CAPÍTULO 7 / TEMA 5

FUNCIÓN LINEAL

Cuando dos magnitudes se relacionan de manera directamente proporcional pueden representarse como una función de expresión algebraica y = mx + b. Estas funciones pueden identificarse rápidamente por medio de su gráfica, pues en el plano cartesiano siempre estarán representadas con una línea recta ascendente o descendente.

GRÁFICA DE UNA FUNCIÓN

Si conocemos la función matemática que relaciona a dos variables, podemos construir su gráfica, o al menos una aproximación de ella. Para esta tarea solo calculamos, a partir de la función, una serie de puntos que cumplan con la solución. Debemos tener en cuenta que cuantos más puntos utilicemos para graficar una función, mayor precisión obtendremos.

Algunas funciones matemáticas tienen gráficas características en el plano cartesiano, por ejemplo:

Funciones lineales

f(x) = mx + b

Funciones potenciales

f(x) = x2

 

Funciones exponenciales

f(x) = 2x

 

 

Funciones irracionales

f(x) = √x

 

Funciones racionales

f(x) = 1/x

 

Funciones trigonométricas

f(x) = sen x

Las funciones lineales se denominan de esta manera ya que su gráfica característica en el plano cartesiano se representa como una recta. Para trazar de forma correcta esta línea, basta con que conozcamos dos puntos en el plano. Por lo general se determinan si calculamos los cortes con los ejes o por medio de la ecuación de la recta.

¿Qué es una función lineal?

Una función lineal es una función cuya gráfica es igual a una línea recta que pasa por el origen de coordenadas. Su expresión algebraica es la siguiente:

f(x) = mx

Donde:

m = constante de proporcionalidad o pendiente de la recta

¿Sabías qué?
Las funciones lineales también son llamadas “funciones de proporcionalidad directa”.

– Ejemplo:

Un tren tiene una velocidad media de 160 km/h. La relación entre la distancia y el tiempo se puede observa en la siguiente tabla:

Tiempo (h) = x 0 1 2 3 4
Distancia (km) = y 0 160 320 480 640

Por medio de esta tabla vemos que las dos magnitudes (tiempo y distancia) son directamente proporcionales porque a medida que una aumenta, la otra también lo hace. Si realizamos una gráfica entre estas dos magnitudes nos resulta una línea recta como esta:

Nota que la recta pasa por el origen (0, 0) y va en aumento, por lo tanto, la recta es continua y creciente. La constante de proporcionalidad es 160, así que la expresión algebraica de esta función es:

f(x) = 160x

Función afín

Una función afín es un tipo de función lineal que no pasa por el origen de coordenadas. Su expresión algebraica es:

f(x) = mx + b

Donde:

m = pendiente de la recta

b = ordenada en el origen: la recta corta al eje de ordenada en el punto (0, n)

– Ejemplo:

Se ha determinado el pago de agua en una casa. Cada recibo indica que por cada metro cúbico de agua consumida se pagan $ 5, mientras que por la distribución y depuración se pagan $ 10. Con estos datos elaboramos la siguiente tabla:

Agua consumida (m3) = x 0 1 2 3 4
Pago ($) = y 10 15 20 25 30

La expresión algebraica de esta función es f(x) = 5x + 10, cuya gráfica se muestra a continuación:

Observa que la línea recta no pasa por el origen, sino que corta en el punto (0, 10).

La función de costo lineal se usa frecuentemente en las operaciones de las pequeñas empresas. El costo es el total de dinero necesario para producir q unidades de un producto. La función se representa con la expresión C(q) que incluye tanto a los costos fijos (independientes) como a los costos variables (dependientes).

ecuación de la recta

La ecuación de la recta es una expresión algebraica que describe una línea recta y relaciona la variación de y con respecto a x, la cual se puede graficar en el plano cartesiano según los componentes en cada uno de los ejes. De manera general la ecuación de una recta se representa así:

y = mx + b

Donde:

y = eje de las ordenadas

x = eje de las abscisas

m = pendiente de la recta

b = punto de intersección de la recta con el eje y

 

Para determinar la pendiente de la recta usamos la fórmula:

m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}

– Ejemplo:

Hallemos la pendiente de la recta que pasa por los puntos A (−1, 1) y B (1, 7).

Primero identificamos los valores de los ejes. Como ya sabemos, los pares ordenados siempre tienen primero la coordenada del eje x y luego de la coma va la coordenada del eje y; entonces:

En el punto A (−1, 1), x1 = −1 y y1 = 1

En el punto B (1, 7), x2 = 1 y y2 = 7

Ahora solo sustituimos en la fórmula general:

m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-1}{1-(-1)}=\frac{6}{2}=\boldsymbol{3}

Sabemos que la ecuación de esta recta es y = mx + b porque no pasa por el origen, es decir, representa una función afín. También sabemos que la pendiente (m) es 3, por lo tanto, y = 3x + b; así que faltaría hallar el valor de b.

Para calcula b podemos tomar cualquiera de los puntos A o B. Planteamos la ecuación y luego despejamos.

A(-1, \: 1): y=3x+b\rightarrow 1=3(-1)+b\rightarrow \boldsymbol{b=4}

B(1,\: 7):y=3x+b\rightarrow 7=3(1)+b\rightarrow \boldsymbol{b=4}

De este modo sabemos que la recta que pasa por los puntos A y B tiene por ecuación:

y = 3x + 4

Pendiente de la recta y = mx

Para un función lineal f(x) = mx, el coeficiente m se llama pendiente y representa el aumento o disminución de la variable dependiente en relación a la variable independiente.

– Ejemplo:

  • En la función f(x) = −3x, la pendiente es −3.
  • En la función f(x) = 5x, la pendiente es 5.

En una gráfica, la pendiente de una recta representa la inclinación de la misma respecto del eje x. La podemos hallar al dividir el valor de la variable dependiente entre el valor de la variable independiente.

m =\frac{y}{x}

– Ejemplo:

Esta gráfica muestra tres líneas rectas que pasan por el origen, así que cada una representa a un función lineal de forma f(x) = mx.

Para saber la pendiente de la recta solo debemos fijarnos en cualquiera de sus puntos y hallar su cociente.

Recta a Recta b Recta c
m=\frac{6}{-6}=\boldsymbol{-1} m=\frac{-2}{-2}=\boldsymbol{1} m=\frac{4}{6}=\boldsymbol{\frac{2}{3}}
f(x)=-x f(x)=x f(x)=\frac{2}{3}x

Valor de la pendiente

  • Si m es positiva, significa que la recta es creciente de izquierda a derecha.
  • Si m es negativa, significa que la recta es decreciente de izquierda a derecha.
  • Si m es cero, significa que la recta no posee inclinación respecto al eje horizontal, es decir, se trataría de una recta paralela al eje horizontal.
Una función lineal es una función polinómica de primer grado, es decir, el mayor exponente de x es 1. Para expresar cualquier tipo de recta, pase o no por el origen, se utiliza la ecuación explícita de la recta: y = mx + b. Donde y es la variable dependiente, x es la variable independiente, m es la pendiente y b es la ordenada al origen.

¿cómo Graficar una función lineal?

Dada la ecuación de la recta y = 2x + 3. La pendiente es 2 y el punto de intersección de la recta con el eje y es igual a 3. Para determinar el valor de y es necesario darle valores a x y efectuar la operación correspondiente, de la siguiente manera:

Si x = 1
y = 2(1) + 3
y = 2 + 3
y = 5
Si x = 2
y = 2(2) + 3
y = 4 + 3
y = 7
Si x = 3
y = 2(3) + 3
y = 6 + 3
y = 9
Si x = −1
y = 2(−1) + 3
y = −2 + 3
y = 1
Si x = −2
y = 2(−2) + 3
y = −4 + 3
y = −1
Si x = −3
y = 2(−3) + 3
y = −6 + 3
y = −3

Para obtener una recta bien definida es recomendable utilizar al menos tres puntos. Será de gran ayuda realizar una tabla de valores en la que observes las coordenadas de cada punto como esta:

x y Punto
−3 −3 (−3, −3)
−2 −1 (−2, −1)
−1 1 (−1, 1)
1 5 (1, 5)
2 7 (2, 7)
3 9 (3, 9)

Si usamos esta tabla como guía es más sencillo realizar la gráfica de la función.

Nota que la recta se corta en el punto (0, 3), pues b = 3.

¡A practicar!

