CAPÍTULO 7 / TEMA 2

LA RECTA NUMÉRICA

Se trata de una herramienta muy útil para representar de forma ordenada los números reales en una dimensión, de manera que podamos visualizar con facilidad aspectos como la secuencia y la relación entre varios números, así como también soluciones de inecuaciones. Fue propuesta por John Wallis y es la base para la construcción del plano cartesiano.

Al igual que en la recta numérica, los números de las escalas en los instrumentos de medición, tales como una regla o cinta métrica, se encuentran ubicados de forma ordenada y con números consecutivos equidistantes. Las divisiones pueden a su vez contener subdivisiones para expresar fracciones o decimales de una medida.

ELEMENTOS DE UNA RECTA NUMÉRICA

Los elementos que podemos incluir en una recta numérica son muy variables, ya que dependerán del uso que hagamos de ella; pero, en esencia, la recta numérica está conformada por una recta horizontal en la que se indican generalmente los números enteros (\mathbb{Z}) con un origen (0) ubicado en el centro. Sin embargo, esta recta no es exclusiva de los números enteros, ya que en ella podemos representar cualquier número real (\mathbb{R}).

A la izquierda del cero se encuentran los números negativos y hacia la derecha los positivos. Además, suponemos que la prolongación de los extremos de la recta representa el infinito tanto positivo (a la derecha) como negativo (a la izquierda).

Los valores en la recta numérica se pueden representar de uno en uno, pero también se puede seleccionar a conveniencia una escala diferente, por ejemplo, de 0,5 en 0,5; o bien, de 3 en 3. También, podemos subdividir cada espacio en la recta real para representar números decimales o fracciones.

La escala de la regla es equivalente a la sección positiva de una recta numérica con una cantidad finita de números. En este caso, los centímetros son la escala principal y las subdivisiones representan los milímetros que proporcionan la parte decimal de una medida. A la menor medida que se pueda obtener con un instrumento se le denomina apreciación.

EL ORDEN DE LOS NÚMEROS

En la recta numérica los números están ordenados en forma ascendente de izquierda a derecha, es decir, si se comparan dos números, será mayor el que se localice más a la derecha.

Como ya hemos visto, cada división puede subdividirse para representar fracciones, las cuales pertenecen al conjunto de los números racionales (\mathbb{Q}). Si para una determinada fracción realizamos la división del numerador entre el denominador, encontraremos su expresión decimal equivalente, es decir, toda fracción se puede expresar como un decimal; sin embargo, no todos los decimales tienen una fracción generatriz.

 

Los números decimales que no podemos expresar en fracciones pertenecen al conjunto de los números irracionales (\mathbb{I}), por ejemplo, el valor \sqrt{2} o la constante \pi. A su vez, los números irracionales son un subconjunto de los números reales.

¿Sabías qué?
Los números negativos fueron aceptados universalmente e incluidos en la recta numérica a finales del siglo XVIII.
La constante π (pi) es un valor que contiene infinitos dígitos no periódicos en su parte decimal, por lo que pertenece al conjunto de los números irracionales. Su ubicación exacta en la recta real supone un inconveniente, por lo que se suele realizar un redondeo, por ejemplo, hasta la centésima (3,14) al momento de representar su valor en la recta numérica.

VER INFOGRAFÍA

Adición y sustracción con la recta numérica

Podemos utilizar la longitud de segmentos de línea a escala sobre la recta numérica para efectuar operaciones de suma y resta. Por ejemplo:

Si queremos sumar 3 + 5, a partir del 0 representamos de izquierda a derecha un segmento de recta de longitud igual a 3 unidades y seguidamente dibujamos de izquierda a derecha otro segmento de longitud igual a 5 unidades. El resultado, será el valor indicado desde cero hasta donde llegue el último segmento trazado:

Ahora bien, si queremos restar 6 − 4, a partir de 0 debemos dibujar de izquierda a derecha una recta de longitud 6 unidades y luego, donde termina dicha recta, trazamos ahora de derecha a izquierda otra recta de longitud 4 unidades (quedará sobre el primer segmento dibujado). El resultado, será el valor indicado desde cero hasta el punto donde coinciden los dos segmentos de recta:

¿CÓMO UBICAR UN RADICAL EN LA RECTA NUMÉRICA?

Algunos números, en especial los radicales, resultan complicados de ubicar con precisión en la recta real, sin embargo, en algunos casos podemos hacer uso del teorema de Pitágoras y un compás, para determinar la ubicación precisa de estos valores.

Cabe destacar que este método es útil cuando podemos expresar el radical como la suma de dos términos que tienen raíces exactas, digamos: 1, 4, 9, 16, 25, 36, 49… entre otros.

