CAPÍTULO 3 / TEMA 3

FRACCIONES Y DECIMALES

Algunos números decimales pueden ser representados a través de fracciones, por esta razón se dice que los números decimales y las fracciones se encuentran relacionados. Los números decimales que se pueden representar a través de fracciones se denominan racionales y de acuerdo a su tipo se realiza la conversión.

Los números fraccionarios están formados por el numerador y el denominador que se encuentran divididos por una raya horizontal. Por otro lado, los números decimales están formados por una parte entera y una parte decimal separadas por una coma. En el caso de números racionales es posible representar la misma cantidad en fracción o decimal.

LOS NÚMEROS DECIMALES

Los números decimales son aquellos que están formados por una parte entera y una parte decimal. Estos están separados por una coma o un punto. Estos números son otra forma de escribir el resultado de las fracciones. Ambas expresiones representan cualquier número no entero (aunque las fracciones pueden representar cantidades enteras en el caso de las fracciones aparentes).

En este sentido, las fracciones se pueden expresar en forma de números decimales, para lo cual se debe realizar la división de la fracción, es decir, numerador entre denominador. Por ejemplo, al dividir el numerador entre el denominador de la fracción 5/4 se obtiene 1,25, que corresponde a la misma cantidad.

Convertir una fracción a número decimal

Solo existe un método para convertir una fracción a número decimal y se realiza a través de la división. Si divides el numerador entre el denominador por lo general obtienes un número decimal. Siempre y cuando no sea una fracción aparente, en la que el resultado es un número entero (como en el caso de 4/2 = 2).

Algunos ejemplos de conversión de fracciones a decimales son los siguientes:

\frac{9}{8}=1,125

\frac{3}{14}=0,214

\frac{26}{63}= 0,4127

Convertir un número decimal a fracción

Existen diferentes procedimientos para convertir números decimales a fracciones. Estos pasos dependen del tipo de número que se va a transformar.

Tipos de números decimales

Los números decimales pueden ser racionales o irracionales. Los racionales pueden representarse en forma de fracción y los irracionales no. Los números racionales se clasifican en decimales exactos y decimales periódicos.

Decimales exactos: son aquellos números que tiene una parte limitada o finita de cifras decimales. Los decimales finitos representan a las fracciones decimales. Por ejemplo: 2,38; 4,681; 68,98135; 9647,3543.

Decimales periódicos: son aquellos en los que toda la parte decimal o una porción de esta sigue un patrón infinito de números denominado período y se denota en forma de arco en la parte superior del mismo.

Se pueden distinguir dos tipos de decimales periódicos:

Números decimales periódicos puros

Estos números decimales tienen la parte decimal periódica inmediatamente después de la coma. La parte periódica se suele señalar usualmente con una línea horizontal o arco en la parte superior del mismo. Por ejemplo: 2,3333… = \inline 2,\widehat{33}.

Números decimales periódicos mixtos

Estos números decimales poseen dos partes decimales: una parte no periódica, denominada anteperíodo, y la otra parte es la periódica, que se denota con el arco superior. Por ejemplo: 2,147151515… = \inline 2,147\widehat{15}.

¿Sabías qué?
Al dividir la longitud de una circunferencia entre su diámetro se obtiene un número irracional denominado número pi.

Convertir un número decimal exacto a fracción

Para transformar un número decimal exacto a una fracción decimal se debe escribir el decimal dividido por 1. Luego hay que multiplicar tanto el numerador como el denominador por una potencia de base diez (10, 100, 1.000, etc.) que tenga tantos ceros como cifras decimales tenga el número. Si la fracción que se obtiene no es irreducible, entonces se debe simplificar para obtener el resultado

Por ejemplo:

Otro ejemplo sería:

 

Al igual que las demás clases de números, los decimales y los fraccionarios pueden ubicarse en la recta numérica. Estos se encuentran entre dos números enteros, por lo tanto, permiten realizar e indicar mediciones mucho más precisas. Un ejemplo de esto son las llaves mecánicas, las cuales tienen medidas fraccionarias en pulgadas y decimales en milímetros.

Convertir un decimal periódico puro a fracción

Para convertir un decimal periódico puro a fracción es necesario aplicar los siguientes pasos:

1. Se coloca en el numerador una resta entre el número formado por la parte entera y la parte periódica sin la coma, y la parte entera. Observemos el siguiente ejemplo en el que se desea convertir en fracción el número \inline 7,\widehat{66}.

2. Se coloca en el denominador un número formado por tantos 9 según la cantidad de cifras en el período, es decir, si hay un número bajo la línea periódica se coloca un solo 9, si hay dos números bajo el período se coloca 99 y así sucesivamente.

3. Se realizan las operaciones matemáticas necesarias para conseguir la fracción. Se simplifica si es necesario.

7,\widehat{66}=\frac{766-7}{99}=\boldsymbol{\frac{759}{99}}

Veamos otro ejemplo en el cual se aplicaron los mismos pasos:

92,\widehat{35}=\frac{9235-92}{99}=\boldsymbol{\frac{9.143}{99}}

Convertir un decimal periódico mixto a fracción.

Para llevar un número decimal mixto a fracción, seguimos los siguientes pasos:

1. Se coloca en el numerador una resta formada por el número completo sin la coma menos la parte entera y el anteperíodo. Observemos el siguiente ejemplo: \inline 58,3\widehat{7}.

2. Se coloca el denominador de la fracción que será un número formado por tantos 9 como cifras tenga el período y tantos 0 como cifras tenga el anteperíodo.

Por último, se realizan los cálculos necesarios para conseguir la fracción y se simplifica si la misma lo requiere.

58,3\widehat{7}=\frac{5837-583}{90}=\frac{5.254}{90}=\boldsymbol{\frac{2.627}{45}}

Veamos otro ejemplo con el mismo procedimiento:

64,12\widehat{91}=\frac{641291-6412}{9900}=\boldsymbol{\frac{634.879}{9.900}}

 

Los números irracionales

Este tipo de números decimales no pueden ser convertidos en fracciones, debido a que tienen cifras decimales infinitas que no pueden ser definidas como un patrón. Por lo tanto, crear una fracción de estos números sería infinita. Podemos mencionar como ejemplos de estos números al número pi = 3,1416… o al resultado de \sqrt{7}=2,6457512110...

VER INFOGRAFÍA

La estadística es una de las ramas de la matemática que emplea el uso de los números fraccionarios y decimales para realizar el estudio de muestras y poblaciones. Por tal motivo, tener conocimientos sobre cómo convertir un número fraccionario a decimal, y viceversa, puede ser muy útil en diversos campos.

Operaciones entre fracciones y decimales

Los números decimales y las fracciones se pueden sumar, restar, dividir, y multiplicar, entre otras operaciones, siempre y cuando se apliquen los métodos anteriormente vistos, como convertir un número decimal a fracción o una fracción a número decimal. Es importante tener presente que para resolver estos ejercicios debemos convertir todos los números a decimales o todos los números a fracciones.

– Primer método: convertir la fracción en un número decimal. Esto se realiza al dividir el numerador entre el denominador.

Ejemplo:

45,18 + \frac{38}{17}= 45,18 + 2,2353 = 47,4153

– Segundo método: convertir el número decimal en una fracción. En este caso, se utiliza la conversión del número decimal a fracción. En el ejemplo anterior, se puede notar que el número decimal es exacto, por lo tanto, se utiliza la conversión de número decimal exacto a fracción.

45,18+\frac{38}{17}=\frac{4.518}{100}+\frac{38}{17}=\frac{2.259}{50}+ \frac{38}{17}=\frac{2.259\times 17+50\times38}{50\times 17}= \frac{38.403+1.900}{850}=

\boldsymbol{=\frac{40.303}{850}}

En ambos casos se obtuvo el mismo resultado expresado de una forma diferente \frac{40.303}{850}=47,4153

Estos pasos previos se utilizan para realizar los otros cálculos matemáticos como la división, la multiplicación, las potencias, las raíces y las operaciones combinadas.