1. Dadas las siguientes funciones, determina:

a. Pendiente (m)

b. Ordenada al origen (b)

  • f(x) = 2x − 6
Solución

b = −6

m = 2

  • f(x) = −x + 4
Solución

b = 4

m = −1

  • f(x) = 13/5x − 2
Solución

b = −2

m = 13/5

 

2. Construye una tabla con los siguientes valores de x para cada función.

x = −2, −1, 0, 1, 2, 3

  • f(x) = −x + 2
Solución
x y
−2 4
−1 3
0 2
1 1
2 0
3 −1
  • f(x) = 5x − 3
Solución
x y
−2 −13
−1 −8
0 −3
1 2
2 7
3 12
  • f(x) = 3x
Solución
x y
−2 −6
−1 −3
0 0
1 3
2 6
3 9
  • f(x) = −2x + 1
Solución
x y
−2 5
−1 3
0 1
1 −1
2 −3
3 −5

 

3. Realiza la gráfica de las siguientes funciones:

  • f(x) = −x + 2
  • f(x) = −2x + 1
Solución

f(x) = −x + 2

f(x) = −2x + 1

 

4. Dada la siguiente gráfica, determina:

a. Pendiente de la recta.

b. Ecuación de la recta.

Solución

a. m = −1

b. y = −x + 9

RECURSOS PARA DOCENTES

Artículo “Función Lineal”

En este artículo podrás encontrar ejercicios relacionados con la construcción de gráficas de funciones lineales a partir de su ecuación explícita, además de problemas de enunciados.

VER

Artículo “Aplicaciones de la función lineal”

Este artículo explica los conceptos de proporción, así como detalla el análisis y las aplicaciones de las funciones lineales.

VER

Artículo “Función lineal”

Este contenido ofrece una breve descripción de las características de una función lineal a partir de la ecuación explícita de la recta.

VER

CAPÍTULO 4 / TEMA 6 (REVISIÓN)

geometría ¿QUÉ APRENDIMOS?

LAS LÍNEAS

LAS LÍNEAS SON UNA SUCESIÓN DE PUNTOS. SEGÚN SU FORMA, PUEDEN SER RECTAS SI TIENEN LA MISMA DIRECCIÓN; CURVAS SI CAMBIAN CONSTANTEMENTE DE DIRECCIÓN; MIXTAS SI ESTÁN FORMADAS POR LA COMBINACIÓN DE RECTAS Y CURVAS; O QUEBRADAS SI ESTÁN FORMADAS POR RECTAS QUE SE CORTAN ENTRE SÍ. ASIMISMO, LAS LÍNEAS PUEDEN SER ABIERTAS O CERRADAS. LAS LÍNEAS ABIERTAS TIENEN UN PUNTO DE INICIO Y UN PUNTO FINAL, MIENTRAS QUE LAS LÍNEAS CERRADAS NO TIENEN PUNTO DE INICIO NI PUNTO FINAL. POR OTRO LADO, TAMBIÉN LAS PODEMOS CLASIFICAR COMO HORIZONTALES, VERTICALES U OBLICUAS SEGÚN SU POSICIÓN.

ESTOS LÁPICES DE COLORES DIBUJAN LÍNEAS RECTAS PORQUE TIENEN LA MISMA DIRECCIÓN.

FORMAS

CASI TODOS LOS OBJETOS QUE NOS RODEAN TIENE UNA FORMA SIMILAR A LA DE UNA FIGURA GEOMÉTRICA, PUEDEN SER CUADRADOS, CIRCULARES, TRIANGULARES O RECTANGULARES. PERO NO TODOS LOS OBJETOS SON PLANOS, TAMBIÉN PUEDEN SER UN CUBO, UNA ESFERA O UN CILINDRO. LA PARTE EXTERIOR DE ESTOS SE LLAMA SUPERFICIE Y PUEDE SER PLANA, COMO LA DE UNA MESA, O CURVA COMO LA DE UN GLOBO.

ESTE ES UN CUBO DE RUBIK, UN JUEGO DE ROMPECABEZAS MUY POPULAR. ES UNA FIGURA CON FORMA DE CUBO Y CON TODAS SUS SUPERFICIE PLANAS.

FIGURAS PLANAS

TODAS LAS FIGURAS PLANAS ESTÁN DELIMITADAS POR LÍNEAS RECTAS O CURVAS, Y ADEMÁS, SOLO TIENEN DOS DIMENSIONES: ALTO Y ANCHO. LAS FIGURAS PLANAS MÁS CONOCIDAS SON EL CUADRADO, EL TRIÁNGULO, EL RECTÁNGULO Y EL CÍRCULO. LAS PRIMERAS TRES SE CARACTERIZAN POR TENER LADOS Y VÉRTICES, MIENTRAS QUE LA ÚLTIMA, EL CÍRCULO, SE CARACTERIZA POR TENER UN CENTRO, UN DIÁMETRO Y UN RADIO.

LA PANTALLA DE UNA COMPUTADORA, UN TELÉFONO O UNA TABLETA TIENE UNA FORMA PLANA COMO LA DE UN RECTÁNGULO.

FIGURAS TRIDIMENSIONALES

LAS FIGURAS TRIDIMENSIONALES TIENEN TRES DIMENSIONES: ALTOANCHO Y LARGO. LAS MÁS CONOCIDAS SON EL CONO, LA ESFERA, EL CUBO, EL PRISMA RECTANGULAR, LA PIRÁMIDE Y EL CILINDRO. ESTAS FIGURAS CUENTAN CON CARAS, ARISTAS Y VÉRTICES. A SU VEZ, SE CLASIFICAN EN POLIEDROS Y CUERPOS REDONDOS. LOS POLIEDROS SOLO TIENEN SUPERFICIES PLANAS Y NO PUEDEN RODAR; MIENTRAS QUE LOS CUERPOS REDONDOS TIENEN AL MENOS UNA SUPERFICIE CURVA Y SÍ PUEDEN RODAR.

TODAS ESTAS FIGURAS SON POLIEDROS PORQUE ESTÁN FORMADOS SOLO POR CARAS PLANAS Y NO PUEDEN RODAR.

CONSTRUCCIÓN DE FIGURAS GEOMÉTRICAS

LAS FIGURAS GEOMÉTRICAS ESTÁN PRESENTES EN NUESTRO DÍA A DÍA, ESTÁN EN LOS OBJETOS Y CREACIONES QUE NOS RODEAN. PARA PODER CONSTRUIRLAS ES NECESARIO QUE EMPLEEMOS LOS INSTRUMENTOS ADECUADOS, COMO LA REGLA GRADUADA, EL COMPÁS, LA ESCUADRA, EL CARTABÓN Y EL TRANSPORTADOR. SI DESEAMOS CONSTRUIR FIGURAS TRIDIMENSIONALES PODEMOS USAR PLANTILLAS.

LAS FIGURAS GEOMÉTRICAS SON CONSTRUIDAS EN CADA PLANO DE UNA OBRA PARA REPRESENTAR ELEMENTOS COMO UNA BAÑO O UNA HABITACIÓN.

CAPÍTULO 5 / TEMA 7 (REVISIÓN)

GEOMETRÍA | ¿QUÉ APRENDIMOS?

CUADRÍCULA

Desde la elaboración de planos y dibujos a escalas en hojas cuadriculadas, hasta la localización de estrellas en la galaxia, la unión de rectas perpendiculares nos ayuda a distinguir la posición de cualquier objeto. Una cuadrícula es un sistema de coordenadas compuesto por líneas perpendiculares verticales y horizontales, que funciona como sistema de referencias y permite ubicar elementos en un espacio definido. El conjunto de líneas horizontales y verticales, también llamadas ejes, suelen nombrarse con números y letras. 

Un claro ejemplo de cuadrícula es un tablero de ajedrez. En este cada cuadro representa una posición que puede ser ocupada por alguna pieza del juego.

TIPOS DE LÍNEAS

Las líneas son un conjunto de puntos ubicados uno junto al otro que generan un trazo continuo. Si los puntos están orientados en una misma dirección, entonces, forman una línea recta. Las líneas rectas son continuas e infinitas, no tienen ni principio ni final y se pueden clasificar según la forma en que interaccionan entre ellas en rectas paralelas (aquellas que nunca se cortan), rectas secantes perpendiculares (aquellas que se cortan formando ángulos rectos) y rectas secantes oblicuas (aquellas que se cortan sin formar ángulos rectos).

Un ejemplo de líneas rectas paralelas son las vías de un ferrocarril. Cuando se cortan con otras forman líneas secantes.

LOS ÁNGULOS Y SUS TIPOS

Un ángulo es una porción del plano delimitado por dos semirrectas. Cada semirrecta es uno de los lados del ángulo y coinciden en un punto de origen al que se denomina vértice. A la distancia entre lado y lado del ángulo se la denomina amplitud, y esta se mide en grados (°). Si queremos medir o trazar un ángulo es indispensable el uso del transportador. Según su amplitud, un ángulo puede ser convexo, cóncavo, nulo, completo, llano, agudo, recto u obtuso.

Las escuadras nos permiten estimar ángulos, pues tienen un ángulo de 90° y dos ángulos de 45°.

