A practicar!

Observa los gráficos y responde:

1. Marta vendió magdalenas durante toda la semana. La cantidad de magdalenas vendidas se muestra en el siguiente gráfico:

  • ¿Cuántas magdalenas vendió Marta el lunes?
    Solución
    Vendió 10 magdalenas.
  • ¿Cuál día vendió más magdalenas?
    Solución
    El martes.
  • ¿Cuál día vendió menos magdalenas?
    Solución
    El domingo.
  • ¿Cuántas magdalenas vendió durante la semana?
    Solución
    Vendió 68 magdalenas durante la semana.
  • ¿Cuál día vendió solo 8 magdalenas?
    Solución
    El viernes.

 

2. Se hizo una encuesta sobre el deporte favorito de un grupo de estudiantes. Los resultados se muestran en este gráfico.

  • ¿Cuál es el deporte favorito de la mayoría de encuestados?
    Solución
    El fútbol.
  • ¿Qué porcentaje de encuestados prefiere el béisbol?
    Solución
    El 14 %.
  • ¿Qué porcentaje de encuestados prefiere el baloncesto?
    Solución
    El 23 %.
  • ¿Cuál es el deporte menos preferido por los encuestados?
    Solución
    El béisbol.
RECURSOS PARA DOCENTES

Artículo “Gráficos estadísticos”

Con el siguiente artículo podrás ampliar tu conocimiento sobre tipos de gráficos estadísticos y sus funciones.

VER

Artículo “Lectura de gráficos”

En el siguiente artículo encontrarás ejemplos claros y explicados para abordar la interpretación y lectura de gráficos.

VER 

CAPÍTULO 6 / TEMA 4 (REVISIÓN)

Estadística y probabilidad | ¿Qué aprendimos?

Recursos para representar datos

Existen diversas formas de representar los datos con la finalidad de que su análisis y comprensión sea más fácil. Los gráficos y tablas son usados en diversas áreas y como recurso visual son de gran importancia. Los pictogramas permiten una comprensión más rápida de los datos porque emplean imágenes y símbolos. Las tablas son otro recurso que agrupa y ordena los datos en filas y columnas, y generalmente los ordena en función de los datos cualitativos y cuantitativos que se estudien. Finalmente, los gráficos de barra asocian el valor de los datos a columnas que se encuentran, a su vez, relacionadas a una escala.

Los gráficos como recurso visual permiten interpretar de forma rápida un conjunto de datos.

Interpretación de datos

Los datos por sí solos no tienen ningún valor si no se interpretan, pero antes de hacerlo hay que recopilarlos. La encuesta es una manera de obtener datos a través de un cuestionario prediseñado que es aplicado a un grupo de personas. El promedio aritmético o media aritmética corresponde al valor promedio de un conjunto de datos, y se obtiene al dividir la suma de todos los datos entre el número de datos. La moda, por su parte, es el dato que más se repite. Las tablas de doble entrada son una herramienta útil para entender las combinaciones posibles de un problema.

Los datos obtenidos en una encuesta se suelen representar en gráficos y tablas para su análisis.

Probabilidad

A los eventos que se pueden predecir y cuyo resultado se conoce con anterioridad se los conoce como sucesos deterministas o seguros. También hay eventos en los que el resultado no se conoce con certeza porque ocurre al azar. Es en este tipo de experimentos aleatorios donde más se concentra la probabilidad, la cual estudia la posibilidad de que un evento ocurra o no. Estos eventos pueden ser de varios tipos: mutuamente excluyentes cuando es imposible que ocurran de manera simultánea con otros; independientes cuando no se ven influenciados por la ocurrencia de otros eventos; y dependientes si se ven afectados por la ocurrencia de otros.

Los eventos aleatorios se caracterizan porque su resultado no se puede predecir.

CAPÍTULO 5 / TEMA 5 (REVISIÓN)

ESTADÍSTICA Y PROBABILIDAD | ¿QUÉ APRENDIMOS?

LOS PICTOGRAMAS

EL SER HUMANO SIEMPRE HA INTENTADO COMUNICARSE A TRAVÉS DE PINTURAS EN CAVERNAS O CON TALLADOS EN METALES Y MADERA. HOY DÍA TAMBIÉN LO HACEMOS Y EXPRESAMOS NUESTROS SENTIMIENTOS O DESEOS POR MEDIO DE IMÁGENES, COSA QUE LLAMAMOS “PICTOGRAMAS“. ESTOS PICTOGRAMAS SON USADOS EN SEÑALES DE TRÁNSITO, CARTELES PUBLICITARIOS, HISTORIETAS, AVISOS Y GRÁFICOS DE DE INFORMACIÓN QUE PUEDEN SER ENTENDIDOS POR TODAS LAS PERSONAS DEL MUNDO DE FORMA CLARA.