¡A practicar!

1. Convierte los siguientes números a decimales:

a) \frac{15}{12}

RESPUESTAS

\frac{15}{12}=1,25

b) \frac{28}{15}

RESPUESTAS

\frac{28}{15}= 1,8\widehat{6}

2. Convierte los siguientes números a fracciones:

a) 42,56\widehat{3}

RESPUESTAS

42,56\widehat{3}=\frac{42.563-4.256}{900}=\frac{38.307}{900}

b) 938,\widehat{7}

RESPUESTAS

938,\widehat{7}=\frac{9.387-938}{9}=\frac{8.449}{9}

c) 456,328

RESPUESTAS

456,328=\frac{456.328}{1.000}=\frac{228.164}{500}=\frac{114.082}{250}=\frac{57.041}{125}

3. Resuelve las siguientes operaciones:

a) 726,328+\frac{15}{6}

RESPUESTAS

726,328+\frac{15}{6}=\frac{726.328}{1.000}+\frac{15}{6}=\frac{90.791}{125}+\frac{15}{6}= 728,828

b) 415,14-\frac{425}{3}

RESPUESTAS

415,14-\frac{425}{3}=415,14-141,66=273,48

c) 26,31\times\frac{18}{23}

RESPUESTAS

26,31\times\frac{18}{23}=\frac{2.631}{100}\times\frac{18}{23}= \frac{47.358}{2.300}=\frac{23.679}{1.150}

d) 92,78 :\frac{87}{17}

RESPUESTAS

92,78 :\frac{87}{17}=\frac{9.278}{100}:\frac{87}{17}=\frac{4.639}{50}:\frac{87}{17}=\frac{\frac{4.639}{50}}{\frac{87}{17}}=\frac{78.863}{4.350}

RECURSOS PARA DOCENTES

Artículo “Resolución de cálculos combinados con paréntesis, corchetes y llaves”

Este artículo explica cómo resolver operaciones matemáticas con fracciones y decimales que incluyen paréntesis, corchetes y llaves.

VER

Artículo “Cómo realizar ejercicios combinados con fracciones”

El siguiente artículo destacado se enfoca en los pasos a seguir para resolver cálculos de operaciones combinadas con fracciones.

VER

CAPÍTULO 3 / TEMA 1

ADICIÓN Y SUSTRACCIÓN DE FRACCIONES

Los números fraccionarios están en nuestra vida cotidiana, por lo tanto, es de mucha importancia conocer cómo realizar adiciones y sustracciones con ellos. Para realizar estas operaciones se usan diferentes métodos que requieren realizar a su vez otras operaciones como el mcm.

 

Diferentes métodos para la resolución de problemas

Para resolver problemas de fracciones es necesario compararlas y conocer el tipo de fracción. De esta manera, podemos elegir qué tipo de método usar para resolver la operación.

Fracciones homogéneas

Son aquellas fracciones que poseen el mismo denominador. Debido a esto, para la suma y la resta de fracciones se coloca el mismo denominador y se suman o restan los numeradores de la siguiente manera:

Suma de fracciones homogéneas

\frac{6}{3}+\frac{4}{3}=\frac{6+4}{3}=\frac{10}{3}

Resta de fracciones homogéneas

\frac{9}{5}-\frac{8}{5}=\frac{9-8}{5}=\frac{1}{5}

Muchas de las fórmulas matemáticas empleadas en la resolución de problemas contienen sumas y restas de fracciones. En este sentido, es necesario conocer los diferentes métodos que se pueden aplicar de acuerdo al tipo de fracción presente en los ejercicios. Entre estos métodos están: la multiplicación cruzada o el cálculo del mínimo común múltiplo.

Fracciones Heterogéneas

Son aquellas fracciones que poseen distinto denominador. Para este tipo, existen diferentes métodos o formas de resolver adiciones y sustracciones.

Primer método: multiplicar en forma cruzada.

Se multiplica el numerador de la primera fracción por el denominador de la segunda y se coloca en el numerador.\frac{{\color{Blue} 3}}{5}+\frac{6}{{\color{Blue} 4}}=\frac{({\color{Blue} 3\times 4})}{}

Luego se multiplica el numerador de la segunda por el denominador de la primera y se suma con el numerador resultante de la multiplicación anterior.
\frac{{\color{Blue} 3}}{{\color{Red} 5}}+\frac{{\color{Red} 6}}{{\color{Blue} 4}}=\frac{({\color{Blue} 3\times 4})+({\color{Red} 5\times 6})}{}

Se procede a multiplicar los denominadores de ambas fracciones.

\frac{{\color{Blue} 3}}{{\color{Red} 5}}+\frac{{\color{Red} 6}}{{\color{Blue} 4}}=\frac{({\color{Blue} 3\times 4})+({\color{Red} 5\times 6})}{{\color{Red} 5}\times {\color{Blue} 4}}

Se realizan los cálculos necesarios y se obtiene la fracción resultante.

\frac{{\color{Blue} 3}}{{\color{Red} 5}}+\frac{{\color{Red} 6}}{{\color{Blue} 4}}=\frac{({\color{Blue} 3\times 4})+({\color{Red} 5\times 6})}{{\color{Red} 5}\times {\color{Blue} 4}}=\frac{12+30}{20}=\mathbf{\frac{42}{20}}

Segundo método: hallar el mínimo común múltiplo (mcm).

Se obtiene el mcm de los denominadores de la siguiente manera:

\frac{5}{8}+\frac{7}{6}=

 

Se coloca el mcm como denominador resultante y se divide entre el denominador de la primera fracción y se multiplica por el numerador de la misma fracción. El resultado se coloca de numerador.

24\div 8={\color{Red} 3}

{\color{Red} 3}\times 5={\color{Blue} 15}

 

\frac{5}{8}+\frac{7}{6}=\frac{{\color{Blue} 15}\: \: \: \: \: \: \: \: \: \: \: \: \: }{24}

Se realiza el mismo procedimiento con la segunda fracción.

24\div 6={\color{Red} 4}

{\color{Red} 4}\times 7={\color{DarkGreen} 28}

 

\frac{5}{8}+\frac{7}{6}=\frac{{\color{Blue} 15}+{\color{DarkGreen} 28}}{24}

 

Se realizan las operaciones correspondientes para obtener el resultado final.

\frac{5}{8}+\frac{7}{6}=\frac{15+28}{24}=\mathbf{\frac{43}{24}}

 

Para encontrar el resultado de una suma o una resta de fracciones muchas veces se recomienda simplificar los términos para tener un mejor resultado. Esta  técnica consiste en dividir ambos términos entre el mismo número. Por lo general, se utilizan los números primos para llegar a una fracción irreducible. Para simplificar fracciones rápidamente se recomienda tener presente los criterios de divisibilidad de un número.
¿Sabías qué?
Una fracción es irreducible cuando no se puede simplificar.

Otros tipos de fracciones

Fracciones aparentes: son aquellas que cumplen la condición de que al dividir el numerador entre el denominador, el resultado es un número entero. Por ejemplo, las fracciones \inline \frac{8}{4},\frac{2}{2} y \inline \frac{9}{3} son fracciones aparentes.

8\div 4=2

2\div 2=1

9\div 3=3

 

Fracciones equivalentes: son aquellas que se obtienen al multiplicar al numerador y al denominador por un mismo número. A este procedimiento también se lo denomina amplificación. Las fracciones \inline \frac{3}{2} y \inline \frac{15}{10}  son fracciones equivalentes.Otro método para obtener fracciones equivalentes es por simplificación. En dicho caso, se divide tanto al numerador como al denominador por el mismo número. Las fracciones \inline \frac{33}{15} y \inline \frac{11}{5}  son fracciones equivalentes.