LOS TRIÁNGULOS

Los triángulos son polígonos regulares cerrados de tres lados, tres ángulos y tres vértices. Los ángulos interiores de un triángulo siempre suman 180° y los ángulos exteriores suman 360°. Son varios los criterios de clasificación que permiten agrupar a los triángulos de acuerdo a ciertas particularidades, los más utilizados son: la medida de sus lados y la medida de sus ángulos. Según la medida de sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos; mientras que, según la medida de sus ángulos se clasifican en acutángulo, obtusángulo y rectángulo.

Un mismo triángulo puede ser clasificado por más de un criterio, por ejemplo: todos los triángulos equiláteros son, a su vez, triángulos acutángulos, ya que sus tres ángulos iguales miden 60°.

CUADRILÁTEROS

Los cuadriláteros tienen cuatro lados, cuatro ángulos internos, cuatro ángulos externos, cuatro vértices y dos diagonales. Estos se clasifican en paralelogramos, trapecios y trapezoides. Los paralelogramos son aquellos cuadriláteros que poseen dos pares de lados opuestos paralelos y que comparten algunas propiedades específicas; los trapecios, por su parte, son figuras que presentan un par de lados opuestos paralelos a los que se suele denominar base; y los trapezoides son aquellos cuyos lados no son paralelos.

En primer lugar, los cuadriláteros pueden clasificarse en dos grandes grupos: paralelogramos y no paralelogramos. Las pantallas de nuestros móviles y tabletas son ejemplos de un paralelogramo.

POLIEDROS

Los poliedros son cuerpos geométricos tridimensionales con caras planas formados por polígonos. Cada una de las caras de un poliedro es un polígono (triángulo, cuadrado, rombo, etc.). Los poliedros pueden ser regulares cuando sus caras están compuestas por el mismo polígono regular; o irregulares si sus caras presentan diferentes formas. En estos poliedros el número de caras no presenta límites como ocurre con los poliedros regulares y se dividen en prismas (tienen dos bases) y pirámides (tienen una sola base).

Existen cinco poliedros regulares cuyas caras están conformados por polígonos regulares. Estos son conocidos como sólidos platónicos.

CAPÍTULO 5 / TEMA 1

Elementos geométricos

El punto, la recta y el plano representan los cimientos de la geometría. Seguramente, muchos otros conceptos no podrían ser definidos sin ellos y por tal motivo son tan importantes. Cada uno está relacionado: infinitos puntos forman una recta, infinitos puntos y rectas forman un plano e infinitos puntos, rectas y planos forman el espacio.

El punto

El punto es el objeto más pequeño del espacio, por tanto no tiene longitud, área o volumen. Es adimensional, lo que quiere decir que no tiene dimensiones.

Una de las funciones del punto es describir la posición en un sistema de coordenadas como el cartesiano.

¿Sabías qué?
Los puntos se nombran con letras mayúsculas del abecedario, por ejemplo: A, B, C, D, etc.

Entes fundamentales de la geometría

Se denominan así a los entes que por sí solos no tienen definición y se comprenden a partir de las características de elementos similares. La mayoría de las personas tiene noción de lo que cada uno representa. Los entes fundamentales en la geometría son el punto, la recta y el plano.

La recta y sus tipos

Una recta es un tipo de línea que se extiende en una misma dirección y está formada por infinitos puntos. Por esta razón, la recta tiene longitud pero no anchura. En geometría, las rectas se suelen denominar con letras minúsculas.

De acuerdo a su posición en el plano, las rectas pueden ser paralelas, perpendiculares y secantes.

¿Sabías qué?
Entre dos puntos, solamente existe una recta que los une.

Rectas paralelas

Son rectas que no tienen ningún punto en común, es decir, nunca se interceptan. Para la construcción de este tipo de rectas se emplean la regla, la escuadra y el compás. En el siguiente ejemplo la recta a es paralela a la recta b.

Un ejemplo de rectas paralelas son los lados opuestos de un cuadrilátero como el cuadrado.

VER INFOGRAFÍA

Rectas secantes

Son aquellas que se interceptan en un punto en común y forman cuatro ángulos internos. Las rectas c y d son secantes.

Un ejemplo de rectas secantes son dos calles que se interceptan en un punto en común.

Rectas perpendiculares

Son aquellas rectas secantes que al cortarse forman cuatro ángulos iguales, específicamente rectos (de 90°). Estas rectas dividen al plano en cuatro regiones. Las rectas e y f son perpendiculares entre sí.

Un ejemplo de rectas perpendiculares son los ejes del plano cartesiano.

La recta es un tipo de línea pero no es la única, existen líneas curvas, quebradas y mixtas. Además de su empleo en la geometría, los diferentes tipos de líneas son recursos usados por artistas plásticos y diseñadores gráficos en sus trabajos para proporcionar expresividad gráfica, dinamismo y movimiento. También son útiles para crear planos y texturas.

Otros conceptos relacionados

Semirrecta

Todo punto que pertenece a una línea recta la divide en dos partes denominadas semirrectas. Las semirrectas también son llamadas rayos y contienen infinitos puntos como la recta. La diferencia es que una recta no tiene origen y una semirrecta sí lo tiene.

Segmento

Corresponde a la parte de una recta que se encuentra delimitada entre dos de sus puntos, cada uno de ellos es denominado extremo. Los segmentos se escriben a través de la escritura sin espacio de sus extremos y con una raya horizontal en la parte superior. En el siguiente ejemplo, la figura corresponde al segmento \overline{PQ}.

El plano

Es un ente ideal que posee dos dimensiones (bidimensional). Se suele representar con letras del alfabeto griego. En geometría, un plano queda definido cuando se cumplen algunas de las siguientes condiciones:

  • Tres puntos no alineados.
  • Dos rectas que son paralelas.
  • Dos rectas secantes.

Un plano contiene infinitas rectas y puntos. En el siguiente ejemplo se puede observar un ejemplo de plano.

Otro ejemplo de plano sería la parte superior de una mesa.

Con el propósito de facilitar su gráfica y simplificar su visualización, los planos suelen representarse como una figura delimitada con bordes irregulares. Sin embargo, un plano contiene infinitos puntos, por lo tanto, al igual que sucede con la recta, sería imposible representarlo completamente, así que se muestra una pequeña porción de su superficie.

El plano cartesiano

Es un sistema de coordenadas desarrollado por el célebre matemático René Descartes en el siglo XVII. Permite asignar ubicación a cualquier punto del plano. Este sistema cuenta con dos ejes numerados que permiten localizar las coordenadas de los puntos. Un eje vertical denominado eje Y o de las ordenadas muestra las coordenadas en Y de un punto, y un eje horizontal denominado eje X o de las abscisas indica las coordenada en X de un punto.

¡A practicar!

1. Observa la siguiente imagen y responde qué tipo de rectas son las indicadas.

a) Las rectas e y h.

Solución
Secantes.

b) Las rectas d y g.

Solución
Secantes perpendiculares.

c) Las rectas e y f.

Solución
Paralelas.

d) Las rectas h y f.

Solución
Secantes.

2. De acuerdo al contenido explicado responde las siguientes preguntas.

a) ¿Cuántos puntos no alineados definen a un plano?

Solución
3

b) ¿Qué diferencia tiene una recta de una semirrecta?

Solución
La semirrecta tiene un origen y la recta no.

c) ¿De qué medida son los ángulos formados por dos rectas perpendiculares?

Solución
90°

d) ¿En cuántos puntos se intersectan dos rectas paralelas?

Solución
En ningún punto.

e) ¿Cuáles entes fundamentales de la geometría suelen nombrarse con letras del alfabeto griego?

Solución
Los planos.

f) ¿Cómo se denominan a los puntos que forman un segmento?

Solución
Extremos.

g) ¿Qué tipo de ente fundamental de la geometría tiene longitud pero no anchura?

Solución
La recta.

h) ¿Qué tipo de ente fundamental de la geometría no tiene dimensiones?

Solución
El punto.

i) ¿Con qué otro nombre se denominan las semirrectas?

Solución
Rayos.

j) ¿Quién inventó el sistema cartesiano?

Solución
René Descartes.

RECURSOS PARA DOCENTES

Artículo “Determinación de rectas y puntos notables de los triángulos”

El artículo explica cuáles son las rectas y puntos notables que presentan los triángulos y qué características geométricas poseen.

VER

Micrositio “Tarjetas educativas – Geometría y medidas”

En este micrositio podrá encontrar una variedad de tarjetas que resumen los elementos principales de la geometría como el punto, la recta y las principales figuras geométricas.

VER

Artículo “Las rectas en el plano”

El artículo explica la clasificación de las rectas según su posición en el plano y muestra cómo graficar cada una de ellas mediante el uso de regla, escuadra y compás.

VER

CAPÍTULO 4 / TEMA 1

Unidades de medición

Podemos medir muchas cosas como la altura de un edificio, el tiempo que tardamos en llegar a un lugar o el volumen de una pelota. Todo esto es posible gracias a las unidades de medición, que son referencias convencionales de una magnitud física. Las magnitudes más comunes son la longitud, el área, el volumen y el tiempo.