Uno de los legados más conocidos del filósofo griego Pitágoras fue el teorema que lleva su nombre, el cual establece que en cualquier triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma del cuadrado de los catetos. Hasta la fecha, este se considera uno de los teoremas más utilizados en la matemática y la física clásica.

Por ejemplo, si deseamos ubicar \sqrt{13} en la recta numérica el procedimiento es el siguiente:

  • Descomponemos el número dentro del radical como la suma de dos términos con raíces enteras:

\sqrt{13}=\sqrt{9+4}

  • Expresamos cada término como la suma de dos cuadrados, es decir, cada término será la raíz de ese valor elevado al cuadrado:

\sqrt{9+4}=\sqrt{3^{2}+2^{2}}

  • Si hacemos la analogía con el teorema de Pitágoras:

  • La base de cada cateto a y b son los valores de los términos que están elevados al cuadrado dentro de la raíz, es decir, 3 y 2.
  • Para representar el radical en la recta numérica, a partir del cero (0) se construye un rectángulo de base a y altura b (o viceversa); y la diagonal que parte de cero a la otra esquina será la hipotenusa del triángulo rectángulo que quedará con la medida del radical que deseas ubicar.
  • Con un compás, hacemos centro en el origen 0 y con abertura equivalente a la diagonal (hipotenusa), trazamos un arco de circunferencia hasta que corte la recta numérica y ese será el valor del radical que deseamos ubicar: \sqrt{13}.

 

VER INFOGRAFÍA

¡A practicar!

Ubica los siguientes valores en la recta numérica:

a) \frac{3}{4}

Solución

b) \frac{1}{3}

Solución

c) −0,5

Solución

d) Ubica en la recta numérica el valor de \sqrt{20}

Solución
RECURSOS PARA DOCENTES

Artículo “La recta numérica”

En este artículo encontrarás contenido relacionado con la ubicación de los diferentes conjuntos de números en la recta real, y en particular, la explicación de cómo ubicar un número irracional en dicha recta.

VER

Artículo “Recta numérica”

En este artículo se describen los pasos para ubicar un número entero, fracciones o decimales en la recta numérica.

VER

CAPÍTULO 4 / TEMA 6 (REVISIÓN)

ORDEN Y RELACIONES | ¿QUÉ APRENDIMOS?

RECTA NUMÉRICA

La recta numérica es un gráfico en el que podemos representar cualquier número que pertenezca al conjunto de los números reales (\mathbb{R}). Tiene intervalos que señalan las unidades y siempre tienen la misma distancia entre un número y su consecutivo. Por otra parte, los distintos tipos de relaciones que existen entre los números se pueden mostrar por medio de los símbolos “<” y “>” que significan “menor que” y “mayor que” respectivamente.

Una regla graduada es muy parecida a una recta numérica.

ORDEN DE NÚMEROS NATURALES Y DECIMALES

Para ubicar los números naturales en la recta numérica ubicamos el 0 en una posición arbitraria y luego colocamos el resto de los números naturales en intervalos regulares. Si deseamos comparar números naturales usamos los símbolos < y > o la recta numérica, pues todo número que esté más a la derecha en la recta siempre será el mayor. Para ubicar números decimales en la recta numérica, debemos agregar subdivisiones entre los números enteros. Cuando queremos compararlos, primero tomamos en cuenta la parte entera y luego comparamos las cifras decimales de izquierda a derecha.

Sí bien algunos expertos afirman que el número cero (0) no pertenece al conjunto de los números naturales, otros aseguran que sí forma parte.

ORDEN DE FRACCIONES

Las fracciones también tiene un lugar en la recta numérica, para esto tenemos que considerar si la fracción es propia o impropia. De ser propia dividimos a la unidad en tantos segmentos como indique el denominador y contamos tantos segmentos como indique el numerador, luego marcamos la fracción. Si la fracción es impropia, tenemos que convertirla primero en un número mixto, en este caso, seguimos el procedimiento anterior pero a partir de la parte entera que tenga el número mixto.

Si comparamos fracciones con igual numerador y diferente denominador, será mayor aquella que tenga menor denominador.

PROPORCIONALIDAD

La proporcionalidad es una relación que existe entre dos magnitudes que podemos medir, y puede ser directa o inversa. Dos cantidades son directamente proporcionales si cuando una aumenta la otra aumenta o si cuando una disminuye la otra también lo hace. Por otro lado, al convertir medidas lo hacemos por medio de una regla de tres, un método muy útil para saber un valor desconocido entre 2 relaciones.

Siempre que vamos a un kiosco, sabemos que mientras más compremos, más tendremos que pagar; eso es porque la “cantidad que compramos” y la “cantidad que debemos pagar” tienen una relación directamente proporcional.

