CAPÍTULO 4 / TEMA 1

LAS LÍNEAS

ES POSIBLE QUE NO TE DES CUENTA, PERO ESTAMOS RODEADOS DE MUCHAS LÍNEAS. LAS USAMOS PARA ESCRIBIR, JUGAR, CAMINAR Y HASTA PARA COMER. LO PRIMERO QUE DEBES SABER ES QUE TODAS ESTÁN FORMADAS POR PUNTOS Y QUE ESTOS PUNTOS PUEDEN TENER RECORRIDOS MUY DIVERSOS.

¿QUÉ ES UNA LÍNEA?

UNA LÍNEA ES LA UNIÓN DE MUCHOS PUNTOS CONTINUOS EN EL PLANO.

ESTA IMAGEN REPRESENTA UNA SUCESIÓN DE PUNTOS. LA UNIÓN DE LOS PUNTOS FORMA UNA LÍNEA.

TE PUEDE PARECER EXTRAÑO QUE UNA LÍNEA ESTÉ FORMADA POR INFINITOS PUNTOS PORQUE SOLO VES UN TRAZO CONTINUO, PERO SI TE APROXIMAS LO SUFICIENTE VERÁS QUE EN REALIDAD SON PUNTOS SITUADOS UNO AL LADO DE OTROS. COMO LAS LÍNEAS DESCRIBEN LA DISTANCIA ENTRE DOS PUNTOS, HAY INFINITAS LÍNEAS.

LÍNEAS ABIERTAS Y CERRADAS

OBSERVA ESTAS LÍNEAS, ¿TODAS SON IGUALES?

NO, NO SON IGUALES.

LAS LÍNEAS DE COLOR ROJO SON LÍNEAS ABIERTAS.

LAS LÍNEAS DE COLOR VERDE SON LÍNEAS CERRADAS.

LAS LÍNEAS ABIERTAS TIENEN UN PUNTO DE INICIO Y UN PUNTO FINAL. NO SE CIERRAN. SI ESTUVIERAS DENTRO DE UNA LÍNEA ABIERTA PODRÍAS SALIR.

LA LÍNEA DE COLOR ROJO ES UNA LÍNEA ABIERTA.

LAS LÍNEAS CERRADAS NO TIENEN PUNTO DE INICIO NI PUNTO FINAL. SE CIERRAN. SI ESTUVIERAS DENTRO DE UNA LÍNEA CERRADA NO PODRÍAS SALIR.

LA LÍNEA DE COLOR VERDE ES UNA LÍNEA CERRADA.

LAS LÍNEAS SEGÚN SU FORMA

OBSERVA LAS LÍNEAS DE ESTAS LETRAS Y NÚMEROS, ¿TODAS SON IGUALES?

NO, SON SON IGUALES. TODAS TIENEN FORMAS DISTINTAS.

SEGÚN SU FORMA, LAS LÍNEAS PUEDEN SER RECTAS, CURVAS, MIXTAS O QUEBRADAS.

LA LÍNEA RECTA SIEMPRE TIENE LA MISMA DIRECCIÓN.

 

LAS LÍNEAS DE COLOR ROJO SON LÍNEAS RECTAS.

LA LÍNEA CURVA CAMBIA CONSTANTEMENTE DE DIRECCIÓN.

LAS LÍNEAS DE COLOR AZUL SON LÍNEAS CURVAS.

 

LAS LÍNEAS CURVAS PUEDEN SER ABIERTAS O CERRADAS

LAS LÍNEAS CURVAS ABIERTAS TIENEN UN PUNTO DE INICIO Y UN PUNTO FINAL. SI HACES ESTA SUCESIÓN DE PUNTOS CON UN LÁPIZ Y NO LO LEVANTAS DEL PAPEL, NO LLEGARÁS AL PUNTO EN EL QUE COMENZASTE.

LAS LÍNEAS CURVAS CERRADAS NO TIENEN UN PUNTO DE INICIO NI UN PUNTO FINAL. SI HACES ESTA SUCESIÓN DE PUNTOS CON UN LÁPIZ Y NO LO LEVANTAS DEL PAPEL, LLEGARÁS AL PUNTO EN EL QUE COMENZASTE.

LA LÍNEA MIXTA ESTÁ FORMADA POR LA COMBINACIÓN DE LÍNEAS RECTAS Y LÍNEAS CURVAS.

LAS LÍNEAS DE COLOR VERDE SON LÍNEAS MIXTAS.

