CAPÍTULO 1 / TEMA 8 (REVISIÓN)

SISTEMA DE NUMERACIÓN | ¿qUÉ APRENDIMOS?

LECTURA DE NÚMEROS

Los números naturales (\boldsymbol{\mathbb{N}}) son los que utilizamos para contar. Cada número tiene un valor relativo según la posición que ocupe dentro de una cifra y esto permite una correcta lectura de los mismos. Además de los números naturales, existen los números decimales que están formados por una parte entera y otra decimal. También hay sistemas de numeración no posicionales como los números romanos, los cuales constan de siete letras del abecedario latino.

Para leer un número de manera correcta es necesario conocer el valor que ocupa cada una de sus cifras. Para esto podemos usar una tabla posicional.

descomposición de números

Existen distintas formas de descomponer números grandes: la aditiva con combinaciones básicas, la aditiva por medio de valor posicional, la polinómica o la multiplicativa. En la aditiva con combinaciones básicas usamos una o más sumas que expresen el mismo resultado; en la aditiva con valor posicional empleamos los valores posicionales de cada cifra; en la polinómica utilizamos las potencias de base 10; y en la multiplicativa descomponemos la cantidad en sus factores primos.

Estas diferentes maneras de expresar los números permiten resolver situaciones de forma más rápida y sencilla.

números enteros

Los números enteros (\boldsymbol{\mathbb{Z}}) están compuestos por todos los números naturales (\boldsymbol{\mathbb{N}}), sus opuestos negativos y el cero. Los enteros negativos requieren el uso obligatorio del signo (−) a diferencia de los positivos que pueden o no estar acompañados con el signo (+). Estos pueden ser representados en una recta numérica, la cual contiene todos los números reales (\boldsymbol{\mathbb{R}}). Los números enteros se aplican en diversas situaciones de la vida, como para indicar altitudes sobre el nivel del mar, registrar entradas y salidas de dinero de un banco, dibujar el eje de coordenadas, o para indicar temperaturas.

Otra de las tantas aplicaciones que se les da a los números enteros es para señalar los niveles de un edificios, en donde planta baja representa el 0, los niveles superiores los positivos y los niveles inferiores los negativos.

NÚMEROS decimales

Los números decimales están formados por una parte entera y una parte decimal, ambas divididas por una coma. Estos se clasifican en tres tipos según su parte decimal: exactos, periódicos y no periódicos. Los exactos tienen un número limitado de cifras; los periódicos poseen cifras decimales infinitas y, a su vez, estos se dividen en dos tipos: los puros y los mixtos; y los decimales no periódicos no tienen un patrón que se repita infinitamente. Estos números se pueden redondear para reducir la cantidad de cifras decimales y así obtener un valor muy parecido.

Los números decimales pueden ser utilizados en diversas situaciones de la vida, como para indicar la estatura de las personas o los precios de los productos.

sucesiones

Las sucesiones son un grupo de elementos que se ordenan uno detrás de otro. Estos elementos son llamados términos, siguen una regla dentro del conjunto y pueden ser números, letras, figuras o imágenes. En una sucesión, los términos son representados como subíndices (a1, a2, a3, …). Usamos sucesiones cada vez que contamos los días de la semana o las horas del día. También las usamos para ordenar de mayor a menor o de menor a mayor, o para aprender a leer el abecedario. Podemos encontrar sucesiones con operaciones matemáticas como la suma, la resta, la multiplicación, la división o la potencia.

Cuando se ordenan los ganadores de una carrera de automóviles, estos siguen un patrón de acuerdo al tiempo de llegada. Este es un ejemplo de sucesión.

potencias

La potenciación consiste en expresar de manera reducida una multiplicación de factores iguales. Tiene tres elementos: una base, un exponente y la potencia. La base es el número que se multiplicará tantas veces como indica el exponente y la potencia es el resultado de la multiplicación de los factores. Algunas de las propiedades de las potencias son: potencia de exponente 0, potencia de exponente 1, potencia de exponente negativo, multiplicación y división de potencias con igual base y la potencia de una potencia.