Tercer método: utilizar las fracciones equivalentes.

Se convierten las fracciones en homogéneas mediante el uso de las fracciones equivalentes. Para hallar las equivalentes se multiplica una de las fracciones por una fracción aparente, cuyo resultado sea 1, como por ejemplo \inline \frac{2}{2}, \inline \frac{5}{5}, \inline \frac{7}{7} que permite hallar una fracción equivalente de la primera. En la sumatoria de \inline \frac{3}{2}+\frac{9}{10}, para convertir \inline \frac{3}{2} en una equivalente de igual denominador de la segunda (10), se multiplicó por la fracción aparente  \frac{5}{5}.

Se reescribe la adición de fracciones con la nueva fracción equivalente. De esta manera, las fracciones son homogéneas, por lo que pueden realizarse los cálculos para dichas fracciones, es decir, se suman los numeradores y se coloca el mismo denominador común (10).

La sustracción o resta de fracciones se realiza con el mismo procedimiento que la adición o suma, con la diferencia que, en vez de sumarlas, se restan.

En matemáticas es posible representar los números enteros como una suma de fracciones. Asimismo, aunque parezca difícil, existen procedimientos como convertir un entero en fracción, que se utiliza para resolver combinaciones de números enteros y fraccionarios. En estos casos, se coloca 1 como denominador del número entero.

adición y sustracción de fracciones con números enteros

Existen problemas en los cuales se pueden conseguir fracciones con números enteros. Aunque parece más complicado resolver este tipo de ejercicios, no lo es. Para sumar \inline \frac{4}{5}+3 lo primero que debemos hacer es identificar el tipo de números involucrados en la operación.

 \frac{4}{5}+3=

Luego se convierte el número entero en una fracción para lo cual colocamos como denominador del número entero la unidad (1). Esto se debe a que el número (1) como denominador no modifica el entero existente, porque todo número divido entre (1) es igual al mismo número.

Se procede a realizar los cálculos con cualquier método de fracciones heterogéneas visto anteriormente. En este caso, se aplicará el método cruzado.

\frac{{\color{Blue} 4}}{{\color{Red} 5}}+\frac{{\color{Red} 3}}{{\color{Blue} 1}}=\frac{({\color{Blue} 4\times 1})+({\color{Red} 5\times 3})}{{\color{Red} 5}\times {\color{Blue} 1}}

Por último, se realizan las operaciones matemáticas necesarias para hallar el resultado.

\frac{{\color{Blue} 4}}{{\color{Red} 5}}+\frac{{\color{Red} 3}}{{\color{Blue} 1}}=\frac{({\color{Blue} 4\times 1})+({\color{Red} 5\times 3})}{{\color{Red} 5}\times {\color{Blue} 1}}=\frac{4+15}{5}=\mathbf{\frac{19}{5}}

De esta forma, se pueden resolver las sustracciones o restas de números enteros y fracciones.

¿Sabías qué?

Se estima que en el 1650 a. C. se emplearon por primera vez fracciones con denominadores enteros positivos para representar las partes de un todo.

¡A practicar!

a) \frac{8}{3}+\frac{17}{3}=

RESPUESTAS

 \frac{8}{3}+\frac{17}{3}=\frac{8+17}{3}=\frac{25}{3}

b) \frac{5}{2}-\frac{11}{7}=

RESPUESTAS

\frac{5}{2}-\frac{11}{7}=\frac{5\times 7-2\times 11}{2 \times 7}= \frac{35-22}{14}=\frac{13}{14}

c) \frac{28}{13}+\frac{5}{2}=

RESPUESTAS

\frac{28}{13}+\frac{5}{2}=\frac{28\times 2+13\times 5}{13 \times 2}= \frac{56+65}{26}=\frac{121}{26}

d) 9 + \frac{5}{6}=

RESPUESTAS

9+\frac{5}{6}=\frac{9}{1}+\frac{5}{6}=\frac{9\times 6+1\times 5}{1 \times 6}= \frac{54+5}{6}=\frac{59}{6}

e) 26-\frac{38}{5}=

RESPUESTAS

26-\frac{38}{5}=\frac{26}{1}-\frac{38}{5}=\frac{26\times 5-1\times 38}{1 \times 5}= \frac{130-38}{5}=\frac{92}{5}

f) \frac{17}{3}-\frac{29}{6}=

RESPUESTAS

\frac{17}{3}-\frac{29}{6}=\frac{17}{3}\times\left (\frac{2}{2} \right )-\frac{29}{6}=\frac{34}{6}-\frac{29}{6}=\frac{34-29}{6}= \frac{5}{6}

\frac{27}{5}-\frac{13}{5}=

RESPUESTAS

\frac{27}{5}-\frac{13}{5}=\frac{27-13}{5}=\frac{14}{5}

RECURSOS PARA DOCENTES

Artículo “Clasificación de fracciones”

Este artículo permite obtener información más amplia sobre cómo se clasifican las fracciones.

VER

Artículo “Multiplicación y división de fracciones”

En este artículo se explica como resolver problemas de fracciones cuando estas involucran otras operaciones como la multiplicación y la división.

VER

CAPÍTULO 2 / TEMA 5 (REVISIÓN)

OPERACIONES CON NATURALES | ¿QUÉ APRENDIMOS?

CÁLCULOS MATEMÁTICOS

LOS CÁLCULOS MATEMÁTICOS SON OPERACIONES QUE REALIZAMOS PARA CONOCER EL RESULTADO DE ALGO EXPRESADO EN NÚMEROS. LAS OPERACIONES QUE UTILIZAMOS CON MAYOR FRECUENCIA SON LA SUMA Y LA RESTA. PARA REGISTRARLAS EN FORMA ESCRITA UTILIZAMOS EL SÍMBOLO + (QUE SE LEE “MÁS”) Y EL SÍMBOLO − (QUE SE LEE “MENOS”). REALIZAMOS CÁLCULOS MATEMÁTICOS EN NUESTRA VIDA DIARIA: CUANDO PAGAMOS ALGO, AL MEDIR EL TIEMPO, PARA CONOCER UNA DISTANCIA Y HASTA PARA HACER MÚSICA.

LA MATEMÁTICA NO SOLO NOS SIRVE PARA LA ESCUELA, SINO QUE LA UTILIZAMOS A DIARIO EN NUESTRA VIDA COTIDIANA.

ADICIÓN O SUMA

LA ADICIÓN O SUMA ES LA OPERACIÓN DE AGREGAR O AGRUPAR CANTIDADES PARA OBTENER UN RESULTADO. ESAS CANTIDADES LLEVAN EL NOMBRE DE SUMANDOS, EL RESULTADO SE DENOMINA SUMA. AL SUMAR NÚMEROS DE DOS DÍGITOS A VECES ES CONVENIENTE ESCRIBIR LA OPERACIÓN EN FORMA VERTICAL. EN ESE CASO ES IMPORTANTE UBICAR EN LA COLUMNA DE LA DERECHA LAS UNIDADES Y EN LA DE LA IZQUIERDA LAS DECENAS.

CUANDO LOS NÚMEROS SON PEQUEÑOS PODEMOS USAR PALITOS O LOS DEDOS PARA HACER LA SUMA.

SUSTRACCIÓN O RESTA

LA SUSTRACCIÓN O RESTA ES LA OPERACIÓN CONTRARIA A LA SUMA. CONSISTE EN EXTRAER O QUITAR A UNA CANTIDAD MAYOR A UNA MENOR. AL NÚMERO MAYOR LO LLAMAMOS MINUENDO Y AL MENOR LO LLAMAMOS SUSTRAENDO, EL RESULTADO DE LA RESTA SE CONOCE COMO DIFERENCIA O RESTA.