LOS PICTOGRAMAS SON UTILIZADOS EN LAS SEÑALES DE TRÁNSITO COMO ESTE.

TABLAS

LOS DATOS RECOLECTADOS TRAS UNA ENCUESTA PUEDEN ORGANIZARSE EN UNA TABLA. UNA TABLA ES UN CUADRO FORMADO POR FILAS, COLUMNAS Y CELDAS. LAS COLUMNAS SON LAS HILERAS VERTICALES, LAS FILAS SON LAS HILERAS HORIZONTALES Y LAS CELDAS RESULTAN DE LA UNIÓN ENTRE UNA FILA Y UNA COLUMNA. PUEDEN HACERSE CON NÚMEROS, CON PICTOGRAMAS Y CON MÁS DE DOS DATOS.

LAS TABLAS SON DE GRAN AYUDA PARA CONTROLAR EL DINERO QUE TENEMOS Y EL QUE GASTAMOS.

GRÁFICO DE BARRAS

LOS GRÁFICOS DE BARRAS MUESTRAN CON RECTÁNGULOS UNA INFORMACIÓN. ESTOS GRÁFICOS EXPRESAN A TRAVÉS DE BARRAS EL VALOR DE UNA CATEGORÍA Y SON MUY ÚTILES PARA VER DE FORMA RÁPIDA CUÁL TIENE UN MAYOR VALOR O UN MENOR VALOR. PARA REALIZARLO EN NECESARIO QUE PRIMERO ORGANICEMOS LOS DATOS EN UNA TABLA.

LOS GRÁFICOS DE BARRAS PUEDEN SER VERTICALES, HORIZONTALES O APILADOS.

PROBABILIDAD

LA PROBABILIDAD ESTUDIA LA POSIBILIDAD DE QUE UN EVENTO OCURRA O NO. POR EJEMPLO, SI LANZAMOS UN PAR DE DADOS NO SABEMOS CON SEGURIDAD QUÉ NÚMERO SALDRÁ, PERO SÍ SABEMOS QUE SALDRÁ EN CADA UNO UN NÚMERO MENOR A 7. ESTOS SON SUCESOS ALEATORIOS EN LOS QUE INTERVIENE EL AZAR, ES DECIR, QUE NO PODEMOS PREDECIR.

LOS JUEGOS DE CARTAS Y DADOS SON JUEGOS DE AZAR. HAY PROBABILIDAD DE QUE SALGA CUALQUIER CARTA DEL MAZO, ASÍ COMO CUALQUIER NÚMERO MENOR A 7 EN CADA DADO.

CAPÍTULO 5 / TEMA 4

PROBABILIDAD

¿ALGUNA VEZ HAS LANZADO UN DADO? ¿SIEMPRE SABES QUE NÚMERO SALDRÁ? ¡NO! ¿VERDAD? AUNQUE SABES QUE PUEDE SALIR UN NÚMERO DEL 1 AL 6 NO TIENES SEGURIDAD DE CUÁL DE ESOS NÚMEROS SERÁ. GRACIAS A LA PROBABILIDAD PODEMOS CALCULAR LA CANTIDAD DE VECES QUE UN EVENTO ALEATORIO COMO ESTE PUEDE OCURRIR O NO.

evento ALEATORIO

UN EVENTO ALEATORIO ES AQUEL QUE PUEDE OCURRIR O NO PUEDE OCURRIR Y EN EL QUE INTERVIENE EL AZAR. ES DECIR, QUE SI REPETIMOS EL MISMO EL EVENTO PODEMOS TENER SIEMPRE DISTINTOS RESULTADOS.

– EJEMPLOS:

  • LANZAR UNA MONEDA.
  • LANZAR UN DADO.
  • ELEGIR UNA CARTA DE UN MAZO.
  • SACAR UN CARAMELO ROJO DE UNA BOLSA CON CARAMELOS DE MÚLTIPLES COLORES.

COMO VES, NO PODEMOS PREDECIR EL RESULTADO DE ESTOS EVENTOS.