Las potencias sirven para aplicar teoremas, expresar notación científica, realizar sucesiones matemáticas y para demostrar problemas de crecimiento exponencial como la multiplicación de virus y bacterias.

raíz de un número

La raíz de un número es la operación inversa a la potencia de un número. Consiste en buscar el número que se ha multiplicado tantas como indica n bajo un operador radical. Los elementos de una raíz son el radicando, el índice, el radical y la raíz. El radicando es el resultado de la multiplicación de la raíz de un número tantas veces como indica el índice de la raíz. El índice indica el grado de una raíz, lo que se traduce en cuántas veces se multiplicó por sí mismo el resultado de la radicación. El radical representa el símbolo de la operación de radicación y la raíz es resultado de la operación matemática.

Todas las operaciones matemáticas poseen una operación inversa que revierte los cálculos realizados.

CAPÍTULO 1 / TEMA 5

SUCESIONES

Hacemos uso de las sucesiones al contar los días de la semana, del mes o del año. También al contar las horas del día o simplemente al contar los pasos para llegar a casa. Las sucesiones no son más que un conjunto de números organizados de un forma determinada. No solo las podemos encontrar con números, sino también con figuras.

Las primeras nociones sobre las sucesiones fueron propuestas por Fibonacci. A él se le ocurrió estudiar este concepto por medio de la relación que tenía con la reproducción de los conejos. ¡Sí! Los conejos se reproducen de forma sucesiva. Cada mes una hembra puede dar a luz, y por lo tanto, puede tener cientos de hijos al año.

¿QUÉ SON SUCESIONES?

Una sucesión es un conjunto de elementos ordenados de forma ascendente o descendente. Los elementos de este conjunto se denominan términos y estos siguen una regla, la cual permite calcular cada uno de ellos.

Las sucesiones pueden ser finitas o infinitas. Las sucesiones finitas tienen un número determinado de términos y las infinitas no tienen término final. Por ejemplo:

  • Sucesión finita = \boldsymbol{\left \{ 2,4,6,8,10 \right \}}
  • Sucesión infinita = \boldsymbol{\left \{ 3,6,9,12,15,18... \right \}}
¿Sabías qué?
Los puntos suspensivos (…) indican que la sucesión continua hasta el infinito.

Términos de una sucesión

Los términos de una sucesión se expresan con subíndices: a1, a2, a3, a4, a5, los cuales indican la posición de cada uno dentro de la secuencia, por ejemplo, el término a1 ocupa la primera posición de la secuencia, el término a2 corresponde al segundo lugar y así sucesivamente con cada uno.

Podemos calcular cada término de una sucesión de acuerdo a esta relación:

an = a0 + nr

Donde:

a0: término anterior al primero.

r: regla de la sucesión.

n: número de término.

– Ejemplo:

Podemos representar una sucesión por un término general o enésimo. En este caso su fórmula es:

an = −1 + n · (+3)

an = −1 + 3n

Observa que la regla de sucesión (r) es +3, por lo tanto, el término anterior al primero (t0) es igual a −1. Si queremos hallar el término a8 solo aplicamos la fórmula anterior:

a8 = −1 + 3 · 8 ⇒ a8 = −1 + 24 ⇒ a8 = 23

¿Cuáles son los términos?

Emplea la fórmula y determina cuáles son los términos a10, a12 y a15 de la secuencia anterior.

Solución

a10 = −1 + 3 · 10 ⇒ a10 = −1 + 30 ⇒ a10 = 29

a12 = −1 + 3 · 12 ⇒ a12 = −1 + 36 ⇒ a12 = 35

a15 = −1 + 3 · 15 ⇒ a15 = −1 + 45 ⇒ a15 = 44

Sucesión de Fibonacci

Una de las sucesiones conocidas más importantes es la de Fibonacci. Este tipo de secuencia lleva su nombre en honor al matemático italiano Leonardo Fibonacci y se caracteriza por el hecho de que cada número resulta de sumar los dos números anteriores a este. El término general de la misma es a_{n}= a_{n-1} + a_{n-2} y la forma más básica de este tipo de sucesión es: 1,1,2,3,5,8,13,21,34,55,89,144,233...