LA LÍNEA QUEBRADA ESTÁ FORMADA POR VARIAS LÍNEAS RECTAS QUE SE CORTAN ENTRE SÍ Y QUE TIENEN DIRECCIONES DISTINTAS.

LAS LÍNEAS DE COLOR MORADO SON LÍNEAS QUEBRADAS.

¿CÓMO SE LLAMAN ESTAS LÍNEAS?

SOLUCIÓN

1. LÍNEA CURVA.

2. LÍNEA QUEBRADA.

3. LÍNEA RECTA.

4. LÍNEA MIXTA.

LAS LÍNEAS SEGÚN SU POSICIÓN

OBSERVA LOS CAMINOS QUE COMUNICAN A ESTAS TRES CASAS. ¿CUÁNTAS LÍNEAS RECTAS VES?, ¿TODAS SON IGUALES?

HAY SEIS LÍNEAS QUE MUESTRAN LOS CAMINOS. TODAS LAS LÍNEAS SON RECTAS PERO ESTÁN EN DISTINTAS POSICIONES.

LAS LÍNEAS DE COLOR VERDE SON VERTICALES.

LAS LÍNEAS DE COLOR ROJO SON HORIZONTALES.

LAS LÍNEAS DE COLOR AZUL SON INCLINADAS U OBLICUAS.

¡PRACTIQUEMOS LAS POSICIONES!

  • ¿CUÁNTOS LÁPICES ESTÁN EN POSICIÓN VERTICAL?
  • ¿CUÁNTOS LÁPICES ESTÁN EN POSICIÓN HORIZONTAL?
  • ¿CUÁNTOS LÁPICES ESTÁN EN POSICIÓN INCLINADA?

SOLUCIÓN
  • 7 LÁPICES ESTÁN EN POSICIÓN HORIZONTAL.
  • 4 LÁPICES ESTÁN EN POSICIÓN VERTICAL.
  • 3 LÁPICES ESTÁN EN POSICIÓN INCLINADA.

LÍNEAS EN LA VIDA DIARIA

LAS LÍNEAS ESTÁN EN TODO LO QUE NOS RODEA, PUES LIMITAN EL CONTORNO DE LAS FIGURAS Y LOS OBJETOS. OBSERVA ESTOS EJEMPLOS:

LÍNEAS EN LA VIDA

  • EL HORIZONTE ES UNA DELGADA LÍNEA QUE PARECE SEPARAR EL CIELO DE LA TIERRA. ESTE ES IGUAL A UNA LÍNEA RECTA HORIZONTAL.

  • ALGUNOS CAMINOS MUESTRAN UNA LÍNEA CURVA ABIERTA.

  • LAS ESCALERAS SON UN EJEMPLO DE LÍNEA QUEBRADA.

  • LAS RESBALADILLAS O TOBOGANES TIENEN LÍNEAS INCLINADAS.

  • EL CONTORNO DE LAS TIJERAS PRESENTA UNA LÍNEA MIXTA: COMBINACIÓN DE LÍNEAS CURVAS CON LÍNEAS RECTAS.

  • LOS CAPARAZONES DE LOS CARACOLES TIENEN FORMA ESPIRAL, UN TIPO DE LÍNEA CURVA ABIERTA.

  • LOS CHARCOS DE AGUA TIENEN UN CONTORNO IGUAL AL DE UNA LÍNEA CURVA CERRADA.

  • LA SILUETA DE LA PANTALLA DE TU TELEVISOR ESTÁ FORMADA POR LÍNEAS RECTAS.

¿Sabías qué?
LOS CROQUIS SE USAN PARA DIBUJAR LA IMAGEN DE UN LUGAR. PARA HACERLOS SE USAN LAS LÍNEAS RECTAS, CURVAS, MIXTAS Y QUEBRADAS.

¡DIBUJEMOS LÍNEAS!

IDENTIFICA EN ESTE DIBUJO LAS LÍNEAS APRENDIDAS.

SOLUCIÓN

HAY MUCHAS MÁS LÍNEAS. ¡DESCÚBRELAS!

AHORA ES TÚ TURNO. HAZ UN DIBUJO CON LÍNEAS Y CURVAS.

¡A PRACTICAR!

1. ¿CUÁNTAS LÍNEAS RECTAS VES?

SOLUCIÓN

2. UNE LOS PUNTOS DE CADA COLOR CON LAS LÍNEAS INDICADAS.

RECURSOS PARA DOCENTES

Artículo “Geometría para niños”

Este artículo le  permitirá trabajar en clase los aspectos básicos necesarios para entrar en el mundo de la geometría.

