CAPÍTULO 3 / TEMA 4

Orden de Fracción

Las fracciones forman parte del conjunto de números racionales. Estos números pueden ser expresados como cociente de un número entero y un número natural. Todos los números siguen una secuencia, por lo tanto, es posible ordenarlos en la recta numérica y determinar cuál número es mayor, menor o igual a otro.

Ordenar fracciones en la recta numérica

La recta numérica es un recurso muy útil para comparar números. Consiste en un gráfico en forma de línea en el que se ordenan los números de menor a mayor en sentido de izquierda a derecha.

Las fracciones propias (las que tienen el numerador menor que el denominador) son las más fáciles de graficar porque solo tienes que dividir la unidad en tantos segmentos iguales como indique el denominador y luego, según el numerador, contar los segmentos y ubicar la fracción en la recta.

Por ejemplo, si queremos graficar la fracción \frac{5}{6}, tenemos que dividir la unidad en seis segmentos iguales:

Para ubicar la fracción contamos los segmentos que nos indique el numerador, como en este caso el numerador es cinco (5), se cuentan cinco segmentos a partir del cero:

Por medio del diagrama anterior también podemos graficar la fracción \frac{1}{6} , que es una fracción que comparte el mismo denominador con la fracción \frac{5}{6} ya ubicada en la gráfica. Al seguir los mismos pasos anteriores se obtiene:

Las fracciones con el mismo denominador se pueden comparar fácilmente, la que tenga el numerador mayor será también la mayor fracción. Es por eso que \frac{5}{6} es mayor que \frac{1}{6}.

¿Sabías qué?
En la recta numérica, un número es mayor a los números ubicados a su izquierda y menor a los ubicados a su derecha.

¿Qué hacer si tenemos dos fracciones con denominadores diferentes?

Cuando existan dos fracciones con denominadores diferentes multiplicamos el numerador y denominador de la primera fracción por el denominador de la segunda fracción, y así, tendremos una fracción equivalente. Luego se hace lo mismo con la segunda fracción pero se multiplica su numerador y denominador por el denominador de la primera fracción.

Las dos fracciones obtenidas tendrán el mismo denominador y de esta manera, solo queda ubicar la fracción en la recta tal como se explicó en el punto anterior.

Por ejemplo, si queremos ubicar las fracciones \frac{1}{2} y \frac{3}{4} en la recta numérica, no podemos dividir la recta en segmentos iguales porque no comparten el mismo denominador. Entonces determinamos fracciones equivalentes de cada una, es decir, calculamos fracciones que con diferente valor de numerador y denominador representan la misma cantidad.

Para calcular la fracción equivalente de \frac{1}{2} multiplicamos su numerador y denominador por el denominador de la segunda fracción que es cuatro (4):

\frac{1\times 4}{2\times 4}= \frac{4}{8}

En este sentido, la fracción \frac{4}{8} es equivalente a \frac{1}{2}.

Calculamos ahora la fracción equivalente de \frac{3}{4} que se obtiene al multiplicar su numerador y denominador por el denominador de la primera fracción que es dos (2).

\frac{3\times 2}{4\times 2}= \frac{6}{8}

De esta manera obtenemos la fracción \frac{6}{8} que es equivalente con \frac{3}{4}.

Las fracciones \frac{4}{8} y \frac{6}{8} son equivalentes con las fracciones anteriores. Observemos que tienen el mismo denominador y para poder ubicarlas en la recta numérica debemos dividir la unidad en 8 segmentos iguales, después escribimos cada fracción en el número de segmento que indique su respectivo numerador. El gráfico quedaría:

Como \frac{4}{8} representa la misma cantidad que \frac{1}{2}, y \frac{6}{8} representa la misma cantidad que \frac{3}{4}. Estas fracciones pueden ser sustituidas en la recta numérica anterior:

De la imagen anterior se puede que concluir que \frac{3}{4} es mayor que \frac{1}{2} por estar ubicado a su derecha.