VER INFOGRAFÍA

SUCESIONES CON FIGURAS

No solo podemos encontrar sucesiones de números, también es posible encontrar sucesiones con diferentes figuras. Por ejemplo:

En ella se puede ver que las figuras están en orden ascendente con respecto a sus lados. Cada figura tiene un lado más que la anterior.

– Ejemplo 2:

También es posible conseguir sucesiones con figuras en distintas posiciones, como este ejemplo:

Como puedes ver en la imagen, todas las flechas tienen una dirección y sentido diferente, pero si te fijas con atención, el movimiento es igual al de las agujas del reloj, es decir, van en sentido horario. Este patrón nos permite saber cuál será la próxima figura en la sucesión:

Uno de los campeonatos más vistos es el Mundial de fútbol de la FIFA. En este, se clasifican 32 selecciones y, a medida que transcurre el torneo, se eliminan la mitad de los equipos en encuentros entre ellos. Así, comienzan 32, luego 16, 8, 4, 2, hasta que solo queda 1, el equipo campeón. Como ves, esta es una sucesión descendente en la que cada término es igual a la mitad del anterior.

SUCESIONES CON SUMAS Y RESTAS

Podemos construir sucesiones por medio de sumas, restas o la combinación de ambas operaciones. Por ejemplo:

– Otro ejemplo:

En la sucesión anterior, a medida que disminuye el número en cada término, la resta entre el término siguiente y el anterior aumenta.

Algunas aplicaciones

Debido a lo práctico que resulta expresar en forma general una secuencia ordenada de números, las sucesiones matemáticas han sido aplicadas en muchas disciplinas además de la matemática. Por ejemplo, la sucesión de Fibonacci se ha aplicado en la arquitectura, el arte y la informática.

Las progresiones son un tipo de sucesiones que se utilizan para realizar diversos cálculos como la determinación del interés compuesto. Las progresiones aritméticas también se usan en las interpolaciones, que consisten en calcular valores que se encuentran entre dos dados.

¡A practicar!

1. Consigue la regla de la sucesión en cada caso.

  • {2, 4, 6, 8, 10, 12, 14}
Solución

  • {45, 44, 42, 39, 35, 30, 24, 17, 9} 
Solución

2. ¿Cuál es la imagen que falta?

Solución

3. ¿Cuáles son las figuras que deben ir en los espacios en gris?

Solución

4. Selecciona cuál de las imágenes del segundo bloque es la que corresponde al cuadrado que falta en el primer bloque.

Solución

5. Calcula el término a25 de la siguiente sucesión:

{23, 27, 31, 35, 39}

Solución
  • Datos:

a0 = 19

r = +4

  • Término enésimo:

an = 19 + n · (+4)

an = 19 + 4n

  • Resultado:

a25 = 19 + 4 · 25

a25 = 19 + 100

a25 = 119  

RECURSOS PARA DOCENTES

Artículo “Sucesiones”

Este artículo lo ayudará a complementar la información sobre las sucesiones.

VER

Artículo “Sucesiones y series”

Con este artículo podrá ampliar los conocimiento sobre las series y sucesiones.

VER

 

CAPÍTULO 4 / TEMA 1

EL PUNTO Y LA LÍNEA

OBSERVA LOS OBJETOS QUE TE RODEAN, ES PROBABLE QUE NO TE HAYAS DADO CUENTA PERO TODOS ESTÁN COMPUESTOS POR LÍNEAS, Y ESTAS, A SU VEZ, POR UNA SUCESIÓN DE PUNTOS. SEGÚN LA DIRECCIÓN QUE TOMEN ESTOS PUNTOS LAS LÍNEAS PUEDEN SER RECTAS O CURVAS.