VER

CAPÍTULO 4 / TEMA 1

los números en la recta numérica

Una recta numérica, también llamada recta real, representa de forma gráfica el orden y la sucesión de un conjunto de números. Sin embargo, estos conjuntos no siempre son iguales y, como verás a continuación, se clasifican de acuerdo a sus características.

Cada día, el ser humano maneja números de diferentes conjuntos sin darse cuenta; por ejemplo, al contar los días de la semana, cortar un pastel en varias porciones o sumar los céntimos que forman parte del dinero. Todos estos números tienen una representación gráfica en un espacio coordenado unidimensional. Es decir, todos ellos se pueden mostrar en una recta numérica.

NÚMEROS NATURALES

Los números naturales son aquellos que se utilizan para contar los elementos de un grupo dado; gracias a ellos puedes saber cuántos dedos tienen las manos o cuántos integrantes hay en tu familia. Estos son los números más utilizados y su conjunto es representado con la letra ℕ.

Debido a que se utilizan para contar objetos, el cero puede considerarse el número que corresponde a la ausencia de los mismos, por lo tanto, el conjunto de los números naturales se presenta de dos maneras:

\mathbb{N} = \left \{ 1,\, 2,\, 3,\, 4,... \right \}

\mathbb{N} = \left \{0,\, 1,\, 2,\, 3,\, 4,... \right \}

¿Sabías qué?
Los números naturales fueron los primeros en ser utilizados por los seres humanos para contar y determinar cantidades.

En una recta numérica, los números naturales se colocan de tal forma que a medida que avanzas hacia la derecha, encuentras los números más grandes.

¿Cómo elaborar una recta numérica con números naturales?

  1. Dibuja una semirrecta.
  2. Señala el origen que corresponde al cero.
  3. Coloca una flecha en la punta derecha de la recta. Esto indica que la recta se extiende hasta el infinito.
  4. Escribe los números naturales en intervalos regulares. El intervalo entre números consecutivos siempre será el mismo.

Los intervalos en una recta numérica no solo representan a las unidades, sino también a las decenas y las centenas.

¡A practicar!

Ubica en la recta numérica los siguientes números: 5, 20, 35 y 48.

SOLUCIÓN

NÚMEROS ENTEROS

Los números enteros son aquellos que comprenden tanto a los números naturales como a sus opuestos, es decir, a los números negativos, y al número 0. Este conjunto se representa con la letra ℤ, que por definición es:

\mathbb{Z}=\left \{ ...,-4,\, -3,\, -2,\, -1,\,0,\, +1,\, +2,\, +3,\, +4,... \right \}

¿Sabías qué?
Los negativos se utilizan en casos comunes de la vida como, por ejemplo, una deuda o las temperaturas bajo cero.

En una recta numérica, los números enteros se distribuyen a partir del cero: a su izquierda se ubican los negativos y a su derecha se ubican los positivos. 

Recuerda que …

1. Dados dos números enteros de signos distintos, +a y –a, con a > 0, el negativo es menor que el positivo: −a < +a.

−5 < +5

2. Dados dos números enteros con el mismo signo, el menor de los dos números es:

  • El de menor valor absoluto, si el signo común es “+“.

+8 < +10

  • El de mayor valor absoluto, si el signo común es “−”.

−10 < −8

3. El cero, 0, es menor que todos los positivos y mayor que todos los negativos.

−1 < 0 < +1 

 

¡A practicar!

Ubica en la recta numérica los siguientes números: 15, −15, −35 y −39.

SOLUCIÓN

NÚMEROS DECIMALES

Los números decimales están formados por dos partes: una entera y una decimal, ambas separadas por una coma. A la izquierda de la coma se ubica la parte entera, y a la derecha de la coma está la parte decimal.

Los números decimales son usados para mostrar aquellos valores que se necesitan conocer con exactitud y precisión, por lo que indicarlos solo con una unidad no es suficiente. Las medidas de altura, el peso de un bebé y el precio de los productos de un supermercado, son algunos ejemplos de cifras decimales.

En una recta numérica, los números decimales se ubican entre dos números enteros. Para esto, se divide en diez partes la distancia entre los números y se incorporan los decimales que hay entre ellos.

Para representar a los decimales ubicados entre el 1 y el 2, la recta numérica se presenta así:

También puedes identificar los decimales entre dos decimales menos precisos. Por ejemplo, al dividir el espacio entre los decimales 1,1 y 1,2 en otras 10 partes iguales, tendrás las posiciones de los números del 1,11 al 1,19.