LOS DADOS SON OBJETOS CON FORMA DE CUBO Y TIENEN SEIS CARAS. CADA CARA REPRESENTA UN NÚMERO DEL 1 AL 6. ES NORMAL QUE LOS VEAS EN JUEGOS DE MESA COMO EL LUDO, EL MONOPOLIO Y EL PASE INGLÉS. CUANDO LANZAMOS UN DADO ESTAMOS SEGUROS QUE SALDRÁ UNO DE ESOS NÚMEROS, PERO NO SABEMOS CON SEGURIDAD CUÁL, ES DECIR, NO PODEMOS PREDECIR EL RESULTADO. ESO ES LO QUE CONOCEMOS COMO AZAR.

sucesos posibles

OBSERVA ESTAS BOLSAS CON BOLAS DE COLORES. SI SACAMOS UNA BOLA CON LOS OJOS CERRADOS NO SABRÍAMOS DE QUÉ COLOR SALDRÍA LA BOLA. SIN EMBARGO, PODEMOS PREDECIR QUÉ TAN PROBABLE ES QUE SAQUEMOS UN COLOR U OTRO.

– EJEMPLO:

NOTA QUE:

  • HAY 2 BOLAS ROJAS.
  • HAY 10 BOLAS AMARILLAS.

HAY MÁS BOLAS DE COLOR AMARILLO, ASÍ QUE:

 

ES MÁS PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO.

 

NOTA QUE:

  • HAY 6 BOLAS ROJAS.
  • HAY 6 BOLAS AMARILLAS.

HAY IGUAL CANTIDAD DE BOLAS DE COLOR ROJO Y AMARILLO, ASÍ QUE:

 

ES IGUAL DE PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO O DE COLOR ROJO.

 


NOTA QUE:

  • HAY 10 BOLAS ROJAS.
  • HAY 2 BOLAS AMARILLAS.

HAY MENOS BOLAS DE COLOR AMARILLO, ASÍ QUE:

 

ES MENOS PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO.

SEGURO, PROBABLE O IMPOSIBLE

LOS SUCESOS SON CADA UNO DE LOS RESULTADOS POSIBLES DE UN EVENTO ALEATORIO. ESTOS PUEDEN SER SEGUROS, PROBABLES O IMPOSIBLES.

  • LOS SUCESOS SEGUROS OCURREN SIEMPRE.
  • LOS SUCESOS PROBABLES OCURREN A VECES.
  • LOS SUCESOS IMPOSIBLES NO OCURREN NUNCA.

– EJEMPLO:

 ES SEGURO SACAR UNA BOLA AMARILLA.

 ES PROBABLE SACAR UNA BOLA VERDE.

 ES IMPOSIBLE SACAR UNA BOLA AZUL.

¿SABÍAS QUÉ?
LOS SUCESOS QUE OCURREN CON SEGURIDAD SE LLAMAN “SUCESOS DETERMINISTAS”, POR EJEMPLO, LA HORA EN LA QUE ABRE UN BANCO SIEMPRE ES LA MISMA. 
ALFONSO TIENE BLOQUES DE COLOR AMARILLO, AZUL, ROJO, VERDE, BLANCO Y NEGRO PARA JUGAR. SI ESTÁN TODOS EN UNA CAJA Y SACA DE A UNO SIN VER ES SEGURO QUE ALFONSO ELEGIRÁ UN BLOQUE DE CUALQUIERA DE ESOS COLORES, ES PROBABLE QUE ELIJA UN BLOQUE AMARILLO, PERO ES IMPOSIBLE QUE ELIJA UN BLOQUE DE COLOR ANARANJADO O GRIS.

RECOPILACIÓN DE DATOS

TODOS LOS DATOS PUEDEN ORGANIZARSE EN UNA TABLA, EN UNA TABLA DE PICTOGRAMAS O EN UN GRÁFICO DE BARRAS. POR EJEMPLO, SI QUEREMOS ORGANIZAR LOS BLOQUES PARA JUGAR POR COLOR TENEMOS QUE CONTAR UNO POR UNO Y HACER GRUPOS DE COLORES. LUEGO LOS REPRESENTAMOS. POR EJEMPLO:

  • TABLA
COLOR DEL BLOQUE CANTIDAD DE BLOQUES
AMARILLO 16
AZUL 28
ROJO 32
VERDE 20

 

  • TABLA DE PICTOGRAMA
COLOR DEL BLOQUE CANTIDAD DE BLOQUES
AMARILLO
AZUL
ROJO
VERDE
CLAVE

= 4 BLOQUES

 

  • GRÁFICO DE BARRAS

NOTA QUE TANTO LA TABLA, COMO LA TABLA DE PICTOGRAMAS Y EL GRÁFICO DE BARRAS REPRESENTAN LOS MISMOS DATOS.