¿QUÉ ES EL PUNTO?

EL PUNTO ES ENTE FUNDAMENTAL DE LA GEOMETRÍA, NO TIENE LONGITUD, NO TIENE ÁREA Y NO TIENE DIMENSIÓN. EL PUNTO ES SOLO UNA POSICIÓN EN EL ESPACIO. PODEMOS IDENTIFICAR LOS PUNTOS CON UNA LETRA MAYÚSCULA.

– EJEMPLO:

OBSERVA LA CUADRÍCULA, ¿CUÁNTOS PUNTOS HAY?

A, B, C, D, E, F Y G SON PUNTOS. HAY 7 PUNTOS.

LAS LÍNEAS Y SUS TIPOS

LA LÍNEA ES UNA SUCESIÓN DE INFINITOS PUNTOS. UNA LÍNEA SE ASEMEJA A UNA CUERDA QUE PUEDE SER RECTA O CURVA, ABIERTA O CERRADA PERO QUE ESTÁ FORMADA POR PUNTOS MUY PEQUEÑOS Y JUNTOS. LAS LÍNEAS TIENEN UNA DIMENSIÓN: LA LONGITUD.

SUCESIÓN DE PUNTOS LÍNEA

 

SI OBSERVAMOS CADA LUGAR QUE CONFORMA NUESTRO DÍA PODEMOS VER MUCHOS TIPOS DE LÍNEAS. POR EJEMPLO, EL HORIZONTE ES UNA LÍNEA. TIENE SU NOMBRE POR SER UNA LÍNEA RECTA EN POSICIÓN HORIZONTAL. PUEDES VER OTROS EJEMPLOS DE LÍNEAS EN TUS LÁPICES, EN UNA MESA O EN LA FORMA DE NUESTRO PLANETA.

TIPOS DE LÍNEAS

EXISTEN DOS TIPOS DE LÍNEAS QUE EXPRESAN SU FORMA:

  • LÍNEA RECTA: ES LA LÍNEA CUYOS PUNTOS ESTÁN ALINEADOS EN UNA MISMA DIRECCIÓN.

  • LÍNEA CURVA: ES LA LÍNEA CUYOS PUNTOS NO ESTÁN ALINEADOS EN UNA MISMA DIRECCIÓN. EXISTEN DOS TIPOS DE LÍNEAS CURVAS, LAS ABIERTAS, EN LAS QUE SU INICIO Y SU FINAL NO COINCIDEN, Y LAS CERRADAS, EN LAS QUE SU INICIO Y FINAL SÍ COINCIDEN.

ESTAS SON LÍNEAS CURVAS ABIERTAS.

 

ESTAS SON LÍNEAS CURVAS CERRADAS.

 

  • LÍNEA POLIGONAL: ES LA COMBINACIÓN DE LÍNEAS RECTAS QUE EN UN DETERMINADO PUNTO CAMBIAN DE DIRECCIÓN. EXISTEN DOS TIPOS DE LÍNEAS POLIGONALES, LAS ABIERTAS, EN LAS QUE SU INICIO Y SU FINAL NO COINCIDEN, Y LAS CERRADAS, EN LAS QUE SU INICIO Y FINAL SÍ COINCIDEN.

ESTAS SON LÍNEAS POLIGONALES ABIERTAS.

 

ESTAS SON LÍNEAS POLIGONALES CERRADAS.

 

¿SABÍAS QUÉ?
USAMOS UNA LÍNEA PARA REPRESENTAR LA DISTANCIA ENTRE DOS PUNTOS.

¿QUÉ ES UN SEGMENTO?

ES UNA LÍNEA RECTA LIMITADA POR DOS PUNTOS. EN LA IMAGEN HAY TRES SEGMENTOS: AB, CD Y FE.

¡IDENTIFIQUEMOS LÍNEAS!

OBSERVA ESTE DIBUJO, ¿QUÉ TIPO DE LÍNEAS PUEDES VER?