EN LA RESTA USAMOS EL SIGNO − QUE SE LEE “MENOS”. POR EJEMPLO, 4 − 3 = 1 SE LEE “CUATRO MENOS TRES ES IGUAL A UNO”.

SITUACIONES PROBLEMÁTICAS

LAS SUMAS Y RESTAS SON LAS OPERACIONES MATEMÁTICAS MÁS USADAS POR TODOS DÍA A DÍA, ASÍ QUE ES POSIBLE QUE MUCHAS SITUACIONES LAS TENGAS QUE RESOLVER CON CÁLCULOS. CUANDO ESTO SUCEDE, ES IMPORTANTE QUE SIGAMOS UNA SERIE DE PASOS QUE NOS AYUDEN A RAZONAR Y ORGANIZAR LA INFORMACIÓN PARA RESOLVER EL PROBLEMA. ALGUNOS DE ESTOS PASOS SON IDENTIFICAR LOS DATOS, PENSAR EN EL PROCEDIMIENTO PARA LA RESOLUCIÓN, HACER LA OPERACIÓN Y DAR LA RESPUESTA. 

AUNQUE NO LO CREAS, LAS OPERACIONES MATEMÁTICAS LAS USAS SIEMPRE, ASÍ QUE DE TANTO PRACTICAR PODRÁS HACER TODOS ESTOS CÁLCULOS MENTALMENTE, ES DECIR, SIN NECESIDAD DE LÁPIZ Y PAPEL.

 

CAPÍTULO 2 / TEMA 4

situaciones problemáticas

MUCHAS SITUACIONES DE NUESTRO DÍA A DÍA SE RESUELVEN POR MEDIO DE CÁLCULOS MATEMÁTICOS, PERO PARA LLEGAR A SU RESPUESTA ES NECESARIO QUE REALICEMOS UNA SERIE DE PASOS: ORGANIZAR LOS DATOS, REFLEXIONAR SOBRE EL PROCESO, HACER LAS OPERACIONES Y FINALMENTE HALLAR LA RESPUESTA. MUCHAS OTRAS VECES TENEMOS QUE HACERLO MENTALMENTE. ¡APRENDE CÓMO SE HACEN! 

problemas de suma y resta

1. JUANA TIENE 12 LÁPICES DE COLORES Y CATALINA 6. ¿CUÁNTOS LÁPICES DE COLORES TIENEN ENTRE LAS DOS?

  • DATOS

LÁPICES DE JUANA: 12

LÁPICES DE CATALINA: 6

  • PREGUNTA

¿CUÁNTOS LÁPICES DE COLORES TIENEN ENTRE LAS DOS?

  • REFLEXIONA

HAY QUE SUMAR LAS DOS CANTIDADES DE LÁPICES DE COLORES PARA SABER EL TOTAL. PRIMERO SUMAS LAS UNIDADES Y LUEGO SUMA LAS DECENAS. SI UNO DE LOS SUMANDOS NO TIENE DECENAS SE CONSIDERA COMO UN CERO (0).

  • CALCULA

  • RESPUESTA

ENTRE LAS DOS TIENEN 18 LÁPICES.


2. JUAN TENÍA 54 FIGURITAS PARA JUGAR EN EL RECREO. COMPITIÓ CON CELINA Y PERDIÓ 13 FIGURITAS. ¿CUÁNTAS FIGURITAS LE QUEDAN A JUAN AHORA?

  • DATOS

FIGURITAS DE JUAN: 54

FIGURITAS QUE PERDIÓ: 13

  • PREGUNTA

¿CUÁNTAS FIGURITAS LE QUEDAN A JUAN AHORA?

  • REFLEXIONA

PARA SABER CUÁNTAS FIGURITAS LE QUEDARON A JUAN TENEMOS QUE RESTAR LA CANTIDAD QUE TENÍA AL INICIO CON LA CANTIDAD QUE PERDIÓ. PARA ESTO COLOCAMOS EL MINUENDO (54) SOBRE EL SUSTRAENDO (13). RESTAMOS PRIMERO LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

A JUAN LE QUEDAN 41 FIGURITAS.


3. ILEANA LLEVÓ UN PAQUETE DE GALLETAS DE FRUTILLA PARA COMPARTIR. EL PAQUETE TENÍA 15 GALLETAS Y ELLA CONVIDÓ 5. ¿CUÁNTAS GALLETAS LE QUEDAN A ILEANA AHORA?

  • DATOS

GALLETAS DE ILEANA: 15

GALLETAS CONVIDADAS: 5

  • PREGUNTA

¿CUÁNTAS GALLETAS LE QUEDAN A ILEANA AHORA?

  • REFLEXIONA

ESTE PROBLEMA PODEMOS RESOLVERLO POR MEDIO DE UNA RESTA. SI LE “QUITAMOS” LA CANTIDAD DE GALLETAS CONVIDADAS A LA CANTIDAD TOTAL QUE TIENE EL PAQUETE TENDREMOS COMO RESULTADO LAS GALLETAS QUE QUEDARON.

  • CALCULA

  • RESPUESTA

A ILEANA LE QUEDAN AHORA 10 GALLETITAS.

TODO PROBLEMA MATEMÁTICO PUEDE SER RESUELTO POR MEDIO DE UNA OPERACIÓN, LAS MÁS COMUNES SON LAS DE SUMA Y RESTA. PARA RESOLVER PROBLEMAS TIENES QUE SEGUIR UNOS PASOS: ORGANIZAR LOS DATOS, OBSERVAR LA PREGUNTA, PENSAR SOBRE SU RESPUESTA PARA DAR EL RESULTADO A LA PREGUNTA. ESTOS PASOS TE AYUDARÁN A SOLUCIONAR PROBLEMAS DE MANERA RÁPIDA Y SENCILLA.

4. COMO FALTÓ LA MAESTRA DE UN PRIMER GRADO, UNIERON A TODOS LOS NIÑOS EN UN AULA. SI EN 1º A HAY 25 ALUMNOS Y EN 1º B HAY 23, ¿CUÁNTOS ALUMNOS HAY AHORA EN EL AULA?

  • DATOS

ALUMNOS DE 1º A: 25

ALUMNOS DE 1º B: 23

  • PREGUNTA

¿CUÁNTOS ALUMNOS HAY AHORA EN EL AULA?

  • REFLEXIONA

HAY QUE HACER UNA SUMA O ADICIÓN EN LAS QUE LOS SUMANDOS SON LAS CANTIDADES DE ALUMNOS EN CADA GRADO. COLOCA LOS SUMANDOS UNO SOBRE OTRO. SUMA PRIMERO LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

AHORA EN EL AULA HAY 48 ALUMNOS.


5. EN 1º A HAY 25 ALUMNOS Y HOY FALTARON 4, ¿CUÁNTOS ALUMNOS DE 1º A ESTÁN EN LA ESCUELA?

  • DATOS

ALUMNOS TOTALES DE 1º A: 25

ALUMNOS DE 1º A QUE FALTARON: 4

  • PREGUNTA

¿CUÁNTOS ALUMNOS DE 1º A ESTÁN EN LA ESCUELA?

  • REFLEXIONA

TENEMOS QUE RESTAR LA CANTIDAD DE ALUMNOS QUE NO FUERON A LA ESCUELA A LA CANTIDAD TOTAL DE ALUMNOS DE 1º A. RECUERDA QUE EL SUSTRAENDO ES EL MENOR DE LOS NÚMEROS Y VA DEBAJO DEL MINUENDO QUE ES 25. RESTA LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

EN LA ESCUELA ESTÁN 21 ALUMNOS DE 1º A


6. ANGÉLICA COMPRÓ UN PANTALÓN EN $ 50 Y PAGÓ CON $ 80. ¿CUÁNTO DINERO RECIBIÓ DE VUELTO?

  • DATOS

PRECIO DEL PANTALÓN: $ 50

PAGO DE ANGÉLICA: $ 80

  • PREGUNTA

¿CUÁNTO DINERO RECIBIÓ DE VUELTO?