La recta numérica es una herramienta muy usada para ordenar y observar de manera más sencilla los datos. Este simple gráfico, además de los números naturales, permite ubicar números negativos, números racionales y números irracionales. Hay disciplinas como la física que emplean este tipo de diagrama para resolver problemas de cuerpos en movimiento.

¿Qué hacer si la fracción es impropia?

Si la fracción es impropia (aquella que su numerador es mayor que el denominador) se debe transformar a un número mixto: un número formado por una parte entera y una fracción. En la gráfica, la fracción impropia estará ubicada entre el número entero del número mixto y el número siguiente de la recta. La ubicación exacta la proporciona la parte fraccionaria y la graficamos como se explicó en los casos anteriores.

Pasos para transformar una fracción impropia a un número mixto

1. Divide el numerador entre el denominador.

2. Escribe el cociente de la división anterior, el mismo será la parte entera del número mixto.

3. Escribe al lado de la parte entera la fracción del número mixto. En esta, el numerador será igual al resto de la división y el denominador será el mismo de la fracción original.

– Grafiquemos la fracción \frac{5}{3}

Lo primero es transformar la fracción a número mixto, para esto solo debes dividir el numerador entre el denominador:

El número mixto será 1\frac{2}{3}. Observa que:

  • La parte entera es el cociente de la división: 1.
  • El numerador de la parte fraccionaria es el resto: 2.
  • El denominador de la parte fraccionaria es el mismo de la fracción original: 3.

Ahora que tenemos nuestro número mixto sabemos que la fracción se encuentra ubicada entre el 1 y el 2 de la recta numérica, pero no sabemos en qué lugar. Para ello debemos hacer los mismos pasos que hicimos inicialmente para graficar fracciones, es decir, dividir el entero o unidad (que en este caso será el intervalo comprendido entre 1 y 2. Como el divisor es tres (3) entonces dividimos el intervalo en tres segmentos iguales:

Luego ubicamos la fracción de acuerdo a la cantidad de segmentos que indique el numerador. De esta manera, el número mixto que es igual a la fracción original se ubicaría así:

Relación de orden entre fracciones y naturales

Los números que se representan en la recta numérica cumplen el mismo criterio: los números de la izquierda de un número son menores a este y los de su derecha son mayores. Es por ello que representar las fracciones en la recta es de gran utilidad, pues permite relacionar los números de manera más fácil.
En el ejemplo anterior, la fracción \frac{5}{3} se ubica en la gráfica entre el número 1 y el número 2. De esta manera, la fracción es mayor a 1 por estar a su derecha pero es menor que 2 por estar a su izquierda.

Uso de los símbolos “>” y “<“

Hay números naturales o fraccionarios que representan una mayor cantidad que otros. Por ejemplo, no es lo mismo decir 3 computadoras que decir 1.500 computadoras. Esta relación entre los números se denomina orden y nos permite diferenciar números mayores o menores.

En la práctica se emplean los símbolos “>” y “<” para denotar el orden de los números:

Símbolo Significado
> Mayor que
< Menor que

Por ejemplo, el 5 es mayor que el 2, entonces, se puede expresar como 5> 2. Por otro lado, el número 3 es menor que el 9, en este caso se expresaría como 3<9.

La misma teoría es aplicada a las fracciones. De los ejemplos anteriores tenemos que:

a) \frac{3}{4}> \frac{1}{2}

b) \frac{5}{3}<2

¿Cómo reconocer cuando una fracción es menor o mayor que otra?

