CAPÍTULO 3 / TEMA 1

ADICIÓN Y SUSTRACCIÓN DE FRACCIONES

Los números fraccionarios están en nuestra vida cotidiana, por lo tanto, es de mucha importancia conocer cómo realizar adiciones y sustracciones con ellos. Para realizar estas operaciones se usan diferentes métodos que requieren realizar a su vez otras operaciones como el mcm.

 

Diferentes métodos para la resolución de problemas

Para resolver problemas de fracciones es necesario compararlas y conocer el tipo de fracción. De esta manera, podemos elegir qué tipo de método usar para resolver la operación.

Fracciones homogéneas

Son aquellas fracciones que poseen el mismo denominador. Debido a esto, para la suma y la resta de fracciones se coloca el mismo denominador y se suman o restan los numeradores de la siguiente manera:

Suma de fracciones homogéneas

\frac{6}{3}+\frac{4}{3}=\frac{6+4}{3}=\frac{10}{3}

Resta de fracciones homogéneas

\frac{9}{5}-\frac{8}{5}=\frac{9-8}{5}=\frac{1}{5}

Muchas de las fórmulas matemáticas empleadas en la resolución de problemas contienen sumas y restas de fracciones. En este sentido, es necesario conocer los diferentes métodos que se pueden aplicar de acuerdo al tipo de fracción presente en los ejercicios. Entre estos métodos están: la multiplicación cruzada o el cálculo del mínimo común múltiplo.

Fracciones Heterogéneas

Son aquellas fracciones que poseen distinto denominador. Para este tipo, existen diferentes métodos o formas de resolver adiciones y sustracciones.

Primer método: multiplicar en forma cruzada.

Se multiplica el numerador de la primera fracción por el denominador de la segunda y se coloca en el numerador.\frac{{\color{Blue} 3}}{5}+\frac{6}{{\color{Blue} 4}}=\frac{({\color{Blue} 3\times 4})}{}

Luego se multiplica el numerador de la segunda por el denominador de la primera y se suma con el numerador resultante de la multiplicación anterior.
\frac{{\color{Blue} 3}}{{\color{Red} 5}}+\frac{{\color{Red} 6}}{{\color{Blue} 4}}=\frac{({\color{Blue} 3\times 4})+({\color{Red} 5\times 6})}{}

Se procede a multiplicar los denominadores de ambas fracciones.

\frac{{\color{Blue} 3}}{{\color{Red} 5}}+\frac{{\color{Red} 6}}{{\color{Blue} 4}}=\frac{({\color{Blue} 3\times 4})+({\color{Red} 5\times 6})}{{\color{Red} 5}\times {\color{Blue} 4}}

Se realizan los cálculos necesarios y se obtiene la fracción resultante.

\frac{{\color{Blue} 3}}{{\color{Red} 5}}+\frac{{\color{Red} 6}}{{\color{Blue} 4}}=\frac{({\color{Blue} 3\times 4})+({\color{Red} 5\times 6})}{{\color{Red} 5}\times {\color{Blue} 4}}=\frac{12+30}{20}=\mathbf{\frac{42}{20}}

Segundo método: hallar el mínimo común múltiplo (mcm).

Se obtiene el mcm de los denominadores de la siguiente manera:

\frac{5}{8}+\frac{7}{6}=

 

Se coloca el mcm como denominador resultante y se divide entre el denominador de la primera fracción y se multiplica por el numerador de la misma fracción. El resultado se coloca de numerador.

24\div 8={\color{Red} 3}

{\color{Red} 3}\times 5={\color{Blue} 15}

 

\frac{5}{8}+\frac{7}{6}=\frac{{\color{Blue} 15}\: \: \: \: \: \: \: \: \: \: \: \: \: }{24}

Se realiza el mismo procedimiento con la segunda fracción.

24\div 6={\color{Red} 4}

{\color{Red} 4}\times 7={\color{DarkGreen} 28}

 

\frac{5}{8}+\frac{7}{6}=\frac{{\color{Blue} 15}+{\color{DarkGreen} 28}}{24}

 

Se realizan las operaciones correspondientes para obtener el resultado final.