Longitud

Es una magnitud física que permite medir la distancia entre dos puntos, como la distancia que hay entre la casa y la escuela. Una de las unidades de longitud más aceptada es el metro (m). El metro puede multiplicarse varias veces sobre sí mismo para formar unidades mayores o múltiplos y también puede dividirse varias veces en partes iguales para formar unidades más pequeñas de referencia denominadas submúltiplos. Por ejemplo:

  • El kilómetro (km) es un múltiplo del metro porque equivale a 1.000 veces su tamaño.
  • El centímetro (cm) es un submúltiplo porque equivale a la centésima parte de un metro.
No es tan reciente

El metro como unidad de medida de longitud se empezó a utilizar durante la Revolución francesa, a finales del siglo XVIII, sin embargo, se oficializó 100 años después cuando la Comisión Internacional de Pesos y Medidas lo definió como la distancia que existía entre dos marcas ubicadas en una barra de platino e iridio. Hoy día, el metro es definido como la distancia recorrida por la luz en el vacío durante 1/299792458 de segundo.

Área o superficie

Es una magnitud que mide la extensión o superficie de una figura, por ejemplo, la superficie total del piso de una casa o de un campo de fútbol. Mientras mayor sea la región encerrada por una figura mayor será su área. Las unidades de medida comúnmente se expresan elevadas al cuadrado como el metro cuadrado (m2), el kilómetro cuadrado (km2) o el centímetro cuadrado (cm2).

Volumen

Es un tipo de magnitud que mide el espacio que ocupa un cuerpo: a mayor volumen, mayor será el espacio que ocupe. Las unidades de medidas más usadas son las elevadas al cubo como el metro cúbico (m3) y el centímetro cúbico (cm3).

VER INFOGRAFÍA

¿Sabías qué?
Se estima que el volumen total del agua en la Tierra es de 1.386 millones de kilómetros cúbicos (km3).

Tiempo

Es una magnitud física que permite medir la duración o separación de acontecimientos. Gracias al tiempo podemos medir cuánto dura un partido de fútbol o conocer qué pasó al comienzo o al final de una película.

Las medidas de tiempo más usadas son el segundo, el minuto y la hora.

Aunque no se sabe con exactitud cuándo se inventó el reloj mecánico, existen datos históricos que permiten estimar su invención en el siglo XIII. Los relojes de este tipo empleaban un sistema de ruedas giratorias que, por medio de un conjunto de pesas, ponían en movimiento a las manecillas. Este tipo de relojes anticipó a los modelos actuales.

Sistema Internacional de unidades (SI)

Es un sistema que busca la unificación de las unidades de medida usadas en diferentes países. A pesar de que la mayoría de ellos lo han adoptado como sistema de medida oficial, existen algunos que manejan sus propias unidades. Fue creado en 1960, en la XI Conferencia General de Pesas y Medidas celebrada en Francia.

Algunas unidades aceptadas por el Sistema Internacional de Medidas

Magnitud física Unidad Símbolo
Longitud Metro m
Volumen Metro cúbico m3
Área Metro cuadrado m2
Tiempo Segundo s
Masa Kilogramo kg
Temperatura Kelvin K

Unidades de medida extranjera

Muy pocos países no han adoptado al Sistema Internacional de Unidades como sistema de medida. De hecho, solo tres naciones no lo han declarado oficial en sus legislaciones: Estados Unidos, Liberia y Myammar.

Las unidades de medidas del Sistema Internacional no han sido las únicas empleadas en la medición. En la actualidad podemos usar otras, como las pulgadas, empleadas particularmente para identificar tornillos y medir pantallas de monitores y celulares.

El petróleo, por ejemplo, se suele medir en barriles y la mayoría de los biberones vienen graduados en onzas. Hay otras unidades de medidas usadas para fines específicos como la hectárea y el acre, empleadas para medir áreas de superficies.

Equivalencias de interés

  • 1 pulgada = 2,54 centímetro
  • 1 barril = 159 litros aproximadamente
  • 1 onza = 28,35 gramos
  • 1 hectárea = 10.000 metros cuadrados
  • 1 acre = 4.046,86 metros cuadrados

Unidades de medidas usadas por los pueblos originarios

Nuestros pueblos originarios no eran la excepción si de medir las cosas se trataba. De hecho, cada una de las grandes civilizaciones precolombinas utilizaban unidades de medidas propias.

Los mayas tenían conocimientos avanzados en el campo de la astronomía, lo que les permitió elaborar su calendario por medio de medidas de tiempo propias. Gracias a esto, ellos podían calcular las estaciones y planificar el tiempo de las cosechas.

En el otro extremo del continente, los incas ya tenían un sistema de numeración propio: los quipus, que les permitieron realizar diversos cálculos matemáticos. En el campo de la medición, esta civilización también empleaba sus propias unidades: por ejemplo, para medir longitudes usaban partes del cuerpo como referencia, como la rikra, que consistía en la distancia de los dos dedos pulgares con los brazos extendidos en sentido horizontal.

Las antiguas civilizaciones emplearon sus propios sistemas de medición de unidades de tiempo, de longitud y de volumen. Había sistemas más precisos que otros pero todos servían para realizar diversas tareas, desde las más simples  (como contabilizar o medir volúmenes de agua) hasta las más complejas (como la construcción de grandes edificaciones, templos y acueductos).

VER INFOGRAFÍA

¡A practicar!

1. ¿Cuál es la medida usada por el Sistema Internacional de Medidas para medir la longitud?

a) Kilómetro.

b) Centímetro.

c) Metro cúbico.

d) Metro.

Solución
d) Metro.

2. ¿Qué magnitud permite medir la duración de un acontecimiento?

a) El tiempo.

b) El volumen.

c) El área.

d) La longitud.

Solución
a) El tiempo.

3. ¿A qué unidad de medida representa el símbolo m3?

a) Segundo.

b) Milímetro cuadrado.

c) Metro cúbico.

d) Superficie cúbica.

Solución
c) Metro cúbico.

4. ¿En qué año se creó el Sistema Internacional de Medidas?

a) 1960.

b) 1540.

c) 2001.

d) 1998.

Solución
a) 1960.

5. ¿Cuál de estos países no emplea de manera oficial el Sistema Internacional de Medidas?

a) Argentina.

b) Rusia.

c) Italia.

d) Estados Unidos.

Solución
d) Estados Unidos.

6. ¿Cuál de las siguientes opciones se considera una unidad extranjera?

a) Metro.

b) Kilogramo.

c) Acre.

d) Centímetro cuadrado.

Solución
c) Acre.

7. Una hectárea mide __________.

a) 10 metros.

b) 5 centímetros cúbicos.

c) 10.000 metros cuadrados.

d) 20 segundos.

Solución
c) 10.000 metros cuadrados.

8. ¿Qué civilización americana usaba la rikra como medida de longitud?

a) Inca

b) Maya

c) Azteca

d) Olmeca

Solución
a) Inca

 

RECURSOS PARA DOCENTES

Artículo “Sistemas de medición”

Este artículo explica qué es un sistema de medición ,así como también algunas unidades de medida y sus instrumentos de medición.

VER

Artículo “Sistema Internacional de Unidades”

Este artículo destacado explica por qué se formó el Sistema Internacional de Unidades y describe las principales unidades que lo componen.

VER

Artículo “Volumen y capacidad: aplicaciones”

Este artículo explica qué es el volumen y la capacidad, así como sus unidades de medidas y transformaciones básicas en problemas cotidianos.

VER

CAPÍTULO 4 / TEMA 4

POSICIÓN Y DESPLAZAMIENTO

CASI TODOS LOS CUERPOS ESTÁN EN MOVIMIENTO Y POR LO TANTO, SU POSICIÓN EN EL ESPACIO CAMBIA. JUSTO AHORA PODEMOS ESTAR FRENTE A LA COMPUTADORA, PERO LUEGO PODEMOS ESTAR EN OTRA CASA O CIUDAD. LOS EJES CARTESIANOS AYUDAN A UBICAR PUNTOS EN UN PLANO Y SI LOS USAMOS EN UN MAPA, TAMBIÉN NOS SIRVEN PARA UBICAR PERSONAS Y LUGARES DEL MUNDO.

RELACIONES ESPACIALES

PARA UBICAR ELEMENTOS EN EL ESPACIO USAMOS LAS RELACIONES ESPACIALES. ESTAS NO INDICAN LA POSICIÓN DE ALGO O ALGUIEN RESPECTO A OTRA COSA. POR LO GENERAL SE UTILIZAN LAS SIGUIENTES EXPRESIONES:

ARRIBA

ABAJO

IZQUIERDA

DERECHA

OBSERVA ESTA IMAGEN. ¿QUÉ POSICIÓN TIENEN LOS OBJETOS RESPECTO A OTROS? EJEMPLO:  – LOS LIBROS ESTÁN ARRIBA DE LA REPISA.                                 – LA PANTALLA DE LA COMPUTADORA ESTÁ DEBAJO DE LOS LIBROS.                               – EL RELOJ ESTÁ A LA DERECHA DE LA PANTALLA DE LA COMPUTADORA.                         – LA LÁMPARA ESTÁ A LA IZQUIERDA DE LOS MARCADORES. HAY MÁS RELACIONES ESPACIALES, ¡DESCÚBRELAS!