Si las fracciones tienen el mismo denominador, se comparan los numeradores, el numerador mayor corresponde a la fracción mayor. Por ejemplo:

a) \frac{5}{2}> \frac{3}{2}

b) \frac{2}{7}< \frac{6}{7}

Si las fracciones tienen denominadores diferentes, se convierten ambas en fracciones equivalentes con el mismo denominador. Por ejemplo, las fracciones \frac{3}{5} y \frac{5}{2}

\frac{3}{5}\rightarrow \frac{3\times 2}{5\times 2}= {\color{Red} \frac{6}{10}}

\frac{5}{2}\rightarrow \frac{5\times 5}{2\times 5}= {\color{Red} \frac{25}{10}}

En este ejemplo, como \frac{6}{10}< \frac{25}{10}, entonces \frac{3}{5}< \frac{5}{2}.

 

Las fracciones equivalentes son aquellas que aunque tengan diferente numerador y denominador, representan la misma cantidad. Son útiles para comparar fracciones y también para simplificar operaciones, como la suma de fracciones con diferentes denominadores. Existen varias formas de calcularlas, como el método del mínimo común múltiplo.
¡A practicar!

1. ¿Qué fracción representa la siguiente gráfica?

a) \frac{6}{2}

b) \frac{3}{1}

c) \frac{3}{6}

d) \frac{3}{2}

Solución
c) \frac{3}{6}

2. ¿Cuál de las siguientes imágenes representa la gráfica de la fracción \frac{5}{9}?
a)

b)

c)

d)

Solución
c)

3. ¿Cuál de las siguientes fracciones es mayor?

a) \frac{9}{10} y \frac{7}{10}

Solución
\frac{9}{10}

b) \frac{3}{2} y \frac{1}{4}

Solución
\frac{3}{2}

4. ¿Cuál de las siguientes fracciones es menor?

a) \frac{2}{5} y \frac{1}{2}

Solución
\frac{2}{5}

b) \frac{7}{4} y \frac{9}{6}

Solución
\frac{9}{6}

5. Completa la expresión con los símbolos “>” y “<“.

a) \frac{3}{2}\sqsubset \sqsupset \frac{1}{2}

Solución
>

b) \frac{5}{9}\sqsubset \sqsupset \frac{8}{9}

Solución
<

c) \frac{5}{2}\sqsubset \sqsupset \frac{7}{4}

Solución
>

d) \frac{1}{9}\sqsubset \sqsupset \frac{3}{8}

Solución
<

RECURSOS PARA DOCENTES

Artículo “La recta numérica”

En este artículo destacado se explica con mayor detalle qué es la recta numérica y cómo representar en ella varios tipos de números como los fraccionarios.

VER

Artículo “Comparar y ordenar números”

El presente artículo permite conocer los símbolos usados en la comparación de números y muestra una serie de ejemplos de acuerdo a la cantidad de dígitos o cifras.

VER

CAPÍTULO 4 / TEMA 1

LAS LÍNEAS

ES POSIBLE QUE NO TE DES CUENTA, PERO ESTAMOS RODEADOS DE MUCHAS LÍNEAS. LAS USAMOS PARA ESCRIBIR, JUGAR, CAMINAR Y HASTA PARA COMER. LO PRIMERO QUE DEBES SABER ES QUE TODAS ESTÁN FORMADAS POR PUNTOS Y QUE ESTOS PUNTOS PUEDEN TENER RECORRIDOS MUY DIVERSOS.

¿QUÉ ES UNA LÍNEA?

UNA LÍNEA ES LA UNIÓN DE MUCHOS PUNTOS CONTINUOS EN EL PLANO.

ESTA IMAGEN REPRESENTA UNA SUCESIÓN DE PUNTOS. LA UNIÓN DE LOS PUNTOS FORMA UNA LÍNEA.

TE PUEDE PARECER EXTRAÑO QUE UNA LÍNEA ESTÉ FORMADA POR INFINITOS PUNTOS PORQUE SOLO VES UN TRAZO CONTINUO, PERO SI TE APROXIMAS LO SUFICIENTE VERÁS QUE EN REALIDAD SON PUNTOS SITUADOS UNO AL LADO DE OTROS. COMO LAS LÍNEAS DESCRIBEN LA DISTANCIA ENTRE DOS PUNTOS, HAY INFINITAS LÍNEAS.