SOLUCIÓN

HAY MUCHAS LÍNEAS MÁS. ¡DESCÚBRELAS!

LAS LÍNEAS RECTAS SE EXTIENDEN EN UNA MISMA DIRECCIÓN, ES COMÚN VERLAS EN LOS BORDES DE LAS PANTALLAS DE NUESTROS TELÉFONOS MÓVILES, ASÍ COMO EN LAS SILUETAS DE MUCHAS FIGURAS GEOMÉTRICAS. LAS LÍNEAS RECTAS SON MUY USADAS EN EL SECTOR DE TRANSPORTES, PUES LAS VEMOS EN LOS RIELES DE LOS TRENES, EN LOS PASOS PEATONES, EN LAS CICLOVÍAS Y EN LAS CARRETERAS.

CONSTRUCCIÓN DE LOS DIFERENTES TIPOS DE LÍNEAS

PARA EL TRAZADO Y CONSTRUCCIÓN DE LAS DIFERENTES LÍNEAS DEBEMOS UTILIZAR ELEMENTOS GEOMÉTRICOS, COMO POR EJEMPLO, UNA REGLA O UNA ESCUADRA.

PARA CONSTRUIR LÍNEAS RECTAS O POLIGONALES BASTA CON USAR UNA REGLA O ESCUADRA PARA REALIZAR LOS TRAZOS. EN CAMBIO, SI QUIERES DIBUJAR UNA LÍNEA CURVA NO NECESITAS INSTRUMENTOS ADEMÁS DE TU LÁPIZ. RECUERDA QUE SI QUIERE DIBUJAR ALGUNA LÍNEA ABIERTA, EL PUNTO DE FINAL Y EL PUNTO DE INICIO NO DEBEN COINCIDIR, ES DECIR, DEBEN ESTAR SEPARADOS.

 

¡A PRACTICAR!

1. IDENTIFICA LAS SIGUIENTES LÍNEAS:

SOLUCIÓN
  1. LÍNEA POLIGONAL CERRADA.
  2. LÍNEA RECTA.
  3. LÍNEA CURVA CERRADA.
  4. LÍNEA POLIGONAL ABIERTA.
  5. LÍNEA CURVA ABIERTA.

 

2. TRAZA LAS SIGUIENTES LÍNEAS:

  • UNA LÍNEA ROJA RECTA.
  • UNA LÍNEA VERDE POLIGONAL ABIERTA,
  • UNA LÍNEA AMARILLA CURVA ABIERTA.
  • UNA LÍNEA MORADA POLIGONAL CERRADA.

SOLUCIÓN

 

3. OBSERVA LA IMAGEN, IDENTIFICA LAS LÍNEAS QUE VES.

 

RECURSOS PARA DOCENTES

Artículo “El punto, la recta y el plano”

En el siguiente artículo hay información extra para ampliar los conceptos principales de la geometría.

VER

CAPÍTULO 4 / TEMA 1

LAS LÍNEAS

ES POSIBLE QUE NO TE DES CUENTA, PERO ESTAMOS RODEADOS DE MUCHAS LÍNEAS. LAS USAMOS PARA ESCRIBIR, JUGAR, CAMINAR Y HASTA PARA COMER. LO PRIMERO QUE DEBES SABER ES QUE TODAS ESTÁN FORMADAS POR PUNTOS Y QUE ESTOS PUNTOS PUEDEN TENER RECORRIDOS MUY DIVERSOS.

¿QUÉ ES UNA LÍNEA?

UNA LÍNEA ES LA UNIÓN DE MUCHOS PUNTOS CONTINUOS EN EL PLANO.

ESTA IMAGEN REPRESENTA UNA SUCESIÓN DE PUNTOS. LA UNIÓN DE LOS PUNTOS FORMA UNA LÍNEA.