¡ES TU TURNO!

OBSERVA DE NUEVO LA IMAGEN Y RESPONDE:

  • ¿EN QUÉ POSICIÓN ESTÁ LA PANTALLA DE LA COMPUTADORA RESPECTO A LA MESA?
    SOLUCIÓN
    LA PANTALLA DE LA COMPUTADORA ESTÁ ARRIBA DE LA MESA.
  • ¿EN QUÉ POSICIÓN ESTÁ LA LÁMPARA RESPECTO A LA REPISA?
    SOLUCIÓN
    LA LÁMPARA ESTÁ ABAJO DE LA REPISA.
  • ¿EN QUÉ POSICIÓN ESTÁN LOS MARCADORES RESPECTO A LA LÁMPARA?
    SOLUCIÓN
    LOS MARCADORES ESTÁN A LA DERECHA DE LA LÁMPARA.

¿cómo GRAFICAR LA POSICIÓN DE ELEMENTOS?

PODEMOS GRAFICAR Y UBICAR LA POSICIÓN DE CUALQUIER PUNTO EN UN PLANO POR MEDIO DE EJES DE COORDENADAS EN UN DIAGRAMA CARTESIANO.

LOS EJES CARTESIANOS SON DOS LÍNEAS QUE SE CRUZAN, UNA TIENE UNA ORIENTACIÓN VERTICAL, LLAMADA “Y”, Y LA OTRA UNA ORIENTACIÓN HORIZONTAL, LLAMADA “X“. EN CONJUNTO, DAN A CONOCER LA POSICIÓN DE UN PUNTO EN EL PLANO.

– EJEMPLO:

ESTA ES UNA CUADRÍCULA CON EJES COORDENADOS. CUANDO UN DATO DEL EJE X SE CRUZA CON UNA DATO DEL EJE Y TENEMOS LAS COORDENADAS O UBICACIÓN DEL OBJETO.

¿CÓMO ESCRIBIR LAS COORDENADAS DE UN PUNTO?

PARA ESCRIBIR LAS COORDENADAS PRIMERO VEMOS LAS DEL EJE X Y LUEGO LAS DEL EJE Y. LOS DOS NÚMEROS SE SEPARAN CON UNA COMA Y SE ENCIERRA ENTRE PARÉNTESIS. ENTONCES, LAS COORDENADAS DE LAS FIGURAS EN EL DIAGRAMA CARTESIANO ANTERIOR SON LAS LAS SIGUIENTES:

FIGURA COORDENADAS
ESTRELLA (3, 5)
LUNA (1, 3)
CORAZÓN (6, 2)

– EJEMPLO 2:

CADA PUNTO TIENE UNA LETRA. UBIQUEMOS LAS COORDENADAS DE CADA PUNTO.

PUNTO COORDENADAS
A (4, 2)
B (1, 1)
C (2, 3)
D (5, 6)
E (1, 6)
F (0, 4)

¿SABÍAS QUÉ?
CUANDO UN PUNTO ESTÁ UBICADO DIRECTAMENTE SOBRE UN EJE, QUIERE DECIR QUE EL VALOR DEL OTRO EJE ES CERO, POR EJEMPLO (0, 4) SIGNIFICA QUE EL DATO DEL EJE X ES 0 Y EL DEL EJE Y ES 4.

¡ES TU TURNO!

OBSERVA DE NUEVO LA CUADRÍCULA. COMPLETA LA TABLA CON LAS COORDENADAS DE LOS PUNTOS.

SOLUCIÓN
PUNTO COORDENADAS
A (4, 2)
B (1, 1)
C (2, 3)
D (5, 6)
E (1, 6)
F (0, 4)
G (0, 5)
H (6, 4)
I (3, 5)

TRASLACIÓN

LA TRASLACIÓN ES UN MOVIMIENTO EN EL QUE CADA PUNTO DE LA FIGURA SIGUE UNA MISMA DIRECCIÓN. LA FIGURA GEOMÉTRICA TRASLADADA NO GIRA NI CAMBIA DE TAMAÑO.

ROTACIÓN

LA ROTACIÓN ES UN MOVIMIENTO O GIRO ALREDEDOR DE UN CENTRO DE ROTACIÓN.

MOVIMIENTOS DE LA TIERRA

NUESTRO PLANETA REALIZA TANTO EL MOVIMIENTO DE ROTACIÓN COMO EL DE TRASLACIÓN. CUANDO ROTA O GIRA SOBRE SU PROPIO EJE SE PRODUCE EL DÍA Y LA NOCHE. CUANDO SE TRASLADA ALREDEDOR DEL SOL SE CUMPLE UN AÑO O 365 DÍAS.

LOS MAPAS Y SU IMPORTANCIA

LOS EJES DE COORDENADAS TAMBIÉN LOS VEMOS EN LOS MAPAS. GRACIAS A ELLAS PODEMOS LOCALIZAR CUALQUIER CIUDAD O PERSONA EN EL MUNDO. LOS EJES DE COORDENADAS PERMITEN QUE CADA UBICACIÓN EN NUESTRO PLANETA SEA ESPECIFICADA CON NÚMEROS, LETRAS Y SÍMBOLOS. POR EJEMPLO, LA LATITUD DE LOS MAPAS DETERMINA EL EJE X Y LA LONGITUD DETERMINA EL EJE Y.

ESTE ES UN MAPAMUNDI, TAMBIÉN CONOCIDO COMO PLANISFERIO. EN ÉL VEMOS TODA LA SUPERFICIE DE NUESTRO PLANETA COMO UN PLANO. ESTE MAPA MUESTRA DOS TIPOS DE LÍNEAS: UNAS HORIZONTALES QUE REPRESENTAN LA LATITUD; Y UNAS VERTICALES QUE REPRESENTAN LA LONGITUD. ASÍ COMO EN UNA CUADRÍCULA, LA UNIÓN DE LOS DATOS NOS INFORMA LAS COORDENADAS DE UN PUNTO.

¡A PRACTICAR!

1. OBSERVA LA CUADRÍCULA. EN ELLA SE VEN LOS RECORRIDOS QUE PUEDE HACER EL PERRO HASTA SU HUESO, HASTA SU DUEÑO O HASTA SU CASA. RESPONDE LAS PREGUNTAS.

  • ¿CÓMO ES EL RECORRIDO DEL PERRO HASTA SU HUESO?
    SOLUCIÓN
    5 ESPACIOS HACIA ARRIBA Y UN ESPACIO A LA DERECHA.
  • ¿CÓMO ES EL RECORRIDO DEL PERRO HASTA SU DUEÑO?
    SOLUCIÓN
    3 ESPACIOS HACIA ARRIBA Y 3 ESPACIOS A LA DERECHA.
  • ¿CÓMO ES EL RECORRIDO DEL PERRO HASTA SU CASA?
    SOLUCIÓN
    5 ESPACIOS A LA DERECHA Y UN ESPACIO HACIA ARRIBA.
  • ¿CÓMO ES EL RECORRIDO DEL DUEÑO HASTA EL PERRO?
    SOLUCIÓN
    3 ESPACIOS A LA IZQUIERDA Y 3 ESPACIOS HACIA ABAJO.
  • ¿CUÁLES SON LAS COORDENADAS DEL PERRO?
    SOLUCIÓN
    (1, 1)
  • ¿CUÁLES SON LAS COORDENADAS DEL HUESO?
    SOLUCIÓN
    (2, 6)
  • ¿CUÁLES SON LAS COORDENADAS DEL DUEÑO?
    SOLUCIÓN
    (4, 4)
  • ¿CUÁLES SON LAS COORDENADAS DE LA CASA DEL PERRO?
    SOLUCIÓN
    (6, 2)
RECURSOS PARA DOCENTES

Artículo “Simetrías”

Con este recurso se podrá ampliar la información sobre los movimientos en el plano

VER

CAPÍTULO 4 / TEMA 1

EL PUNTO Y LA LÍNEA

OBSERVA LOS OBJETOS QUE TE RODEAN, ES PROBABLE QUE NO TE HAYAS DADO CUENTA PERO TODOS ESTÁN COMPUESTOS POR LÍNEAS, Y ESTAS, A SU VEZ, POR UNA SUCESIÓN DE PUNTOS. SEGÚN LA DIRECCIÓN QUE TOMEN ESTOS PUNTOS LAS LÍNEAS PUEDEN SER RECTAS O CURVAS.

¿QUÉ ES EL PUNTO?