RELACIONES DE TIEMPO

El tiempo es quizás la magnitud más usada y medida diariamente. Sus unidades son variadas y van desde las menores a un día, como los segundos, los minutos y las horas; hasta las que sobrepasan al día como los meses, años y décadas. Si usamos una regla de tres podemos convertir una unidad a otra sin dificultad. También podemos hacer cálculos de suma y resta con el tiempo, esto nos ayuda a saber cuando empezó un partido de fútbol o qué hora salió un tren, por ejemplo.

Los calendarios o agendas son útiles para planificar las actividades a realizar a lo largo del día.

CAPÍTULO 4 / TEMA 1

los números en la recta numérica

Una recta numérica, también llamada recta real, representa de forma gráfica el orden y la sucesión de un conjunto de números. Sin embargo, estos conjuntos no siempre son iguales y, como verás a continuación, se clasifican de acuerdo a sus características.

Cada día, el ser humano maneja números de diferentes conjuntos sin darse cuenta; por ejemplo, al contar los días de la semana, cortar un pastel en varias porciones o sumar los céntimos que forman parte del dinero. Todos estos números tienen una representación gráfica en un espacio coordenado unidimensional. Es decir, todos ellos se pueden mostrar en una recta numérica.

NÚMEROS NATURALES

Los números naturales son aquellos que se utilizan para contar los elementos de un grupo dado; gracias a ellos puedes saber cuántos dedos tienen las manos o cuántos integrantes hay en tu familia. Estos son los números más utilizados y su conjunto es representado con la letra ℕ.

Debido a que se utilizan para contar objetos, el cero puede considerarse el número que corresponde a la ausencia de los mismos, por lo tanto, el conjunto de los números naturales se presenta de dos maneras:

\mathbb{N} = \left \{ 1,\, 2,\, 3,\, 4,... \right \}

\mathbb{N} = \left \{0,\, 1,\, 2,\, 3,\, 4,... \right \}

¿Sabías qué?
Los números naturales fueron los primeros en ser utilizados por los seres humanos para contar y determinar cantidades.

En una recta numérica, los números naturales se colocan de tal forma que a medida que avanzas hacia la derecha, encuentras los números más grandes.

¿Cómo elaborar una recta numérica con números naturales?

  1. Dibuja una semirrecta.
  2. Señala el origen que corresponde al cero.
  3. Coloca una flecha en la punta derecha de la recta. Esto indica que la recta se extiende hasta el infinito.
  4. Escribe los números naturales en intervalos regulares. El intervalo entre números consecutivos siempre será el mismo.

Los intervalos en una recta numérica no solo representan a las unidades, sino también a las decenas y las centenas.

¡A practicar!

Ubica en la recta numérica los siguientes números: 5, 20, 35 y 48.

SOLUCIÓN

NÚMEROS ENTEROS

Los números enteros son aquellos que comprenden tanto a los números naturales como a sus opuestos, es decir, a los números negativos, y al número 0. Este conjunto se representa con la letra ℤ, que por definición es:

\mathbb{Z}=\left \{ ...,-4,\, -3,\, -2,\, -1,\,0,\, +1,\, +2,\, +3,\, +4,... \right \}

¿Sabías qué?
Los negativos se utilizan en casos comunes de la vida como, por ejemplo, una deuda o las temperaturas bajo cero.

En una recta numérica, los números enteros se distribuyen a partir del cero: a su izquierda se ubican los negativos y a su derecha se ubican los positivos. 

Recuerda que …

1. Dados dos números enteros de signos distintos, +a y –a, con a > 0, el negativo es menor que el positivo: −a < +a.

−5 < +5

2. Dados dos números enteros con el mismo signo, el menor de los dos números es:

  • El de menor valor absoluto, si el signo común es “+“.

+8 < +10

  • El de mayor valor absoluto, si el signo común es “−”.

−10 < −8

3. El cero, 0, es menor que todos los positivos y mayor que todos los negativos.

−1 < 0 < +1 

 

¡A practicar!

Ubica en la recta numérica los siguientes números: 15, −15, −35 y −39.

SOLUCIÓN

NÚMEROS DECIMALES

Los números decimales están formados por dos partes: una entera y una decimal, ambas separadas por una coma. A la izquierda de la coma se ubica la parte entera, y a la derecha de la coma está la parte decimal.

Los números decimales son usados para mostrar aquellos valores que se necesitan conocer con exactitud y precisión, por lo que indicarlos solo con una unidad no es suficiente. Las medidas de altura, el peso de un bebé y el precio de los productos de un supermercado, son algunos ejemplos de cifras decimales.

En una recta numérica, los números decimales se ubican entre dos números enteros. Para esto, se divide en diez partes la distancia entre los números y se incorporan los decimales que hay entre ellos.