  • REFLEXIONA

ESTE PROBLEMA LO PODEMOS RESOLVER POR MEDIO DE UNA RESTA, PUES SI SUSTRAEMOS EL PRECIO DEL PANTALÓN COMPRADO A LA CANTIDAD DE DINERO QUE SE PAGÓ, EL RESULTADO SERÁ EL DINERO QUE LE DIERON A ANGÉLICA DE VUELTO.

  • CALCULA

  • RESPUESTA

ANGÉLICA RECIBIÓ $ 30 DE VUELTO.


SI TIENES 1 PALETA Y TE REGALAN 4 PALETAS MÁS, ¿CUÁNTAS PALETAS TIENES? ESTA ES UNA OPERACIÓN QUE RESOLVEMOS CON UNA SUMA O ADICIÓN: 1 + 4 = 5. LA OPERACIÓN INVERSA DE LA SUMA ES LA RESTA, PUES MIENTRAS QUE EN LA SUMA AGRUPAMOS CANTIDADES, EN LA RESTA QUITAMOS UNA CANTIDAD A OTRA. ASÍ, QUE SI DE 4 PALETAS REGALAMOS 2, TENEMOS QUE HACER: 4 − 2 = 2. ¡QUEDAN 2 PALETAS!

LAS CALCULADORAS

LAS CALCULADORAS SON DISPOSITIVOS DISEÑADOS PARA REALIZAR CÁLCULOS MATEMÁTICOS DESDE LOS MÁS SIMPLES COMO UNA SUMA O UNA RESTA, HASTA OTROS MÁS COMPLICADOS COMO LA MULTIPLICACIÓN O LA DIVISIÓN. TAMBIÉN HACEN MUCHA OTRAS OPERACIONES. PUEDES VERLAS EN LOS COMERCIOS PORQUE AYUDAN A RESOLVER PROBLEMAS MATEMÁTICOS DE FORMA EXACTA MUY RÁPIDA, COMO LA CUENTA QUE DEBEMOS PAGAR.

¿SABÍAS QUÉ?
CUANDO PRACTICAS LO SUFICIENTE PUEDES HACER ESTOS CÁLCULOS DE MANERA MENTAL.
RECURSOS PARA DOCENTES

Artículo “Situaciones problemáticas 1º grado”

Este recurso te brindará una serie de situaciones problemáticas que puedes compartir con tus alumnos.

VER

Artículo “Situaciones problemáticas 1º grado”

Con este recurso obtendrás las respuestas a las situaciones problemáticas del artículo anterior.

VER

CAPÍTULO 2 / TEMA 1

CÁLCULOS MATEMÁTICOS

DÍA A DÍA NOS ENCONTRAMOS CON SITUACIONES EN LAS QUE TENEMOS QUE HACER CÁLCULOS, POR EJEMPLO, CUANDO COMPARTIMOS NUESTROS DULCES O CUANDO AGRUPAMOS NUESTROS JUGUETES. COMO VES, SIEMPRE RESOLVEMOS PROBLEMAS MATEMÁTICOS. PARA ELLO ES ÚTIL SEGUIR ALGUNOS CONSEJOS Y UTILIZAR SÍMBOLOS ESPECIALES.

¿QUÉ ES UN CÁLCULO MATEMÁTICO?

UN CÁLCULO MATEMÁTICO ES UNA OPERACIÓN QUE REALIZAMOS PARA CONOCER EL RESULTADO, VALOR O MEDIDA DE ALGO EXPRESADO EN NÚMEROS. LAS OPERACIONES QUE UTILIZAMOS CON MAYOR FRECUENCIA PARA CALCULAR SON LA SUMA Y LA RESTA.

ES POSIBLE QUE CADA DÍA SOLUCIONES PROBLEMAS MATEMÁTICOS SIN DARTE CUENTA. ESTOS CÁLCULOS SON MUY SENCILLOS CUANDO DOMINAS LOS SÍMBOLOS ADECUADOS. POR EJEMPLO, SI TIENES UNA CAJA CON DOCE ROSQUILLAS Y TE COMES DOS, PUEDES CONTAR UNA POR UNA LAS QUE QUEDARÍA O PUEDES EXPRESARLO COMO UNA CÁLCULO: 12 − 2 = 10. ¡QUEDARÍAN 10 ROSQUILLAS!

¿por qué es importante la matemática?

LA MATEMÁTICA NOS PERMITE ADQUIRIR HABILIDADES MUY ÚTILES PARA NUESTRA VIDA. NOS AYUDA A PENSAR, RAZONAR Y AGILIZAR NUESTRA MENTE. EN LA VIDA COTIDIANA ESTO TE AYUDARÁ A RESOLVER JUEGOS CON AMIGOS, ADMINISTRAR TUS AHORROS, UTILIZAR BIEN TU TIEMPO, UBICARTE EN EL ESPACIO Y NUNCA DEJAR DE APRENDER.

LA MATEMÁTICA Y LA MÚSICA

A SIMPLE VISTA LA MATEMÁTICA Y LA MÚSICA PUEDEN PARECER QUE NO TIENEN RELACIÓN. SIN EMBARGO, LOS MÚSICOS UTILIZAN CONSTANTEMENTE ELEMENTOS MATEMÁTICOS PARA CREAR Y EJECUTAR SUS PRODUCCIONES. LA UTILIZAN PARA INDICAR LA DURACIÓN DE LAS NOTAS, EL RITMO, EL VOLUMEN, LOS TONOS. ¡YA VES! LA MATEMÁTICA ESTÁ PRESENTE AÚN DONDE NO PODEMOS VERLA.

¿SABÍAS QUÉ?
EN TODOS LOS DEPORTES ES NECESARIA LA MATEMÁTICA. YA SEA PARA CONTAR LOS GOLES APUNTADOS, LA CANTIDAD DE JUGADORES O EL TAMAÑO DE LA CANCHA DE JUEGO.

SÍMBOLOS MATEMÁTICOS

EN MATEMÁTICA LOS SÍMBOLOS SIRVEN PARA EXPRESAR OPERACIONES O RELACIONES ENTRE LOS NÚMEROS. LA SUMA Y LA RESTA SON LAS OPERACIONES QUE UTILIZAMOS CON MAYOR FRECUENCIA.

ESTE ES EL SÍMBOLO “IGUAL”.

EL SÍMBOLO = ES USADO PARA DAR EL RESULTADO DE UN CÁLCULO COMO LA SUMA O LA RESTA.

ESTE ES EL SÍMBOLO “MÁS”.

EL SÍMBOLO + ES USADO PARA HACER SUMAS O ADICIONES. LA SUMA ES UN CÁLCULO EN EL QUE AGRUPAMOS CANTIDADES.

− ESTE ES EL SÍMBOLO “MENOS”.

EL SÍMBOLO  ES USADO PARA HACER RESTAS O SUSTRACCIONES. LA RESTA ES UNA CÁLCULO EN QUE QUITAMOS UNA CANTIDAD A OTRA.

– EJEMPLO:

SI MARÍA TIENE 4 LIMONES Y SU MAMÁ LE DA 3 LIMONES, ¿CUÁNTOS LIMONES TIENE AHORA?

MARÍA TIENE 7 LIMONES.

SI LUEGO LE REGALA 5 LIMONES A JOSÉ, ¿CUÁNTOS LIMONES LE QUEDAN?

LE QUEDAN 2 LIMONES.