EL PUNTO ES ENTE FUNDAMENTAL DE LA GEOMETRÍA, NO TIENE LONGITUD, NO TIENE ÁREA Y NO TIENE DIMENSIÓN. EL PUNTO ES SOLO UNA POSICIÓN EN EL ESPACIO. PODEMOS IDENTIFICAR LOS PUNTOS CON UNA LETRA MAYÚSCULA.

– EJEMPLO:

OBSERVA LA CUADRÍCULA, ¿CUÁNTOS PUNTOS HAY?

A, B, C, D, E, F Y G SON PUNTOS. HAY 7 PUNTOS.

LAS LÍNEAS Y SUS TIPOS

LA LÍNEA ES UNA SUCESIÓN DE INFINITOS PUNTOS. UNA LÍNEA SE ASEMEJA A UNA CUERDA QUE PUEDE SER RECTA O CURVA, ABIERTA O CERRADA PERO QUE ESTÁ FORMADA POR PUNTOS MUY PEQUEÑOS Y JUNTOS. LAS LÍNEAS TIENEN UNA DIMENSIÓN: LA LONGITUD.

SUCESIÓN DE PUNTOS LÍNEA

 

SI OBSERVAMOS CADA LUGAR QUE CONFORMA NUESTRO DÍA PODEMOS VER MUCHOS TIPOS DE LÍNEAS. POR EJEMPLO, EL HORIZONTE ES UNA LÍNEA. TIENE SU NOMBRE POR SER UNA LÍNEA RECTA EN POSICIÓN HORIZONTAL. PUEDES VER OTROS EJEMPLOS DE LÍNEAS EN TUS LÁPICES, EN UNA MESA O EN LA FORMA DE NUESTRO PLANETA.

TIPOS DE LÍNEAS

EXISTEN DOS TIPOS DE LÍNEAS QUE EXPRESAN SU FORMA:

  • LÍNEA RECTA: ES LA LÍNEA CUYOS PUNTOS ESTÁN ALINEADOS EN UNA MISMA DIRECCIÓN.

  • LÍNEA CURVA: ES LA LÍNEA CUYOS PUNTOS NO ESTÁN ALINEADOS EN UNA MISMA DIRECCIÓN. EXISTEN DOS TIPOS DE LÍNEAS CURVAS, LAS ABIERTAS, EN LAS QUE SU INICIO Y SU FINAL NO COINCIDEN, Y LAS CERRADAS, EN LAS QUE SU INICIO Y FINAL SÍ COINCIDEN.

ESTAS SON LÍNEAS CURVAS ABIERTAS.

 

ESTAS SON LÍNEAS CURVAS CERRADAS.

 

  • LÍNEA POLIGONAL: ES LA COMBINACIÓN DE LÍNEAS RECTAS QUE EN UN DETERMINADO PUNTO CAMBIAN DE DIRECCIÓN. EXISTEN DOS TIPOS DE LÍNEAS POLIGONALES, LAS ABIERTAS, EN LAS QUE SU INICIO Y SU FINAL NO COINCIDEN, Y LAS CERRADAS, EN LAS QUE SU INICIO Y FINAL SÍ COINCIDEN.

ESTAS SON LÍNEAS POLIGONALES ABIERTAS.

 

ESTAS SON LÍNEAS POLIGONALES CERRADAS.

 

¿SABÍAS QUÉ?
USAMOS UNA LÍNEA PARA REPRESENTAR LA DISTANCIA ENTRE DOS PUNTOS.

¿QUÉ ES UN SEGMENTO?

ES UNA LÍNEA RECTA LIMITADA POR DOS PUNTOS. EN LA IMAGEN HAY TRES SEGMENTOS: AB, CD Y FE.

¡IDENTIFIQUEMOS LÍNEAS!

OBSERVA ESTE DIBUJO, ¿QUÉ TIPO DE LÍNEAS PUEDES VER?

SOLUCIÓN

HAY MUCHAS LÍNEAS MÁS. ¡DESCÚBRELAS!

LAS LÍNEAS RECTAS SE EXTIENDEN EN UNA MISMA DIRECCIÓN, ES COMÚN VERLAS EN LOS BORDES DE LAS PANTALLAS DE NUESTROS TELÉFONOS MÓVILES, ASÍ COMO EN LAS SILUETAS DE MUCHAS FIGURAS GEOMÉTRICAS. LAS LÍNEAS RECTAS SON MUY USADAS EN EL SECTOR DE TRANSPORTES, PUES LAS VEMOS EN LOS RIELES DE LOS TRENES, EN LOS PASOS PEATONES, EN LAS CICLOVÍAS Y EN LAS CARRETERAS.

CONSTRUCCIÓN DE LOS DIFERENTES TIPOS DE LÍNEAS

PARA EL TRAZADO Y CONSTRUCCIÓN DE LAS DIFERENTES LÍNEAS DEBEMOS UTILIZAR ELEMENTOS GEOMÉTRICOS, COMO POR EJEMPLO, UNA REGLA O UNA ESCUADRA.

PARA CONSTRUIR LÍNEAS RECTAS O POLIGONALES BASTA CON USAR UNA REGLA O ESCUADRA PARA REALIZAR LOS TRAZOS. EN CAMBIO, SI QUIERES DIBUJAR UNA LÍNEA CURVA NO NECESITAS INSTRUMENTOS ADEMÁS DE TU LÁPIZ. RECUERDA QUE SI QUIERE DIBUJAR ALGUNA LÍNEA ABIERTA, EL PUNTO DE FINAL Y EL PUNTO DE INICIO NO DEBEN COINCIDIR, ES DECIR, DEBEN ESTAR SEPARADOS.

 

¡A PRACTICAR!

1. IDENTIFICA LAS SIGUIENTES LÍNEAS:

SOLUCIÓN
  1. LÍNEA POLIGONAL CERRADA.
  2. LÍNEA RECTA.
  3. LÍNEA CURVA CERRADA.
  4. LÍNEA POLIGONAL ABIERTA.
  5. LÍNEA CURVA ABIERTA.

 

2. TRAZA LAS SIGUIENTES LÍNEAS:

  • UNA LÍNEA ROJA RECTA.
  • UNA LÍNEA VERDE POLIGONAL ABIERTA,
  • UNA LÍNEA AMARILLA CURVA ABIERTA.
  • UNA LÍNEA MORADA POLIGONAL CERRADA.

SOLUCIÓN

 

3. OBSERVA LA IMAGEN, IDENTIFICA LAS LÍNEAS QUE VES.

 

RECURSOS PARA DOCENTES

Artículo “El punto, la recta y el plano”

En el siguiente artículo hay información extra para ampliar los conceptos principales de la geometría.

VER

CAPÍTULO 5 / TEMA 8 (REVISIÓN)

Geometría y mediciones | ¿Qué aprendimos?

Perímetro

El perímetro es el contorno de una figura geométrica. En el caso de los polígonos regulares, el perímetro lo calculamos al multiplicar la cantidad de sus lados por la longitud de uno de estos. Otra forma de calcular el perímetro es a través de la suma de cada uno de los lados de una figura. En cambio, el perímetro del círculo es igual a la multiplicación del número pi por el diámetro de la circunferencia. Existen también figuras compuestas que están formadas por dos o más figuras geométricas, para calcular su perímetro basta con sumar cada uno de los lados.

El perímetro tiene múltiples aplicaciones en disciplinas como la arquitectura y también se usa en el ámbito militar.

Ángulos

Uno de los elementos fundamentales para la geometría es el ángulo, el cual está formado por un par de semirrectas denominadas lados que tienen un origen común o vértice. Uno de los sistemas más usados para medir ángulos es el sistema sexagesimal, en el que medimos los ángulos en grados, minutos y segundos. De acuerdo a su tamaño, los ángulos pueden clasificarse en agudos, rectos, obtusos y llanos. Los agudos son mayores a 0° pero menores a 90°, los rectos miden 90°, los obtusos son mayores a 90° pero menores de 180° y los llanos miden siempre 180°.

El transportador es uno de los instrumentos más usados para medir ángulos.

Área

Para calcular superficies usamos el área, que es la extensión comprendida por una figura. Para cada figura plana existe una fórmula que permite determinar su área. En el Sistema Internacional de Unidades se emplea el metro cuadrado (m2) como unidad de medida de área, pero también podemos usar otras unidades derivadas, como el centímetro cuadrado (cm2) o el milímetro cuadrado (mm2). Podemos obtener el área de las figuras compuestas al descomponerlas en figuras geométricas más simples, para luego sumar las áreas de cada una.

El conocimiento del área puede ser aplicado para calcular cuántas baldosas son necesarias para cubrir una superficie.

Sistemas de referencia

Uno de los sistemas de referencias más usados es el sistema cartesiano, el cual está formado por dos ejes en el plano: uno horizontal denominado eje X o de las abscisas y otro vertical denominado eje Y o de las ordenadas. Para representar un punto en el plano cartesiano necesitamos sus coordenadas en el eje X y en el eje Y: la intersección de ambas coordenadas constituye su ubicación. Por otro lado, las figuras pueden experimentar transformaciones isométricas, es decir, cambios de posición y orientación que no afectan su forma. Estas transformaciones son: traslación, rotación y simetría.