TE PUEDE PARECER EXTRAÑO QUE UNA LÍNEA ESTÉ FORMADA POR INFINITOS PUNTOS PORQUE SOLO VES UN TRAZO CONTINUO, PERO SI TE APROXIMAS LO SUFICIENTE VERÁS QUE EN REALIDAD SON PUNTOS SITUADOS UNO AL LADO DE OTROS. COMO LAS LÍNEAS DESCRIBEN LA DISTANCIA ENTRE DOS PUNTOS, HAY INFINITAS LÍNEAS.

LÍNEAS ABIERTAS Y CERRADAS

OBSERVA ESTAS LÍNEAS, ¿TODAS SON IGUALES?

NO, NO SON IGUALES.

LAS LÍNEAS DE COLOR ROJO SON LÍNEAS ABIERTAS.

LAS LÍNEAS DE COLOR VERDE SON LÍNEAS CERRADAS.

LAS LÍNEAS ABIERTAS TIENEN UN PUNTO DE INICIO Y UN PUNTO FINAL. NO SE CIERRAN. SI ESTUVIERAS DENTRO DE UNA LÍNEA ABIERTA PODRÍAS SALIR.

LA LÍNEA DE COLOR ROJO ES UNA LÍNEA ABIERTA.

LAS LÍNEAS CERRADAS NO TIENEN PUNTO DE INICIO NI PUNTO FINAL. SE CIERRAN. SI ESTUVIERAS DENTRO DE UNA LÍNEA CERRADA NO PODRÍAS SALIR.

LA LÍNEA DE COLOR VERDE ES UNA LÍNEA CERRADA.

LAS LÍNEAS SEGÚN SU FORMA

OBSERVA LAS LÍNEAS DE ESTAS LETRAS Y NÚMEROS, ¿TODAS SON IGUALES?

NO, SON SON IGUALES. TODAS TIENEN FORMAS DISTINTAS.

SEGÚN SU FORMA, LAS LÍNEAS PUEDEN SER RECTAS, CURVAS, MIXTAS O QUEBRADAS.

LA LÍNEA RECTA SIEMPRE TIENE LA MISMA DIRECCIÓN.

 

LAS LÍNEAS DE COLOR ROJO SON LÍNEAS RECTAS.

LA LÍNEA CURVA CAMBIA CONSTANTEMENTE DE DIRECCIÓN.

LAS LÍNEAS DE COLOR AZUL SON LÍNEAS CURVAS.

 

LAS LÍNEAS CURVAS PUEDEN SER ABIERTAS O CERRADAS

LAS LÍNEAS CURVAS ABIERTAS TIENEN UN PUNTO DE INICIO Y UN PUNTO FINAL. SI HACES ESTA SUCESIÓN DE PUNTOS CON UN LÁPIZ Y NO LO LEVANTAS DEL PAPEL, NO LLEGARÁS AL PUNTO EN EL QUE COMENZASTE.

LAS LÍNEAS CURVAS CERRADAS NO TIENEN UN PUNTO DE INICIO NI UN PUNTO FINAL. SI HACES ESTA SUCESIÓN DE PUNTOS CON UN LÁPIZ Y NO LO LEVANTAS DEL PAPEL, LLEGARÁS AL PUNTO EN EL QUE COMENZASTE.

LA LÍNEA MIXTA ESTÁ FORMADA POR LA COMBINACIÓN DE LÍNEAS RECTAS Y LÍNEAS CURVAS.

LAS LÍNEAS DE COLOR VERDE SON LÍNEAS MIXTAS.

LA LÍNEA QUEBRADA ESTÁ FORMADA POR VARIAS LÍNEAS RECTAS QUE SE CORTAN ENTRE SÍ Y QUE TIENEN DIRECCIONES DISTINTAS.

LAS LÍNEAS DE COLOR MORADO SON LÍNEAS QUEBRADAS.

¿CÓMO SE LLAMAN ESTAS LÍNEAS?

SOLUCIÓN

1. LÍNEA CURVA.

2. LÍNEA QUEBRADA.

3. LÍNEA RECTA.

4. LÍNEA MIXTA.

LAS LÍNEAS SEGÚN SU POSICIÓN

OBSERVA LOS CAMINOS QUE COMUNICAN A ESTAS TRES CASAS. ¿CUÁNTAS LÍNEAS RECTAS VES?, ¿TODAS SON IGUALES?