LÍNEAS ABIERTAS Y CERRADAS

OBSERVA ESTAS LÍNEAS, ¿TODAS SON IGUALES?

NO, NO SON IGUALES.

LAS LÍNEAS DE COLOR ROJO SON LÍNEAS ABIERTAS.

LAS LÍNEAS DE COLOR VERDE SON LÍNEAS CERRADAS.

LAS LÍNEAS ABIERTAS TIENEN UN PUNTO DE INICIO Y UN PUNTO FINAL. NO SE CIERRAN. SI ESTUVIERAS DENTRO DE UNA LÍNEA ABIERTA PODRÍAS SALIR.

LA LÍNEA DE COLOR ROJO ES UNA LÍNEA ABIERTA.

LAS LÍNEAS CERRADAS NO TIENEN PUNTO DE INICIO NI PUNTO FINAL. SE CIERRAN. SI ESTUVIERAS DENTRO DE UNA LÍNEA CERRADA NO PODRÍAS SALIR.

LA LÍNEA DE COLOR VERDE ES UNA LÍNEA CERRADA.

LAS LÍNEAS SEGÚN SU FORMA

OBSERVA LAS LÍNEAS DE ESTAS LETRAS Y NÚMEROS, ¿TODAS SON IGUALES?

NO, SON SON IGUALES. TODAS TIENEN FORMAS DISTINTAS.

SEGÚN SU FORMA, LAS LÍNEAS PUEDEN SER RECTAS, CURVAS, MIXTAS O QUEBRADAS.

LA LÍNEA RECTA SIEMPRE TIENE LA MISMA DIRECCIÓN.

 

LAS LÍNEAS DE COLOR ROJO SON LÍNEAS RECTAS.

LA LÍNEA CURVA CAMBIA CONSTANTEMENTE DE DIRECCIÓN.

LAS LÍNEAS DE COLOR AZUL SON LÍNEAS CURVAS.

 

LAS LÍNEAS CURVAS PUEDEN SER ABIERTAS O CERRADAS

LAS LÍNEAS CURVAS ABIERTAS TIENEN UN PUNTO DE INICIO Y UN PUNTO FINAL. SI HACES ESTA SUCESIÓN DE PUNTOS CON UN LÁPIZ Y NO LO LEVANTAS DEL PAPEL, NO LLEGARÁS AL PUNTO EN EL QUE COMENZASTE.

LAS LÍNEAS CURVAS CERRADAS NO TIENEN UN PUNTO DE INICIO NI UN PUNTO FINAL. SI HACES ESTA SUCESIÓN DE PUNTOS CON UN LÁPIZ Y NO LO LEVANTAS DEL PAPEL, LLEGARÁS AL PUNTO EN EL QUE COMENZASTE.

LA LÍNEA MIXTA ESTÁ FORMADA POR LA COMBINACIÓN DE LÍNEAS RECTAS Y LÍNEAS CURVAS.

LAS LÍNEAS DE COLOR VERDE SON LÍNEAS MIXTAS.

LA LÍNEA QUEBRADA ESTÁ FORMADA POR VARIAS LÍNEAS RECTAS QUE SE CORTAN ENTRE SÍ Y QUE TIENEN DIRECCIONES DISTINTAS.

LAS LÍNEAS DE COLOR MORADO SON LÍNEAS QUEBRADAS.

¿CÓMO SE LLAMAN ESTAS LÍNEAS?

SOLUCIÓN

1. LÍNEA CURVA.

2. LÍNEA QUEBRADA.

3. LÍNEA RECTA.

4. LÍNEA MIXTA.

LAS LÍNEAS SEGÚN SU POSICIÓN

OBSERVA LOS CAMINOS QUE COMUNICAN A ESTAS TRES CASAS. ¿CUÁNTAS LÍNEAS RECTAS VES?, ¿TODAS SON IGUALES?