\frac{5}{8}+\frac{7}{6}=\frac{15+28}{24}=\mathbf{\frac{43}{24}}

 

Para encontrar el resultado de una suma o una resta de fracciones muchas veces se recomienda simplificar los términos para tener un mejor resultado. Esta  técnica consiste en dividir ambos términos entre el mismo número. Por lo general, se utilizan los números primos para llegar a una fracción irreducible. Para simplificar fracciones rápidamente se recomienda tener presente los criterios de divisibilidad de un número.
¿Sabías qué?
Una fracción es irreducible cuando no se puede simplificar.

Otros tipos de fracciones

Fracciones aparentes: son aquellas que cumplen la condición de que al dividir el numerador entre el denominador, el resultado es un número entero. Por ejemplo, las fracciones \inline \frac{8}{4},\frac{2}{2} y \inline \frac{9}{3} son fracciones aparentes.

8\div 4=2

2\div 2=1

9\div 3=3

 

Fracciones equivalentes: son aquellas que se obtienen al multiplicar al numerador y al denominador por un mismo número. A este procedimiento también se lo denomina amplificación. Las fracciones \inline \frac{3}{2} y \inline \frac{15}{10}  son fracciones equivalentes.Otro método para obtener fracciones equivalentes es por simplificación. En dicho caso, se divide tanto al numerador como al denominador por el mismo número. Las fracciones \inline \frac{33}{15} y \inline \frac{11}{5}  son fracciones equivalentes.

Tercer método: utilizar las fracciones equivalentes.

Se convierten las fracciones en homogéneas mediante el uso de las fracciones equivalentes. Para hallar las equivalentes se multiplica una de las fracciones por una fracción aparente, cuyo resultado sea 1, como por ejemplo \inline \frac{2}{2}, \inline \frac{5}{5}, \inline \frac{7}{7} que permite hallar una fracción equivalente de la primera. En la sumatoria de \inline \frac{3}{2}+\frac{9}{10}, para convertir \inline \frac{3}{2} en una equivalente de igual denominador de la segunda (10), se multiplicó por la fracción aparente  \frac{5}{5}.

Se reescribe la adición de fracciones con la nueva fracción equivalente. De esta manera, las fracciones son homogéneas, por lo que pueden realizarse los cálculos para dichas fracciones, es decir, se suman los numeradores y se coloca el mismo denominador común (10).

La sustracción o resta de fracciones se realiza con el mismo procedimiento que la adición o suma, con la diferencia que, en vez de sumarlas, se restan.

En matemáticas es posible representar los números enteros como una suma de fracciones. Asimismo, aunque parezca difícil, existen procedimientos como convertir un entero en fracción, que se utiliza para resolver combinaciones de números enteros y fraccionarios. En estos casos, se coloca 1 como denominador del número entero.

adición y sustracción de fracciones con números enteros

Existen problemas en los cuales se pueden conseguir fracciones con números enteros. Aunque parece más complicado resolver este tipo de ejercicios, no lo es. Para sumar \inline \frac{4}{5}+3 lo primero que debemos hacer es identificar el tipo de números involucrados en la operación.

 \frac{4}{5}+3=

Luego se convierte el número entero en una fracción para lo cual colocamos como denominador del número entero la unidad (1). Esto se debe a que el número (1) como denominador no modifica el entero existente, porque todo número divido entre (1) es igual al mismo número.

Se procede a realizar los cálculos con cualquier método de fracciones heterogéneas visto anteriormente. En este caso, se aplicará el método cruzado.

\frac{{\color{Blue} 4}}{{\color{Red} 5}}+\frac{{\color{Red} 3}}{{\color{Blue} 1}}=\frac{({\color{Blue} 4\times 1})+({\color{Red} 5\times 3})}{{\color{Red} 5}\times {\color{Blue} 1}}

Por último, se realizan las operaciones matemáticas necesarias para hallar el resultado.

\frac{{\color{Blue} 4}}{{\color{Red} 5}}+\frac{{\color{Red} 3}}{{\color{Blue} 1}}=\frac{({\color{Blue} 4\times 1})+({\color{Red} 5\times 3})}{{\color{Red} 5}\times {\color{Blue} 1}}=\frac{4+15}{5}=\mathbf{\frac{19}{5}}

De esta forma, se pueden resolver las sustracciones o restas de números enteros y fracciones.

¿Sabías qué?

Se estima que en el 1650 a. C. se emplearon por primera vez fracciones con denominadores enteros positivos para representar las partes de un todo.