Para representar a los decimales ubicados entre el 1 y el 2, la recta numérica se presenta así:

También puedes identificar los decimales entre dos decimales menos precisos. Por ejemplo, al dividir el espacio entre los decimales 1,1 y 1,2 en otras 10 partes iguales, tendrás las posiciones de los números del 1,11 al 1,19.

¡A seguir con la práctica!

Ubica en la recta numérica los siguientes números decimales: 20,2; 20,5; 20,8 y 20,95.

SOLUCIÓN

El número pi

El número pi es tal vez el número decimal más famoso. Este es un número con decimales infinitos, pero popularmente se simplifica como 3,1416. Solo estos dígitos permiten saber que pi se encuentra entre el 3 y el 4 en la recta numérica. 

VER INFOGRAFÍA

NúMEROS FRACCIONARIOS

También conocidos simplemente como fracciones, son aquellos que representan una división entre números. Un ejemplo de fracción lo puedes ver al pedir medio kilo de pan o al cortar una torta en partes iguales.

Toda fracción está formada por dos partes: un numerador y un denominador separados por una línea horizontal.

Al igual que los números decimales, los números fraccionarios se encuentran entre dos números enteros o dos números decimales en una recta numérica. Para hallar su ubicación se siguen dos métodos diferentes según el tipo de fracción: propia o impropia.

Fracciones propias

Las fracciones propias poseen un numerador menor a su denominador. La división entre estos dos dígitos dará como resultado un número decimal menor a 1. Para saber la posición en la recta numérica se debe segmentar el espacio entre 0 y 1 la cantidad de veces que indique el denominador, y la fracción se ubicará al final del segmento que indique el numerador.

Por ejemplo, para hallar en la recta numérica la fracción \frac{2}{3} debes seguir estos pasos:

  1. Dividir el espacio entre 0 y 1 en 3 segmentos iguales.
  2. Ubicar la fracción al final del segundo segmento.

Los números decimales y fraccionarios son diferentes a los números naturales y enteros, ya que, a diferencia de estos últimos, representan números “incompletos”. No obstante, todos ellos pertenecen al mismo conjunto numérico: el de los números racionales, un subconjunto de los números reales.

Fracciones impropias

Las fracciones impropias poseen un numerador mayor a su denominador. La división entre estos dos dígitos siempre dará como resultado un número mayor a 1. Para saber la posición de una fracción impropiar en la recta real se deben seguir dos pasos:

  1. Convertir la fracción impropia en un número mixto, es decir, la combinación entre un número entero y una fracción propia.
  2. Ubicar el número mixto en la recta numérica. El número entero indicará por dónde empezar a segmentar, mientras que el resto de la fracción se ubicará de la misma forma que una fracción propia: número de segmentos según el denominador y la ubicación de la fracción según el numerador.
¿Cómo convertir la fracción \frac{27}{4} en un número mixto?

1. Divide el numerador por el denominador. 

2. El resto de la división se convertirá en el nuevo numerador de la parte fraccionaria. El divisor será el denominador de la parte fraccionaria y el cociente será la parte entera del número mixto.

3. Construye el número mixto.

¡Pon en práctica lo aprendido!

¿Cómo conviertes la fracción \frac{8}{5} en número mixto?

Para ubicar la fracción \frac{8}{5} en la recta numérica, primero se dividen entre sí ambas cifras. Esta división tiene como cociente el número 1, como resto el número 3 y como divisor el número 5, por lo tanto el número mixto es:

Ahora solo debes dividir en 5 segmentos iguales (denominador de la parte fraccionaria) el espacio entre el número 1 y el número 2. Luego, marcar el final del tercer segmento (numerador de la parte fraccionaria). Allí está ubicada la fracción \frac{8}{5}.

 ¡A practicar!

Ubica en la recta numérica las fracciones propias 1/2 y 6/10.

SOLUCIÓN

Ubica en la recta numérica las fracciones impropias 3/2 y 9/8.

SOLUCIÓN

¡A practicar!

1. Responde las siguientes preguntas:

a. ¿A cuál conjunto numérico pertenecen las notas que obtienes de tus exámenes en clase?

b. ¿Entre cuáles números se ubica el −8 en la recta numérica?

c. ¿Qué tipo de número es el 3,33?

d. ¿Qué número mixto se construye con la fracción 9/5?

2. Ubica los siguientes números en la recta numérica que se muestra a continuación:

  1. 4
  2. −3
  3. 2,5
  4. 1/2
  5. 5/4

SOLUCIÓN

1a. Números naturales.

1b. Entre el −7 y el −9.

1c. Número decimal.

1d. 1\frac{4}{5}

2.

RECURSOS PARA DOCENTES

Artículo destacado “Recta numérica”

Con este recurso podrás complementar la información explicada y brindar ejercitación.

VER