HAY SEIS LÍNEAS QUE MUESTRAN LOS CAMINOS. TODAS LAS LÍNEAS SON RECTAS PERO ESTÁN EN DISTINTAS POSICIONES.

LAS LÍNEAS DE COLOR VERDE SON VERTICALES.

LAS LÍNEAS DE COLOR ROJO SON HORIZONTALES.

LAS LÍNEAS DE COLOR AZUL SON INCLINADAS U OBLICUAS.

¡PRACTIQUEMOS LAS POSICIONES!

  • ¿CUÁNTOS LÁPICES ESTÁN EN POSICIÓN VERTICAL?
  • ¿CUÁNTOS LÁPICES ESTÁN EN POSICIÓN HORIZONTAL?
  • ¿CUÁNTOS LÁPICES ESTÁN EN POSICIÓN INCLINADA?

SOLUCIÓN
  • 7 LÁPICES ESTÁN EN POSICIÓN HORIZONTAL.
  • 4 LÁPICES ESTÁN EN POSICIÓN VERTICAL.
  • 3 LÁPICES ESTÁN EN POSICIÓN INCLINADA.

LÍNEAS EN LA VIDA DIARIA

LAS LÍNEAS ESTÁN EN TODO LO QUE NOS RODEA, PUES LIMITAN EL CONTORNO DE LAS FIGURAS Y LOS OBJETOS. OBSERVA ESTOS EJEMPLOS:

LÍNEAS EN LA VIDA

  • EL HORIZONTE ES UNA DELGADA LÍNEA QUE PARECE SEPARAR EL CIELO DE LA TIERRA. ESTE ES IGUAL A UNA LÍNEA RECTA HORIZONTAL.

  • ALGUNOS CAMINOS MUESTRAN UNA LÍNEA CURVA ABIERTA.

  • LAS ESCALERAS SON UN EJEMPLO DE LÍNEA QUEBRADA.

  • LAS RESBALADILLAS O TOBOGANES TIENEN LÍNEAS INCLINADAS.

  • EL CONTORNO DE LAS TIJERAS PRESENTA UNA LÍNEA MIXTA: COMBINACIÓN DE LÍNEAS CURVAS CON LÍNEAS RECTAS.

  • LOS CAPARAZONES DE LOS CARACOLES TIENEN FORMA ESPIRAL, UN TIPO DE LÍNEA CURVA ABIERTA.

  • LOS CHARCOS DE AGUA TIENEN UN CONTORNO IGUAL AL DE UNA LÍNEA CURVA CERRADA.

  • LA SILUETA DE LA PANTALLA DE TU TELEVISOR ESTÁ FORMADA POR LÍNEAS RECTAS.

¿Sabías qué?
LOS CROQUIS SE USAN PARA DIBUJAR LA IMAGEN DE UN LUGAR. PARA HACERLOS SE USAN LAS LÍNEAS RECTAS, CURVAS, MIXTAS Y QUEBRADAS.

¡DIBUJEMOS LÍNEAS!

IDENTIFICA EN ESTE DIBUJO LAS LÍNEAS APRENDIDAS.

SOLUCIÓN

HAY MUCHAS MÁS LÍNEAS. ¡DESCÚBRELAS!

AHORA ES TÚ TURNO. HAZ UN DIBUJO CON LÍNEAS Y CURVAS.

¡A PRACTICAR!

1. ¿CUÁNTAS LÍNEAS RECTAS VES?

SOLUCIÓN

2. UNE LOS PUNTOS DE CADA COLOR CON LAS LÍNEAS INDICADAS.

RECURSOS PARA DOCENTES

Artículo “Geometría para niños”

Este artículo le  permitirá trabajar en clase los aspectos básicos necesarios para entrar en el mundo de la geometría.

VER