LOS SÍMBOLOS MATEMÁTICOS REPRESENTAN LAS DISTINTAS OPERACIONES O RELACIONES ENTRE NÚMEROS. ALGUNOS SÍMBOLOS COMO “+” Y “−” REPRESENTAN LAS OPERACIONES DE SUMA Y RESTA, OTROS COMO “>” Y “<” REPRESENTAN RELACIONES DE “MAYOR QUE” O “MENOR QUE”. EXISTEN MUCHOS SÍMBOLOS ADEMÁS DE ESTOS. A MEDIDA QUE APRENDAS MÁS OPERACIONES APRENDERÁS MÁS SÍMBOLOS.

CONSEJOS PARA RESOLVER PROBLEMAS

  • PIENSA SI YA HAS RESUELTO UN PROBLEMA PARECIDO.
  • ANOTA LA INFORMACIÓN O LOS DATOS QUE EL PROBLEMA TE PROPORCIONA.
  • REALIZA DIBUJOS O ESQUEMAS.
  • PIENSA SI ALGUNA OPERACIÓN MATEMÁTICA TE AYUDARÍA A RESOLVERLO.
  • REALIZA LOS CÁLCULOS.
  • TOMA NOTA DE TODO LO QUE CONSIDERES NECESARIO.
  • ESCRIBE EL RESULTADO.

¡SIGUE LOS CONSEJOS!

JUAN TIENE 6 LÁPICES DE COLOR ROJO Y 3 LÁPICES DE COLOR AMARILLO. ¿CUÁNTOS LÁPICES TIENE EN TOTAL?

  • DATOS

LÁPICES DE COLOR ROJO:

LÁPICES DE COLOR AMARILLO: 3

  • DIBUJO

  • CÁLCULOS

  • RESULTADO

JUAN TIENE 9 LÁPICES EN TOTAL. 6 DE COLOR ROJO Y 3 DE COLOR AMARILLO.

RECURSOS PARA DOCENTES

Artículo “Matemáticas en las vida cotidiana”

Este artículo ofrece información sobre el uso diario de la matemática, lo que te servirá para analizar con tus alumnos la importancia de la misma.

VER

CAPÍTULO 2 / TEMA 5

OPERACIONES COMBINADAS

Las operaciones combinadas son expresiones formadas por números que se agrupan de diferentes formas, con cálculos diversos. Estas operaciones pueden emplear símbolos como los paréntesis, que se encargan de unir un grupos de operaciones para ser resueltas primero. Los pasos son muy sencillos, ¡aprende hoy cómo resolver operaciones combinadas!

Recomendaciones para resolver problemas combinados

Para resolver las operaciones combinadas debemos tener en cuenta que:

  • Para sumar o restar dos números, ambos deben estar “sueltos”, es decir, no se pueden sumar o restar dos números si uno de ellos está unido a otra expresión mediante un símbolo u otro signo como el de la multiplicación.
  • Los signos de multiplicar generan una unión más fuerte que los de sumar y restar. Cuando dos o más números están unidos por un signo de multiplicación generan una unión inseparable, mientras que los que están unidos por signos de suma y resta se encuentran más “sueltos” en la operación.
  • Las operaciones combinadas deben resolverse paso a paso. Todo lo que se resuelve en un paso debe copiarse, sin realizar cambios al inicio del siguiente paso.
  • Antes de comenzar a resolver las operaciones combinadas se deben conocer las propiedades de dichas operaciones para así plantear una estrategia a seguir sin cometer errores.
  • Siempre se resuelve primero lo que está en el interior del paréntesis, para seguir luego con las multiplicaciones y finalmente con las sumas y restas.

¿Qué más debes saber?

Para ser un experto en resolución de cálculos combinados debes:

  • Ser prolijo.
  • Identificar los distintos términos de un ejercicio y el orden de resolución.
  • Revisar todos los pasos una vez terminado el ejercicio.
  • Practicar, practicar y practicar.

operaciones combinadas sin PARÉNTESIS

En una operación combinada sin paréntesis tenemos que respetar la jerarquía de los cálculos: primero resolvemos las multiplicaciones y divisiones, luego resolvemos las sumas y restas.

– Ejemplo:

9 − 2 × 4 + 12

Primero resolvemos la multiplicación: 2 × 4 = 8.

9 − 8 + 12

Luego resolvemos las sumas y restas:

9 − 8 + 12 = 13

Finalmente escribimos el resultado:

9 − 2 × 4 + 12 = 13

– Otro ejemplo:

81 ÷ 9 + 7 × 8 − 13 × 5

Realizamos las divisiones y multiplicaciones:

9 + 56 − 65

Resolvemos las sumas y restas:

9 + 56 − 65 = 0

Escribimos la respuestas:

81 ÷ 9 + 7 × 8 − 13 × 5 = 0

¡Es tu turno!

  • 15 + 8 − 2 − 6
Solución
15 + 8 − 2 − 6 = 15
  • 144 ÷ 12 − 4 × 3 − 24 ÷ 8
Solución
144 ÷ 12 − 4 × 3 − 24 ÷ 8 = −3
Podemos ver paréntesis en cualquier tipo de operación, esto nos indica que debemos realizar primero los cálculos que están dentro de ellos. Pero los paréntesis no son las únicas formas de expresar jerarquías, también están los corchetes [] y las llaves {} que simbolizan prioridad de resolución: primero se resuelven los corchetes y luego las llaves.

operaciones combinadas con paréntesis

Los paréntesis indican prioridad al momento de resolver los problemas. Esto significa que primero debemos realizar el cálculo dentro del paréntesis y luego resolver el resto de la cuenta.

– Ejemplo:

(8 − 3) × 2 + 4

Primero resolvemos la resta dentro de los paréntesis: 8 − 3 = 5.

5 × 2 + 4

Luego resolvemos la multiplicación: 5 × 2 = 10.

10 + 4

Finalmente resolvemos la suma y escribimos el resultado:

10 + 4 = 14

Por lo tanto,

(8 − 3) × 2 + 4 = 14

– Otro ejemplo:

28 − (7 + 9) + 3

Resolvemos la operación dentro de los paréntesis: 7 + 9 = 16

 28 − 16 + 3

Resolvemos las sumas y restas:

28 − 16 + 3 = 15

Luego escribimos el resultado:

28 − (7 + 9) + 3 = 15

¡Es tu turno!

  • 25 − (3 × 3 + 11) − (2 + 3)
Solución
25 − (3 × 3 +11) − (2 + 3) = 0
  • 36 ÷ 4 + 3 − (9 − 7 + 1) + 4 × 5
Solución
36 ÷ 4 + 3 − (9 − 7 + 1) + 4 × 5 = 29

¿Sabías qué?
Si se suman dos números con diferente signo, la operación a realizar es una resta y se mantiene el signo del número mayor, por ejemplo, −15 + 8 = −7.

Problemas con ejercicios combinados

1. Marta fue a la tienda y compró un par de zapatos por $ 125, 2 pantalones a $ 40 cada uno y 4 camisetas a $ 25 cada una. ¿Cuánto gastó Marta?

  • Datos

Zapatos comprados: un par a $ 125

Pantalones comprados: 2 a $ 40 cada uno

Camisetas compradas: 4 a $ 25 cada una

  • Pregunta

¿Cuánto gastó Marta?

  • Analiza

Si multiplicamos la cantidad de prendas por el costo de cada una y luego sumamos cada resultado tendremos el total de dinero gastado.

  • Calcula

(1 × 125) + (2 × 40) + (4 × 25) = 125 + 80 + 100 = 305

  • Respuesta

Marta gastó $ 305 en su compra.


2. José ha comprado 18 litros de jugo de naranja. Cada litro cuesta $ 5. Si después de pagar le devuelven $ 10, ¿cuánto dinero entregó al pagar?