HAY SEIS LÍNEAS QUE MUESTRAN LOS CAMINOS. TODAS LAS LÍNEAS SON RECTAS PERO ESTÁN EN DISTINTAS POSICIONES.

LAS LÍNEAS DE COLOR VERDE SON VERTICALES.

LAS LÍNEAS DE COLOR ROJO SON HORIZONTALES.

LAS LÍNEAS DE COLOR AZUL SON INCLINADAS U OBLICUAS.

¡PRACTIQUEMOS LAS POSICIONES!

  • ¿CUÁNTOS LÁPICES ESTÁN EN POSICIÓN VERTICAL?
  • ¿CUÁNTOS LÁPICES ESTÁN EN POSICIÓN HORIZONTAL?
  • ¿CUÁNTOS LÁPICES ESTÁN EN POSICIÓN INCLINADA?

SOLUCIÓN
  • 7 LÁPICES ESTÁN EN POSICIÓN HORIZONTAL.
  • 4 LÁPICES ESTÁN EN POSICIÓN VERTICAL.
  • 3 LÁPICES ESTÁN EN POSICIÓN INCLINADA.

LÍNEAS EN LA VIDA DIARIA

LAS LÍNEAS ESTÁN EN TODO LO QUE NOS RODEA, PUES LIMITAN EL CONTORNO DE LAS FIGURAS Y LOS OBJETOS. OBSERVA ESTOS EJEMPLOS:

LÍNEAS EN LA VIDA

  • EL HORIZONTE ES UNA DELGADA LÍNEA QUE PARECE SEPARAR EL CIELO DE LA TIERRA. ESTE ES IGUAL A UNA LÍNEA RECTA HORIZONTAL.

  • ALGUNOS CAMINOS MUESTRAN UNA LÍNEA CURVA ABIERTA.

  • LAS ESCALERAS SON UN EJEMPLO DE LÍNEA QUEBRADA.

  • LAS RESBALADILLAS O TOBOGANES TIENEN LÍNEAS INCLINADAS.

  • EL CONTORNO DE LAS TIJERAS PRESENTA UNA LÍNEA MIXTA: COMBINACIÓN DE LÍNEAS CURVAS CON LÍNEAS RECTAS.

  • LOS CAPARAZONES DE LOS CARACOLES TIENEN FORMA ESPIRAL, UN TIPO DE LÍNEA CURVA ABIERTA.

  • LOS CHARCOS DE AGUA TIENEN UN CONTORNO IGUAL AL DE UNA LÍNEA CURVA CERRADA.

  • LA SILUETA DE LA PANTALLA DE TU TELEVISOR ESTÁ FORMADA POR LÍNEAS RECTAS.

¿Sabías qué?
LOS CROQUIS SE USAN PARA DIBUJAR LA IMAGEN DE UN LUGAR. PARA HACERLOS SE USAN LAS LÍNEAS RECTAS, CURVAS, MIXTAS Y QUEBRADAS.

¡DIBUJEMOS LÍNEAS!

IDENTIFICA EN ESTE DIBUJO LAS LÍNEAS APRENDIDAS.

SOLUCIÓN

HAY MUCHAS MÁS LÍNEAS. ¡DESCÚBRELAS!

AHORA ES TÚ TURNO. HAZ UN DIBUJO CON LÍNEAS Y CURVAS.

¡A PRACTICAR!

1. ¿CUÁNTAS LÍNEAS RECTAS VES?

SOLUCIÓN

2. UNE LOS PUNTOS DE CADA COLOR CON LAS LÍNEAS INDICADAS.

RECURSOS PARA DOCENTES

Artículo “Geometría para niños”

Este artículo le  permitirá trabajar en clase los aspectos básicos necesarios para entrar en el mundo de la geometría.

VER