Los sistemas de referencia son usados por el ser humano para medir las posiciones y las magnitudes de las cosas.

Cuadriláteros

Un cuadrilátero es un polígono de cuatro lados, y aunque se pueden clasificar en varios grupos, comparten elementos en común: tienen cuatro ángulos, la suma de estos es siempre igual 360° y tienen dos diagonales que dividen al cuadrado en triángulos. De manera general, los cuadriláteros son clasificados como paralelogramos, trapecios y trapezoides. Los paralelogramos tienen sus lados opuestos paralelos y pueden ser cuadrados, rombos y rectángulos. Los trapecios tienen dos de sus lados paralelos y los trapezoides no tienen ningún lado paralelo.

El campo de fútbol tiene forma de rectángulo que es un tipo de cuadrilátero.

Capacidad y volumen

El volumen es el espacio que ocupa un objeto mientras que la capacidad indica la cantidad que un objeto puede contener dentro de él. Todos los objetos tienen volumen pero no todos tienen capacidad. En el caso de los sólidos y los líquidos mientras mayor sea su volumen, mayor espacio van a ocupar. No es lo mismo el volumen de un grano de arroz que el de un edificio. Algunas unidades de volumen son el metro cúbico (m3), el centímetro cúbico (cm3) y milímetro cúbico (mm3), entre otras. El litro es una medida de capacidad que equivale a 1.000 cm3.

A pesar de estar muy relacionadas, no se deben confundir las medidas de volumen con las de capacidad.

La circunferencia

La circunferencia es una curva plana con todos sus puntos ubicados a la misma distancia del origen o centro. No debe ser confundida con el círculo que corresponde al área contenida dentro de ella, es decir, la circunferencia es el perímetro del círculo. Presenta ciertos elementos como el radio, el diámetro, la tangente, la cuerda, el arco y la semicircunferencia. Uno de los instrumentos usados para su trazado es el compás.

Los antiguos griegos empleaban la recta y la circunferencia como figuras básicas en sus cálculos.

CAPÍTULO 5 / TEMA 4

Sistemas de referencia

Son convencionalismos adoptados por el ser humano para medir la posición y otras magnitudes físicas. Se usan para hallar cuerpos celestes en el espacio y son la base para determinar nuestra ubicación en el planeta. También permiten establecer comparaciones y transformaciones entre las figuras representadas.

Ejes de coordenadas

El sistema de coordenadas cartesianas es uno de los sistemas de referencias usados para ubicar puntos en el espacio. En este caso específicamente se explicarán estas coordenadas orientadas al plano, es decir, en dos dimensiones.

El plano donde ubicamos los puntos se denomina plano cartesiano y está formado por los siguientes elementos:

  • Eje X: es también denominado eje de las abscisas, y se encuentra ubicado dentro del plano en forma horizontal.
  • Eje Y: es conocido también como eje de las ordenadas y está ubicado en sentido vertical dentro del plano.
  • Origen: es el punto de intersección entre los ejes de coordenadas X e Y.

 

Los ejes de coordenadas permiten ubicar puntos, gráficos o figuras dentro del plano cartesiano. Al tratarse de dos ejes: el de las abscisas o eje X y el de las ordenadas o eje Y, se requieren de dos coordenadas para ubicar un punto, es decir, un punto está definido dentro del plano si, y solo si, se conocen sus coordenadas en el eje X y en el eje Y.

 

¿Sabías qué?
El nombre de las coordenadas cartesianas proviene de la persona que las empleó por primera vez: René Descartes.

VER INFOGRAFÍA

¿Cómo graficar un punto en el plano cartesiano?

Un punto está definido por un par de números que hacen referencia a su posición respecto al eje X y al eje Y. Estos puntos son denominados coordenadas cartesianas y permiten graficarlo.

Para hacerlo, dividimos los ejes en segmentos con la misma longitud y a cada uno le asignamos el valor de un número entero. A la derecha del origen, escribimos los números de menor a mayor, esos serán los valores del eje X. Arriba del origen escribimos los números que le siguen al cero de menor a mayor, esos serán los valores del eje Y:

¿Sabías qué?
Los números negativos se representan a la izquierda del origen (eje X) y debajo del origen (eje Y).

Para ubicar un punto en el plano necesitamos las coordenadas de cada eje, que de ahora en adelante llamaremos coordenada en X y coordenada en Y para hacer mención a cuál eje se refieren. La coordenada X determina cuán a la derecha del origen está ubicado el punto; mientras que la coordenada Y, cuán arriba del origen está el punto.

La manera más frecuente de representar un punto es a través de paréntesis, y dentro indicamos la coordenada X y la coordenada Y, separadas por una coma:

\left ( Coordenada \, X,\, Coordenada\, Y \right )

El punto desde dónde se empieza a contar es en el origen porque se encuentra en la coordenada (0,0) lo que quiere decir que está a 0 posiciones de la derecha y a 0 posiciones hacia arriba.

Por ejemplo:

El punto A (3,2) se encuentra a tres posiciones a la derecha y a dos posiciones hacia arriba. Si lo queremos graficar, cada coordenada debe estar representada en el respectivo eje y el punto de intersección de ambas sería el punto A:

Cuando algunas de las coordenadas del punto sea igual a cero, significa que el punto se encuentra sobre el eje al cual corresponde la coordenada diferente de cero. Por ejemplo, el punto B (0,3) indica que se movió cero posiciones a la derecha y tres posiciones hacia arriba, por lo tanto se ubica sobre el eje Y que es el que tiene la coordenada diferente de cero:

Ejes de simetrías

La simetría es una relación proporcionada entre las partes que componen un todo. Así, por ejemplo, decimos que una imagen es simétrica cuando su forma no cambia si es girada o volteada. Para que exista simetría entre dos objetos, ambos deben ser del mismo tamaño y de la misma forma y uno debe estar en una orientación diferente a la del primero.

La forma de una mariposa es un ejemplo de simetría: si trazamos una línea imaginaria de forma vertical en el centro de la mariposa (eje de simetría), obtendríamos dos imágenes iguales pero con diferente orientación. Nuestros cuerpos también son simétricos: esto se debe a que contamos con la misma cantidad de miembros a cada lado.

El eje de simetría es una línea imaginaria que divide al dibujo en dos partes idénticas pero con diferente orientación. Los ejes de simetría pueden ser horizontales, verticales o inclinados.

 

De acuerdo a la figura geométrica, algunas pueden presentar uno o más ejes de simetría. Otras, en cambio, no presentan ninguno. Cuando una figura no es simétrica se denomina asimétrica.

Por ejemplo, no todos los triángulos tienen ejes de simetría, todo depende de su tipo. Si son equiláteros tienen tres ejes de simetría; si son isósceles tienen dos ejes de simetría, y si son escalenos no tienen ningún eje de simetría.

Transformaciones isométricas

Las transformaciones isométricas son los cambios de posición u orientación que experimenta una figura sin alterar su forma.

Traslación

Es un tipo de transformación isométrica donde se mueven todos los puntos de una figura en una misma dirección, sentido y longitud.

Rotación

También es conocida como giro. Es una transformación isométrica en la que la figura se mueve alrededor de un punto sin alterar su forma. El movimiento es determinado por un ángulo de rotación y puede ser en sentido de las agujas del reloj o en sentido contrario.

La simetría como transformación isométrica

La simetría entre dos objetos es un tipo de transformación isométrica porque a cada punto del objeto o figura se lo asocia a otro conocido como imagen. Cada punto está a una misma distancia del otro respecto al eje de simetría. Este tipo de transformación también se conoce como reflexión.

 

¡A practicar!

1. ¿Cuál es la posición de estos números?

a)

Solución
C (4,3)

b) 

Solución
D (1,2)

c) 

Solución
E (5,0)

d) 

Solución
F (4,5)

e) 

Solución
G (3,3)

2. ¿A cuál de los siguientes puntos corresponde la coordenada (6,3)?

Solución

Corresponde al punto K (6,3).

3. ¿Cuál de estas figuras no es simétrica?

a) 

b)

c)

d)

Solución
d) No es simétrica porque no tiene ningún eje de simetría.

4. ¿A qué tipo de transformación isométrica corresponde la gráfica?

Solución
Traslación.

RECURSOS PARA DOCENTES

Artículo “Simetrías”

Este artículo explica qué es una simetría, sus tipos y su relación con los ejes. También incluye algunos ejemplos de simetría.

VER

Artículo “Plano cartesiano”

Este artículo explica qué es el plano cartesiano, sus características y divisiones por cuadrante. También incluye ejemplos sobre como ubicar puntos en este sistema.