¡A PRACTICAR!

  1. COMPLETA CON “SEGURO”, “PROBABLE” O “IMPOSIBLE” LAS SIGUIENTES ORACIONES.
  • ES ____ LANZAR UN DADO Y QUE SALGA EL NÚMERO 7.
SOLUCIÓN
IMPOSIBLE
  • ES ____ LANZAR UNA MONEDA Y QUE SALGA CARA.
SOLUCIÓN
PROBABLE
  • ES ____ LANZAR UN DADO Y QUE SALGA UN NÚMERO MENOR A 7.
SOLUCIÓN
SEGURO

 

2. OBSERVA ESTA RULETA. LUEGO RESPONDE LAS PREGUNTAS.

  • ¿CUÁNTAS ZONAS ROJAS HAY?
    SOLUCIÓN
    3
  • ¿CUÁNTAS ZONAS VERDES HAY?
    SOLUCIÓN
    2
  • ¿CUÁNTAS ZONAS MORADAS HAY?
    SOLUCIÓN
    2
  • ¿CUÁNTAS ZONAS AMARILLAS HAY?
    SOLUCIÓN
    1
  • ¿CUÁL COLOR ES MÁS PROBABLE QUE SALGA LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL ROJO.
  • ¿CUÁL COLOR ES MENOS PROBABLE QUE SALGA LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL AMARILLO.
  • ¿CUÁLES COLORES TIENEN IGUAL PROBABILIDAD DE SALIR LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL VERDE Y EL MORADO.
RECURSOS PARA DOCENTES

Artículo “Probabilidad”

Este artículo servirá de ayuda para profundizar sobre los conceptos básicos de la probabilidad.

VER

CAPÍTULO 5 / TEMA 3

GRÁFICO DE BARRAS

EXISTEN MUCHAS FORMAS DE REPRESENTAR UNA INFORMACIÓN, YA SEA POR TABLAS, PICTOGRAMAS O GRÁFICOS DE BARRAS. ¿SABES QUÉ SON LOS GRÁFICOS DE BARRAS? ESTOS GRÁFICOS SE UTILIZAN PARA EXPRESAR DATOS DE FORMA RÁPIDA POR MEDIO DE BARRAS VERTICALES U HORIZONTALES. ¡APRENDAMOS PARA QUÉ SIRVEN Y CUÁLES SON SUS ELEMENTOS!

¿QUÉ ES UN GRÁFICO DE BARRAS?

EL GRÁFICO DE BARRAS ES UNA MANERA DE MOSTRAR UNA INFORMACIÓN CLARA Y ORDENADA. CONSISTE EN UN CONJUNTOS DE BARRAS DONDE CADA UNA REPRESENTA UNA CATEGORÍA. LAS ALTURAS DE LAS BARRAS NOS AYUDAN A COMPARAR DATOS.

EL GRÁFICO DE BARRAS ES TAMBIÉN CONOCIDO COMO DIAGRAMA DE BARRAS. LAS BARRAS PUEDEN SER VERTICALES, COMO LAS DE LA IMAGEN; PERO TAMBIÉN PUEDEN SER HORIZONTALES. EL COLOR Y LA ALTURA DE CADA BARRA NOS PERMITE HACER COMPARACIONES. POR EJEMPLO, LA BARRA VERDE ES MÁS ALTA QUE LA ROJA, ASÍ QUE REPRESENTA UN VALOR MAYOR.

TIPOS DE GRÁFICOS DE BARRAS

LOS GRÁFICOS DE BARRAS PUEDEN SER VERTICALES, HORIZONTALES Y APILADOS.

FUNCIÓN DEL GRÁFICO DE BARRAS

LOS GRÁFICOS DE BARRAS FUNCIONAN PARA COMPARAR DATOS DE FORMA RÁPIDA.

– EJEMPLO:

SE LE PREGUNTARON A LOS ALUMNOS DE 2º GRADO CUÁL ES SU DEPORTE FAVORITO. LAS RESPUESTAS SE REPRESENTAN EN ESTE GRÁFICO DE BARRAS:

AL OBSERVAR EL GRÁFICO VEMOS QUE:

  • EL FÚTBOL FUE ELEGIDO POR 6 ALUMNOS.
  • EL BALONCESTO FUE ELEGIDO POR 2 ALUMNOS.
  • EL BÉISBOL FUE ELEGIDO POR 5 ALUMNOS.
  • EL TENIS FUE ELEGIDO POR 8 ALUMNOS.

¡ES TU TURNO!