  • Datos

Jugo comprado: 18 litros

Precio del litro de jugo: $ 5

Dinero devuelto: $ 10

  • Pregunta

¿Cuánto dinero entregó al pagar?

  • Analiza

El producto de la cantidad de jugo comprado y el precio de cada litro de jugo será igual a la cantidad de dinero que debía pagar. Si a eso le sumamos el dinero devuelto sabremos cuánto pagó.

  • Calcula

(18 × 5) + 10 = 90 + 10 = 100

  • Respuesta

José pagó $ 100. Gastó $ 90 en jugo de naranja y le devolvieron $ 10.


3. Pedro compró un lote de 180 donas que debe colocar en cajas de 12 donas. Si venderá cada caja a $ 3, ¿cuánto dinero obtendrá al vender todas las cajas?

  • Datos

Cantidad de donas: 180

Cantidad de donas por caja: 12

Precio de la caja: $ 3

  • Pregunta

¿Cuánto dinero obtendrá al vender todas las cajas?

  • Analiza

Para saber la cantidad de donas que irán en cada caja debemos dividir las 180 donas entre las 12 unidades por caja. Luego multiplicamos esa cantidad por los $ 3 que vale cada una.

  • Calcula

(180 ÷ 12) × 3 = 15 × 3 = 45

  • Respuesta

Obtendrá $ 45 al vender todas las cajas.

Es posible que te encuentres con operaciones combinadas que además de tener sumas, restas multiplicaciones y divisiones, también tengas raíces y potencias. En este caso, debemos resolver primero las raíces y potencias y luego proceder con el orden que ya conoces: primero las multiplicaciones y divisiones, después las sumas y restas.

 

¡A practicar!

Resuelve las siguientes operaciones combinadas:

  • 6 × 8 − 8 + 12 − 3
Solución
6 × 8 − 8 + 12 − 3 = 49
  • 24 × 4 + 18 ÷ 9 − 26
Solución
24 × 4 + 18 ÷ 9 − 26 = 72
  • 32 − 20 ÷ 5 + 16 × 2
Solución
32 − 20 ÷ 5 + 16 × 2 = 60
  • 85 − 49 + 17 × 3 − 54 ÷ 3
Solución
85 − 49 + 17 × 3 − 54 ÷ 3 = 69
  • 25 + (13 − 8 × 6 + 12) − 16
Solución
25 + (13 − 8 × 6 + 12) − 16 = −14
  • 73 + (48 − 7 × 6) − 21 ÷ 3
Solución
73 + (48 − 7 × 6) − 21 ÷ 3 = 72
  • 3 − 4 × 5 + (35 ÷ 7 + 8)
Solución
3 − 4 × 5 + (35 ÷ 7 + 8) = −4
  • 36 ÷ 4 + 3 − (9 − 7 + 1) + 4 × 5
Solución
36 ÷ 4 + 3 − (9 − 7 + 1) + 4 × 5 = 29
RECURSOS PARA DOCENTES

Artículo “Cálculos combinados”

Con este recurso podrás reforzar el contenido relacionado a las jerarquías en operaciones combinadas.

VER

Artículo “Resolución de cálculos combinados con paréntesis,corchetes y llaves”

Este artículo explica paso a paso cómo resolver problemas combinados que contengan paréntesis, corchetes y llaves.

VER

CAPÍTULO 2 / TEMA 2

Multiplicación y división

La multiplicación y la división son operaciones básicas de la matemática. La primera consiste básicamente en sumar varias veces un mismo número y la segunda, en cambio, consiste en repartir cantidades. Ambas están muy relacionadas entre sí y su manejo es necesario para resolver otros tipos de problemas.

Elementos de la multiplicación

La multiplicación es una operación en la que se suma tantas veces un número como indica otro número, por ejemplo, 3 x 4 = 12 se puede representar como 3 + 3 + 3 + 3 = 12. El signo usado en la multiplicación es “x” y se lee “por”. Los elementos principales de una multiplicación son:

  • Factores o coeficientes: son los números que se multiplican, estos son multiplicando y multiplicador. El multiplicando es el número a sumar y el multiplicador es el número de veces que se suma al multiplicando. En la multiplicación 3 x 4 = 12, el número 3 es el multiplicando y el 4 corresponde al multiplicador.
  • Producto: es el resultado de la multiplicación de dos o más factores. Hay ocasiones en las que las multiplicaciones son largas y deben realizarse por medio de la suma de productos parciales.

¿Sabías qué?
En la multiplicación además de la equis también suele usarse el punto “·” como símbolo.
La multiplicación tiene la finalidad de calcular el producto o resultado que se obtiene de sumar el multiplicando tantas veces por sí mismo como indique el multiplicador. En estas operaciones, cuando el multiplicador es mayor a una cifra se requieren de productos parciales que se sumarán para obtener el resultado final de la multiplicación.

Propiedades de la multiplicación

Son cuatro propiedades: la conmutativa, la asociativa, la distributiva y la del elemento neutro.

Propiedad conmutativa

Esta propiedad permite que al multiplicar dos números el resultado sea el mismo sin importar el orden de los factores. Por ejemplo:

3 x 10 = 30
10 x 3 = 30

Por lo tanto, 3 x 10 = 10 x 3. Observa:

Propiedad asociativa

Esta propiedad permite que al multiplicar tres o más factores el producto siempre sea el mismo, sin importar como se agrupen estos. Por ejemplo, 2 x 4 x 6 se puede agrupar de estas formas:

(2 x 4) x 6 = x 6 = 48
2 x (4 x 6) = 2 x 24 = 48

Por lo tanto, (2 x 4) x 6 = 2 x (4 x 6). Observa:

Propiedad distributiva

Esta propiedad permite que la suma de dos o más números multiplicada por otro número sea igual a la multiplicación de ese número por cada elemento de la suma. Por ejemplo:

Elemento neutro

El uno es el elemento neutro de la multiplicación, cualquier número multiplicado por él será igual a sí mismo. Por ejemplo:

0 x 1 = 0
3 x 1 = 3
10 x 1 =10
113 x 1 = 113

¿Sabías qué?
La propiedad distributiva también puede aplicarse a números que se restan.

Modelos de multiplicación

Una multiplicación es una suma abreviada y puede ser representada a través del modelo grupal, modelo lineal y modelo geométrico. Estas son diferentes formas de dar sentido a las multiplicaciones y se pueden aplicar en situaciones simples de la vida.

Modelo grupal

En este modelo se construyen secuencias con la misma cantidad de elementos, estos grupos de elementos representan la multiplicación.

Observa la representación del modelo en los siguientes ejemplos:

4 pelotas de tenis = 4
1 vez 4 = 4
1 x 4 = 4


4 + 4 = 8 raquetas de tenis
2 veces 4 = 8
2 x 4 = 8


4 + 4 + 4 = 12 pelotas de baloncesto
3 veces 4 = 12
3 x 4 = 12


¿Sabías qué?
En el modelo grupal, 3 x 4 se lee como “tres veces cuatro”.

Modelo lineal

En este modelo se emplea la semirrecta numérica para representar las multiplicaciones. Se comienza desde cero y se cuenta de acuerdo al número de elementos que tenga el conjunto a estudiar y al número de conjuntos. Por ejemplo:

Un árbol crece 2 metros cada año. ¿Cuántos metros crecerá en 4 años?

Planteado el sistema en la gráfica sería:
4 veces 2 = 8 metros
4 x 2 = 8

Modelo geométrico

En este método se comparan las cuadrículas en columnas y filas para representar una multiplicación. Se colocan tantas filas como indique el primer factor y el número de columnas será igual al segundo factor. Por ejemplo:

La multiplicación 3 x 4 = 12 se representa geométricamente de la siguiente manera:

Si se cuentan cada una de las cuadrículas se obtiene el resultado: 3 x 4 = 12

Pasos para resolver ejercicios con el algoritmo de la multiplicación

  1. Multiplica las unidades del multiplicador por cada una de las cifras del multiplicando y coloca el resultado en la fila de abajo. Será el primer producto parcial.
  2. Multiplica las decenas del multiplicador por cada una de las cifras del multiplicando y coloca el resultado en la fila de abajo pero con la diferencia que se debe desplazar una posición hacia la izquierda. Este será el segundo producto parcial.
  3. Suma los dos productos parciales. El número que obtengas será el total de la multiplicación.