¡A practicar!

a) \frac{8}{3}+\frac{17}{3}=

RESPUESTAS

 \frac{8}{3}+\frac{17}{3}=\frac{8+17}{3}=\frac{25}{3}

b) \frac{5}{2}-\frac{11}{7}=

RESPUESTAS

\frac{5}{2}-\frac{11}{7}=\frac{5\times 7-2\times 11}{2 \times 7}= \frac{35-22}{14}=\frac{13}{14}

c) \frac{28}{13}+\frac{5}{2}=

RESPUESTAS

\frac{28}{13}+\frac{5}{2}=\frac{28\times 2+13\times 5}{13 \times 2}= \frac{56+65}{26}=\frac{121}{26}

d) 9 + \frac{5}{6}=

RESPUESTAS

9+\frac{5}{6}=\frac{9}{1}+\frac{5}{6}=\frac{9\times 6+1\times 5}{1 \times 6}= \frac{54+5}{6}=\frac{59}{6}

e) 26-\frac{38}{5}=

RESPUESTAS

26-\frac{38}{5}=\frac{26}{1}-\frac{38}{5}=\frac{26\times 5-1\times 38}{1 \times 5}= \frac{130-38}{5}=\frac{92}{5}

f) \frac{17}{3}-\frac{29}{6}=

RESPUESTAS

\frac{17}{3}-\frac{29}{6}=\frac{17}{3}\times\left (\frac{2}{2} \right )-\frac{29}{6}=\frac{34}{6}-\frac{29}{6}=\frac{34-29}{6}= \frac{5}{6}

\frac{27}{5}-\frac{13}{5}=

RESPUESTAS

\frac{27}{5}-\frac{13}{5}=\frac{27-13}{5}=\frac{14}{5}

RECURSOS PARA DOCENTES

Artículo “Clasificación de fracciones”

Este artículo permite obtener información más amplia sobre cómo se clasifican las fracciones.

VER

Artículo “Multiplicación y división de fracciones”

En este artículo se explica como resolver problemas de fracciones cuando estas involucran otras operaciones como la multiplicación y la división.

VER

CAPÍTULO 2 / TEMA 3

OPERACIONES COMBINADAS

La adición y la sustracción están presentes en múltiples situaciones de nuestra vida cotidiana, son operaciones inversas que en muchas ocasiones pueden emplearse de forma combinadas. Para este tipo de problemas usamos ciertos símbolos como el paréntesis que permiten una resolución más sencilla.

OPERACIONES COMBINADAS

Las operaciones combinadas son aquellas en las que aparecen varias cálculos aritméticos para resolver.

La adición y la sustracción, además de ser operaciones básicas de las matemáticas, son dos operaciones inversas, por lo tanto, una adición puede ser comprobada a través de la sustracción y de igual modo, al resolver una sustracción, sus resultados pueden comprobarse a través de la adición. Conocer bien el desarrollo de las sumas y restas es fundamental para resolver cálculos combinados.

Para resolver operaciones combinadas de adición y sustracción debemos seguir ciertos pasos:

  • Operaciones con paréntesis
  1. Resolvemos las operaciones que están entre paréntesis.
  2. Resolvemos las demás según el orden en que aparecen, de izquierda a derecha.

– Ejemplo:

 

Observa que en primer lugar resolvimos lo que estaba dentro de los paréntesis y luego según el orden de izquierda a derecha.

  • Operaciones sin paréntesis

Si las operaciones combinadas de adición y sustracción no tienen operaciones entre paréntesis “()” debemos resolver según el orden en que aparecen de izquierda a derecha.

– Ejemplo:

Tal como lo muestra el ejemplo, resolvimos las operaciones en el orden que aparecen de izquierda a derecha.

¿Sabías qué?
Uno de los signos más usados en operaciones matemáticas es el paréntesis. Permite determinar el orden y prioridad de las operaciones.

¡Es tu turno!

  • (354 + 689) − 798
Solución

El resultado es 245.

  • 1.340 − 1.120 + 250
Solución

El resultado es 470.

  • (8.932 − 5670) + 990 − (459 + 615)
Solución

El resultado es 3.178.

  • 9.980 − 8.760 − 130 + 2700
Solución

 

El resultado es 3.790.

CÁLCULOS MENTALES

El cálculo mental, como su nombre lo indica, permite realizar cálculos sin que sea necesario un lápiz, una hoja o una calculadora. Para resolver problemas de forma mental usamos estrategias que aplican propiedades de los números y de las operaciones matemáticas.