VER

 

CAPÍTULO 4 / TEMA 1

LAS LÍNEAS

ES POSIBLE QUE NO TE DES CUENTA, PERO ESTAMOS RODEADOS DE MUCHAS LÍNEAS. LAS USAMOS PARA ESCRIBIR, JUGAR, CAMINAR Y HASTA PARA COMER. LO PRIMERO QUE DEBES SABER ES QUE TODAS ESTÁN FORMADAS POR PUNTOS Y QUE ESTOS PUNTOS PUEDEN TENER RECORRIDOS MUY DIVERSOS.

¿QUÉ ES UNA LÍNEA?

UNA LÍNEA ES LA UNIÓN DE MUCHOS PUNTOS CONTINUOS EN EL PLANO.

ESTA IMAGEN REPRESENTA UNA SUCESIÓN DE PUNTOS. LA UNIÓN DE LOS PUNTOS FORMA UNA LÍNEA.

TE PUEDE PARECER EXTRAÑO QUE UNA LÍNEA ESTÉ FORMADA POR INFINITOS PUNTOS PORQUE SOLO VES UN TRAZO CONTINUO, PERO SI TE APROXIMAS LO SUFICIENTE VERÁS QUE EN REALIDAD SON PUNTOS SITUADOS UNO AL LADO DE OTROS. COMO LAS LÍNEAS DESCRIBEN LA DISTANCIA ENTRE DOS PUNTOS, HAY INFINITAS LÍNEAS.

LÍNEAS ABIERTAS Y CERRADAS

OBSERVA ESTAS LÍNEAS, ¿TODAS SON IGUALES?

NO, NO SON IGUALES.

LAS LÍNEAS DE COLOR ROJO SON LÍNEAS ABIERTAS.

LAS LÍNEAS DE COLOR VERDE SON LÍNEAS CERRADAS.

LAS LÍNEAS ABIERTAS TIENEN UN PUNTO DE INICIO Y UN PUNTO FINAL. NO SE CIERRAN. SI ESTUVIERAS DENTRO DE UNA LÍNEA ABIERTA PODRÍAS SALIR.

LA LÍNEA DE COLOR ROJO ES UNA LÍNEA ABIERTA.

LAS LÍNEAS CERRADAS NO TIENEN PUNTO DE INICIO NI PUNTO FINAL. SE CIERRAN. SI ESTUVIERAS DENTRO DE UNA LÍNEA CERRADA NO PODRÍAS SALIR.

LA LÍNEA DE COLOR VERDE ES UNA LÍNEA CERRADA.

LAS LÍNEAS SEGÚN SU FORMA

OBSERVA LAS LÍNEAS DE ESTAS LETRAS Y NÚMEROS, ¿TODAS SON IGUALES?

NO, SON SON IGUALES. TODAS TIENEN FORMAS DISTINTAS.

SEGÚN SU FORMA, LAS LÍNEAS PUEDEN SER RECTAS, CURVAS, MIXTAS O QUEBRADAS.

LA LÍNEA RECTA SIEMPRE TIENE LA MISMA DIRECCIÓN.

 

LAS LÍNEAS DE COLOR ROJO SON LÍNEAS RECTAS.

LA LÍNEA CURVA CAMBIA CONSTANTEMENTE DE DIRECCIÓN.

LAS LÍNEAS DE COLOR AZUL SON LÍNEAS CURVAS.

 

LAS LÍNEAS CURVAS PUEDEN SER ABIERTAS O CERRADAS

LAS LÍNEAS CURVAS ABIERTAS TIENEN UN PUNTO DE INICIO Y UN PUNTO FINAL. SI HACES ESTA SUCESIÓN DE PUNTOS CON UN LÁPIZ Y NO LO LEVANTAS DEL PAPEL, NO LLEGARÁS AL PUNTO EN EL QUE COMENZASTE.

LAS LÍNEAS CURVAS CERRADAS NO TIENEN UN PUNTO DE INICIO NI UN PUNTO FINAL. SI HACES ESTA SUCESIÓN DE PUNTOS CON UN LÁPIZ Y NO LO LEVANTAS DEL PAPEL, LLEGARÁS AL PUNTO EN EL QUE COMENZASTE.

LA LÍNEA MIXTA ESTÁ FORMADA POR LA COMBINACIÓN DE LÍNEAS RECTAS Y LÍNEAS CURVAS.

LAS LÍNEAS DE COLOR VERDE SON LÍNEAS MIXTAS.

LA LÍNEA QUEBRADA ESTÁ FORMADA POR VARIAS LÍNEAS RECTAS QUE SE CORTAN ENTRE SÍ Y QUE TIENEN DIRECCIONES DISTINTAS.

LAS LÍNEAS DE COLOR MORADO SON LÍNEAS QUEBRADAS.

¿CÓMO SE LLAMAN ESTAS LÍNEAS?

SOLUCIÓN

1. LÍNEA CURVA.

2. LÍNEA QUEBRADA.

3. LÍNEA RECTA.

4. LÍNEA MIXTA.

LAS LÍNEAS SEGÚN SU POSICIÓN

OBSERVA LOS CAMINOS QUE COMUNICAN A ESTAS TRES CASAS. ¿CUÁNTAS LÍNEAS RECTAS VES?, ¿TODAS SON IGUALES?

HAY SEIS LÍNEAS QUE MUESTRAN LOS CAMINOS. TODAS LAS LÍNEAS SON RECTAS PERO ESTÁN EN DISTINTAS POSICIONES.

LAS LÍNEAS DE COLOR VERDE SON VERTICALES.

LAS LÍNEAS DE COLOR ROJO SON HORIZONTALES.

LAS LÍNEAS DE COLOR AZUL SON INCLINADAS U OBLICUAS.

¡PRACTIQUEMOS LAS POSICIONES!

  • ¿CUÁNTOS LÁPICES ESTÁN EN POSICIÓN VERTICAL?
  • ¿CUÁNTOS LÁPICES ESTÁN EN POSICIÓN HORIZONTAL?
  • ¿CUÁNTOS LÁPICES ESTÁN EN POSICIÓN INCLINADA?

SOLUCIÓN
  • 7 LÁPICES ESTÁN EN POSICIÓN HORIZONTAL.
  • 4 LÁPICES ESTÁN EN POSICIÓN VERTICAL.
  • 3 LÁPICES ESTÁN EN POSICIÓN INCLINADA.

LÍNEAS EN LA VIDA DIARIA

LAS LÍNEAS ESTÁN EN TODO LO QUE NOS RODEA, PUES LIMITAN EL CONTORNO DE LAS FIGURAS Y LOS OBJETOS. OBSERVA ESTOS EJEMPLOS:

LÍNEAS EN LA VIDA

  • EL HORIZONTE ES UNA DELGADA LÍNEA QUE PARECE SEPARAR EL CIELO DE LA TIERRA. ESTE ES IGUAL A UNA LÍNEA RECTA HORIZONTAL.

  • ALGUNOS CAMINOS MUESTRAN UNA LÍNEA CURVA ABIERTA.

  • LAS ESCALERAS SON UN EJEMPLO DE LÍNEA QUEBRADA.

  • LAS RESBALADILLAS O TOBOGANES TIENEN LÍNEAS INCLINADAS.

  • EL CONTORNO DE LAS TIJERAS PRESENTA UNA LÍNEA MIXTA: COMBINACIÓN DE LÍNEAS CURVAS CON LÍNEAS RECTAS.

  • LOS CAPARAZONES DE LOS CARACOLES TIENEN FORMA ESPIRAL, UN TIPO DE LÍNEA CURVA ABIERTA.

  • LOS CHARCOS DE AGUA TIENEN UN CONTORNO IGUAL AL DE UNA LÍNEA CURVA CERRADA.

  • LA SILUETA DE LA PANTALLA DE TU TELEVISOR ESTÁ FORMADA POR LÍNEAS RECTAS.

¿Sabías qué?
LOS CROQUIS SE USAN PARA DIBUJAR LA IMAGEN DE UN LUGAR. PARA HACERLOS SE USAN LAS LÍNEAS RECTAS, CURVAS, MIXTAS Y QUEBRADAS.

¡DIBUJEMOS LÍNEAS!

IDENTIFICA EN ESTE DIBUJO LAS LÍNEAS APRENDIDAS.

SOLUCIÓN

HAY MUCHAS MÁS LÍNEAS. ¡DESCÚBRELAS!

AHORA ES TÚ TURNO. HAZ UN DIBUJO CON LÍNEAS Y CURVAS.

¡A PRACTICAR!

1. ¿CUÁNTAS LÍNEAS RECTAS VES?

SOLUCIÓN

2. UNE LOS PUNTOS DE CADA COLOR CON LAS LÍNEAS INDICADAS.

RECURSOS PARA DOCENTES

Artículo “Geometría para niños”

Este artículo le  permitirá trabajar en clase los aspectos básicos necesarios para entrar en el mundo de la geometría.

VER