¡A seguir con la práctica!

Ubica en la recta numérica los siguientes números decimales: 20,2; 20,5; 20,8 y 20,95.

SOLUCIÓN

El número pi

El número pi es tal vez el número decimal más famoso. Este es un número con decimales infinitos, pero popularmente se simplifica como 3,1416. Solo estos dígitos permiten saber que pi se encuentra entre el 3 y el 4 en la recta numérica. 

VER INFOGRAFÍA

NúMEROS FRACCIONARIOS

También conocidos simplemente como fracciones, son aquellos que representan una división entre números. Un ejemplo de fracción lo puedes ver al pedir medio kilo de pan o al cortar una torta en partes iguales.

Toda fracción está formada por dos partes: un numerador y un denominador separados por una línea horizontal.

Al igual que los números decimales, los números fraccionarios se encuentran entre dos números enteros o dos números decimales en una recta numérica. Para hallar su ubicación se siguen dos métodos diferentes según el tipo de fracción: propia o impropia.

Fracciones propias

Las fracciones propias poseen un numerador menor a su denominador. La división entre estos dos dígitos dará como resultado un número decimal menor a 1. Para saber la posición en la recta numérica se debe segmentar el espacio entre 0 y 1 la cantidad de veces que indique el denominador, y la fracción se ubicará al final del segmento que indique el numerador.

Por ejemplo, para hallar en la recta numérica la fracción \frac{2}{3} debes seguir estos pasos:

  1. Dividir el espacio entre 0 y 1 en 3 segmentos iguales.
  2. Ubicar la fracción al final del segundo segmento.

Los números decimales y fraccionarios son diferentes a los números naturales y enteros, ya que, a diferencia de estos últimos, representan números “incompletos”. No obstante, todos ellos pertenecen al mismo conjunto numérico: el de los números racionales, un subconjunto de los números reales.

Fracciones impropias

Las fracciones impropias poseen un numerador mayor a su denominador. La división entre estos dos dígitos siempre dará como resultado un número mayor a 1. Para saber la posición de una fracción impropiar en la recta real se deben seguir dos pasos:

  1. Convertir la fracción impropia en un número mixto, es decir, la combinación entre un número entero y una fracción propia.
  2. Ubicar el número mixto en la recta numérica. El número entero indicará por dónde empezar a segmentar, mientras que el resto de la fracción se ubicará de la misma forma que una fracción propia: número de segmentos según el denominador y la ubicación de la fracción según el numerador.
¿Cómo convertir la fracción \frac{27}{4} en un número mixto?

1. Divide el numerador por el denominador. 

2. El resto de la división se convertirá en el nuevo numerador de la parte fraccionaria. El divisor será el denominador de la parte fraccionaria y el cociente será la parte entera del número mixto.

3. Construye el número mixto.

¡Pon en práctica lo aprendido!

¿Cómo conviertes la fracción \frac{8}{5} en número mixto?

Para ubicar la fracción \frac{8}{5} en la recta numérica, primero se dividen entre sí ambas cifras. Esta división tiene como cociente el número 1, como resto el número 3 y como divisor el número 5, por lo tanto el número mixto es:

Ahora solo debes dividir en 5 segmentos iguales (denominador de la parte fraccionaria) el espacio entre el número 1 y el número 2. Luego, marcar el final del tercer segmento (numerador de la parte fraccionaria). Allí está ubicada la fracción \frac{8}{5}.

 ¡A practicar!

Ubica en la recta numérica las fracciones propias 1/2 y 6/10.

SOLUCIÓN

Ubica en la recta numérica las fracciones impropias 3/2 y 9/8.

SOLUCIÓN

¡A practicar!

1. Responde las siguientes preguntas:

a. ¿A cuál conjunto numérico pertenecen las notas que obtienes de tus exámenes en clase?

b. ¿Entre cuáles números se ubica el −8 en la recta numérica?

c. ¿Qué tipo de número es el 3,33?

d. ¿Qué número mixto se construye con la fracción 9/5?

2. Ubica los siguientes números en la recta numérica que se muestra a continuación:

  1. 4
  2. −3
  3. 2,5
  4. 1/2
  5. 5/4

SOLUCIÓN

1a. Números naturales.

1b. Entre el −7 y el −9.

1c. Número decimal.

1d. 1\frac{4}{5}

2.

RECURSOS PARA DOCENTES

Artículo destacado “Recta numérica”

Con este recurso podrás complementar la información explicada y brindar ejercitación.

VER