Una de las mejores formas de desarrollar y ejercitar la comprensión numérica es a través de los cálculos mentales. Además de resolver problemas más rápido, permiten mejorar la concentración y la agilidad mental para otras situaciones. Con la práctica se pueden resolver cálculos más complejos en los cuales un papel y un lápiz no serían necesarios.

Para realizar cálculos mentales podemos hacer uso de diferentes estrategias:

Descomponer

La descomposición de un número mentalmente permite resolver adiciones y sustracciones de forma más sencilla. Para esto, se descompone el primero de los términos de acuerdo al valor posicional de sus cifras y luego se le suma o resta al número no descompuesto un valor posicional a la vez. Por ejemplo:

35 − 12 = ?

Descomponemos el número 12 de la siguiente forma:

12 = 10 + 2

Luego restamos un valor posicional a la vez al término no descompuesto, en este caso el término no descompuesto es el número 35.

35 − 10 = 25

25 − 2 = 23

Entonces:

 35 − 12 = 23

Completar la decena

Una estrategia que se puede emplear para resolver adiciones y sustracciones es completar la decena. Veamos un ejemplo:

35 + 8 = ?

El número 35 está entre las decenas 30 y 40, entonces sumamos las 5 unidades que faltan para que llegue a 40:

35 + 5 = 40

Luego, esas 5 unidades se las restamos al sumando 8:

8 − 5 = 3

Finalmente sumamos los dos resultados:

40 + 3 = 43

 

– Otro ejemplo:

22 − 12 = ?

El número 22 está entre la decenas 20 y 30, entonces restamos los 2 que es lo que faltan para llegar a 20:

22 − 2 = 20

Luego, restamos esas 2 unidades al sustraendo:

12 − 2 = 10

Al final hacemos la resta con esos resultados:

20 − 10 = 10

Aplicar la propiedad asociativa

Esta es una estrategia que permite resolver adiciones. La propiedad asociativa establece que al sumar tres o más sumandos, no importa el orden en que se realicen las operaciones, la suma es la misma. Por lo tanto, los sumandos pueden agruparse de forma que faciliten tus cálculos. Veamos un ejemplo:

320 + 300 + 80 = ?

En este caso, vamos a agrupar los siguientes términos:

320 + 300 + 80

(320 + 80) + 300

400 + 300 = 700

¿Sabías qué?
La palabra “cálculo” proviene del término latino calculus que significa “piedra”. Anteriormente se usaban las piedras para contar.

PROBLEMAS

Para resolver problemas aditivos es necesario comprender la situación y seleccionar los datos que permitan elegir una estrategia para encontrar la solución, y así dar una respuesta al problema. Veamos algunos:

1. En un maratón se deben correr 5.000 metros. Pablo avanzó 1.335 metros y se detuvo a tomar agua para refrescarse. Luego avanzó 1.280 metros más y volvió a tomar agua. ¿Cuántos metros de la maratón le faltan correr a Pablo?

  • Datos

Distancia que debe correr Pablo: 5.000 metros

Distancia 1 que recorrió Pablo: 1.335 metros

Distancia 2 que recorrió Pablo: 1.280 metros

  • Pregunta

¿Cuántos metros de la maratón le faltan correr a Pablo?

  • Reflexiona

Para conocer cuántos metros le faltan a Pablo por recorrer debemos restar a la distancia total, la suma de la distancia 1 y la distancia 2.

  • Resuelve

5.000 − (1.335 + 1.280)

5.000 − 2.615

2.385

  • Respuesta

A Pablo le faltan por correr 2.385 metros del maratón.


2. Daniela y su familia salieron de excursión a la montaña, durante su visita tomaron 243 fotografías de los paisajes y 125 fotografías de ellos mismos. Si en la excursión pasada tomaron 42 fotografías menos, ¿cuántas fotografías tomaron en la excursión anterior?

  • Datos

Fotografías de los paisajes: 243

Fotografías de ellos mismos: 125

Fotografías de la excursión anterior: 42

  • Pregunta

¿Cuántas fotografías tomaron en la excursión anterior?

  • Reflexiona

Para saber cuántas fotografías tomaron en la excursión pasada debemos sumar las fotografías de paisajes y de la familia que tomaron durante esta excursión y luego restar las 42 fotografías menos.

  • Resuelve

(243 + 125) − 42

368 − 42

326

  • Respuesta

La familia de Daniela tomó durante la excursión anterior 326 fotografías.