OBSERVA LA TABLA ANTERIOR. RESPONDE:

  • ¿CUÁL FUE EL DEPORTE MÁS ELEGIDO POR LOS ALUMNOS?
    SOLUCIÓN
    EL TENIS.
  • ¿CUÁL FUE EL DEPORTE MENOS ELEGIDO POR LOS ALUMNOS?
    SOLUCIÓN
    EL BALONCESTO.

ELEMENTOS DEL GRÁFICO DE BARRAS

LOS ELEMENTOS DEL GRÁFICO DE BARRAS INDICAN LA FUNCIÓN DE CADA PARTE DEL MISMO. VEAMOS:

¿SABÍAS QUÉ?
TODAS LAS BARRAS DE ESTE GRÁFICO TIENEN EL MISMO ANCHO Y NO SE SUPERPONEN.

PROBLEMAS CON GRÁFICOS DE BARRAS

VEAMOS ALGUNOS PROBLEMAS PARA RESOLVER CON GRÁFICOS DE BARRAS. ¿TE ANIMAS?

EL SIGUIENTE GRÁFICO EXPRESA LA CANTIDAD DE LIBROS QUE HAN LEÍDO LOS NIÑOS AMIGOS DE TANIA.

¡ES TU TURNO!

DESPUÉS DE OBSERVAR EL GRÁFICO DE BARRAS PUEDES RESPONDER ESTAS PREGUNTAS:

  • ¿CUÁNTOS LIBROS LEYÓ JULIANA?
    SOLUCIÓN
    JULIANA LEYÓ 12 LIBROS.
  • ¿CUÁNTOS LIBROS LEYÓ CAMILA?
    SOLUCIÓN
    CAMILA LEYÓ 4 LIBROS.
  • ¿CUÁNTOS LIBROS LEYÓ LEONEL?
    SOLUCIÓN
    LEONEL LEYÓ 10 LIBROS.
  • ¿QUIÉN LEYÓ MÁS LIBROS?
    SOLUCIÓN
    JULIANA LEYÓ MÁS LIBROS.
  • ¿QUIÉN LEYÓ MENOS LIBROS?
    SOLUCIÓN
    CAMILA LEYÓ MENOS LIBROS.

 

2. EL KIOSCO DE MERCEDES VENDIÓ EN UN DÍA LOS SIGUIENTES PRODUCTOS:

¡ES TU TURNO!

DESPUÉS DE OBSERVAR EL GRÁFICO DE BARRAS PUEDES RESPONDER ESTAS PREGUNTAS:

  • ¿CUÁL PRODUCTO FUE EL MÁS VENDIDO?
    SOLUCIÓN
    LOS JUGOS.
  • ¿CUÁL PRODUCTO FUE EL MENOS VENDIDO?
    SOLUCIÓN
    LOS CHOCOLATES.
  • ¿CUÁNTOS JUGOS, CHOCOLATES Y FRUTAS SE VENDIERON?
    SOLUCIÓN
    MERCEDES VENDIÓ 4 CHOCOLATES, 10 JUGOS Y 8 FRUTAS.

 

3. EL SIGUIENTE GRÁFICO MUESTRA LA CANTIDAD DE TORNEOS DE AJEDREZ GANADOS DURANTE TRES AÑOS POR TOMÁS.

¡ES TU TURNO!

DESPUÉS DE OBSERVAR EL GRÁFICO DE BARRAS PUEDES RESPONDER ESTAS PREGUNTAS:

  • ¿EN QUÉ AÑO LE FUE MEJOR A TOMÁS? ¿CUÁNTOS TORNEOS GANÓ ESE AÑO?
    SOLUCIÓN
    A TOMÁS LE FUE MEJOR EN EL TERCER AÑO. GANÓ 8 TORNEOS.
  • ¿CUÁL FUE EL AÑO QUE NO LE FUE BIEN Y CUÁNTOS TORNEOS GANÓ ESE AÑO?
    SOLUCIÓN
    A TOMÁS NO LE FUE BIEN EL SEGUNDO AÑO. GANÓ 5 TORNEOS.
  • ¿CUÁNTOS TORNEOS GANÓ EN TOTAL DURANTE LOS TRES AÑOS?
    SOLUCIÓN
    DURANTE LOS TRES AÑOS TOMÁS GANÓ 19 TORNEOS.
RECURSOS PARA DOCENTES

Artículo “Gráficos estadísticos”

Con este recurso se podrá profundizar sobre los distintos tipos de gráficos estadísticos, incluyendo los gráficos de barras.

VER