3. Un autobús se desplaza por la ciudad. En su primera parada recoge 12 pasajeros, en la segunda se suben 3 y se bajan 6, en la tercera se suben 9 y se bajan 8. Al llegar a la cuarta parada, ¿cuántos pasajeros lleva el bus?

  • Datos

Primera parada: suben 12 pasajeros

Segunda parada: suben 3 y se bajan 6 pasajeros

Tercera parada: suben 9 y se bajan 8 pasajeros

  • Pregunta

¿Cuántos pasajeros lleva el bus al llegar a la cuarta parada?

  • Reflexiona

Para resolver este tipo de problemas debemos asociar que cuando el bus recoge pasajeros, se realiza la operación sumar, y cuando se bajan pasajeros del bus, se realiza la operación restar. Así al traducir el problema al lenguaje matemático obtenemos: 12 + 3 − 6 + 9 − 8.

Una forma más fácil de resolverlo es contar primero el número de personas que se subieron al bus: (12 + 3 + 9) y después restarle el número de personas que se bajaron: (6 + 8). Obtenemos en ese caso la expresión: (12 + 3 + 9) − (6 + 8).

  • Resuelve

(12 + 3 + 9) − (6 + 8)

24 − 14

10

  • Respuesta

El bus al llegar a la cuarta parada lleva 10 pasajeros.


¿Por qué importan los cálculos combinados?

Resolver adiciones y sustracciones permite desarrollar la capacidad de solucionar situaciones en nuestra vida cotidiana y de esta forma crear, adaptar y resolver problemas matemáticos en un contexto familiar, escolar y social. Una de las situaciones en las que aplicamos esto es al momento de hacer una compra, pues si sumamos todos los precios de productos y luego lo restamos a la cantidad de dinero que tenemos, podremos saber cuánto dinero tendremos al final de una compra.

¡A practicar!

1. Resuelve los siguientes problemas:

a) Miguel tiene 25 años y Camila tiene 10 años más que él. Si Alejandro tiene 15 años menos que Camila, ¿cuántos años tiene Alejandro?

Solución

Datos

Edad de Miguel: 25 años

Edad de Camila : 10 años más que Miguel

Edad de Alejandro: 15 años menos que Camila

Pregunta

¿Cuántos años tiene Alejandro?

Reflexiona

Para resolver el problema debemos sumar los años de más que tiene Camila a la edad de Miguel y luego restar los 15 años que tiene de diferencia la edad de Alejandro con la de Camila.

Resuelve

(25 + 10) − 15

35 − 15

20

  • Respuesta

Alejandro tiene 20 años.

b) En una pequeña granja se recolectan aproximadamente 2.500 litros de leche de vaca, de ese total 1.800 litros se venden, 680 litros se emplean para elaborar postres y el resto, los granjeros lo dejan para su consumo. ¿Cuántos litros de leche de vaca dejan los granjeros para consumir?

Solución

Datos

Litros de leche recolectada: 2.500

Litros de leche que se venden: 1.800

Litros de leche que se emplean para postres: 680

Pregunta

¿Cuántos litros de leche de vaca dejan los granjeros para consumir?

Reflexiona

Para resolver el problema debemos restar a la cantidad de leche recolectada, la cantidad de litros vendidos más los empleados para los postres.

Resolvemos

2.500 − (1.800 + 680)

2.500 − 2.480

20

  • Respuesta

Los granjeros dejan 20 litros de leche de vaca para su consumo.

 

2. Resuelve las operaciones mentalmente con las estrategias mencionadas anteriormente:

  • 410 + 600 + 9
Solución
El resultado es 1.019.
  • 74 − 63
Solución
El resultado es 11.
  • 97 − 77
Solución
El resultado es 20.
  • 25 + 36
Solución
El resultado es 61.
  • 39 − 18
Solución
El resultado es 21.
  • 39 + 15
Solución
El resultado es 54.
  • 74 − 44
Solución
El resultado es 30.
  • 57 − 22
Solución
El resultado es 35.

RECURSOS PARA DOCENTES

Artículo “Operaciones combinadas”

El siguiente material proporciona información sobre cómo resolver problemas de operaciones combinadas y los pasos para resolver sumas y restas con y sin paréntesis.

VER

Artículo “Cálculos mentales”

El artículo profundiza en algunas otras estrategias usadas para resolver cálculos mentales, también muestra algunos elementos útiles al momento de resolver problemas de forma mental.

VER