– Resuelve la multiplicación 453 x 24

Por tratarse de una multiplicación con números grandes no sería tan fácil de resolver a través de los modelos grupal, lineal y geométrico. En estos casos debes emplear el algoritmo de la multiplicación y seguir los pasos mencionados anteriormente.

Para iniciar, el multiplicando y el multiplicador tienen que estar uno debajo del otro:

Luego multiplica las unidades del multiplicador por el multiplicando, es decir, multiplica 4 por 453:

Después multiplica las decenas del multiplicador por el multiplicando, es decir, 2 por 453:

Por último, suma los dos productos parciales que se calcularon para obtener el resultado de la multiplicación:

Elementos de la división

La división consiste en repartir grupos de elementos en partes iguales. Sus elementos principales son:

  • Dividendo: es el número que se va a dividir, es decir, la cantidad que se quiere repartir.
  • Divisor: es el número que divide, este indica cuántas veces se va a repartir el dividendo.
  • Cociente: es el resultado de la división.
  • Resto: es la cantidad que sobra de la división o la que no se puede repartir por ser menor que el divisor.

La división también se expresa con el símbolo “÷“, por ejemplo:

 

Método para comprobar una división

En una división se cumple la relación:

Dividendo = (cociente x divisor) + resto

De esta manera es muy fácil comprobar que una división esté correcta, solo se debe multiplicar el cociente que se obtuvo por el divisor y luego sumarle el resto. Si el resultado que se obtiene es igual al número del dividendo, entonces la división es correcta.

¿Sabías qué?
Cuando el resto de una división es igual a cero la división es exacta y cuando no lo es se denomina división inexacta.

Algoritmo de división

Los pasos para resolver una división son los siguientes:

– Resuelve la división 3.654 ÷ 25

  1. Lo primero que hay que hacer es tomar las dos primeras cifras del dividendo, si estas dos cifras forman un número menor que el divisor entonces se toman tres cifras del dividendo. En este caso, las dos primeras cifras son 36 y como es mayor que 25 se puede continuar.
  2. Divide el primer número del dividendo (si tomaste tres cifras, entonces divide los dos primero) entre el primer número del divisor. Coloca el número resultado en el cociente. Como el primer número del dividendo es 3 y el primer número del divisor es 2, el resultado de dividirlo es 1.
  3. Multiplica el número del cociente por el divisor y coloca el resultado debajo de los dos números seleccionados al principio del dividendo. Luego haz la resta y anota el resultado:
  4. Baja la cifra siguiente del dividendo.
    5. Si divides 11 entre 2, el resultado es 5; y cuando multiplicas 5 por 25 se obtiene 125 que no puede restarse con 115. Por esta razón, coloca 4 en el cociente y continúa con los pasos anteriores.
  5. Baja la cifra siguiente del dividendo.
  6. Si divides 15 entre 2, obtienes 6. Colócalo en el cociente y repite los pasos anteriores.
    Como no existen más cifras del dividendo para bajar y el número que se obtuvo de la resta es menor que el divisor, entonces se culmina el ejercicios: 3.654 ÷ 25 = 146 y sobraron 4 unidades sin repartir (resto).
¡A practicar!

1. Resuelve las siguientes multiplicaciones:

a) 296 x 18

Solución
5.328
b) 593 x 29
Solución
17.197
c) 332 x 74
Solución
24.568
d) 375 x 16
Solución
6.000
e) 613 x 59
Solución
36.167

2. Resuelve las siguientes divisiones:

a) 4.739 ÷ 88

Solución
Cociente = 53; Resto = 75
b) 7.049 ÷ 41
Solución
Cociente = 171; Resto = 38
c) 9.370 ÷ 58
Solución
Cociente = 161; Resto = 32
d) 3.830 ÷ 40
Solución
Cociente = 95; Resto = 30
e) 5.378 ÷ 65
Solución
Cociente = 82; Resto = 48

RECURSOS PARA DOCENTES

Artículo “Trucos para aprender las tablas de multiplicar”

El siguiente artículo muestra algunas sugerencias para que el aprendizaje de las tablas de multiplicar sea más sencillo y significativo.

VER

Artículo “La tabla pitagórica”

Este artículo muestra esta útil herramienta en las primeras etapas del aprendizaje de las tablas.

VER

Enciclopedia “Números”

Con esta enciclopedia podrán estudiar los principales sistemas de numeración y las operaciones básicas de las matemáticas.

VER

CAPÍTULO 2 / TEMA 1

Adición y sustracción

En matemática existen cuatro operaciones básicas: adición, sustracción, multiplicación y división. De las dos primeras se desprenden las otras, lo que quiere decir que aprender a sumar y a restar es fundamental para resolver la mayoría de los ejercicios matemáticos y para realizar cuentas cotidianas como, por ejemplo, en compras del supermercado.

Elementos de la adición

La adición es una de las operaciones básicas de la aritmética que permite combinar dos o más números para obtener un total. Esta operación se representa con el símbolo “+” y es aplicada en los diferentes tipos de números: naturales, enteros, racionales, reales y complejos.

Una adición presenta dos partes básicas: los sumandos y la suma. Los sumandos son todos los números que se van a sumar y la suma se refiere al resultado.

La adición anterior tiene dos sumandos: 352 y 431, y el resultado o suma es 783. Es importante tener presente que en estos casos la palabra “suma” se emplea para hablar de la operación de adición y también para referirse al resultado.

¿Sabías qué?
La aritmética es una rama de la matemática que estudia los números y las operaciones elementales que se realizan con ellos.

Propiedades de la adición

La suma de números enteros cumple tres propiedades básicas:

Propiedad conmutativa

Sin importar cómo se ordenen los sumandos de una suma, el resultado siempre será el mismo. Por ejemplo:

Por lo tanto:

15 + 3 = 18

3 + 15 = 18

Propiedad asociativa

No importa como se agrupen los elementos de una suma, el resultado siempre será el mismo. Por ejemplo:

En el problema: 8 + 2 + 6, se pueden sumar primero el 8 y 2 para luego sumar el 6, o se pueden sumar el 2 y el 6 y después sumar el 8. Entonces:

8 + 2 = 10, 10 + 6 = 16

2 + 6 = 8; 8 + 8 = 16

Propiedad del elemento neutro

El cero es el único número que no altera el resultado en una suma, es decir, la suma de cualquier número con el cero es igual al mismo número:

5 + 0 = 5
45 + 0 = 45
219 + 0 = 219

Conocer las propiedades de la suma permite realizar cálculos de manera más rápida. Por ejemplo, si necesitamos sumar 6 + 85, es más fácil agregar mentalmente 6 a 85 que 85 a 6. También se usa la propiedad asociativa en la suma de números con diferentes cifras, estos se pueden ordenar de mayor a menor y luego realizar una suma por reagrupación más sencilla.

VER INFOGRAFÍA

Adición por reagrupación

Es un método en el que se agrupan las unidades, decenas, centenas, etc., de un número. Para resolver problemas de este tipo se suman primero las unidades, luego las decenas, después las centenas y así sucesivamente.

Pasos para resolver adiciones por reagrupación

  1. Colocar los sumandos uno debajo del otro de manera que los valores posicionales iguales estén ubicados en una misma columna: unidades con unidades, decenas con decenas, centenas con centenas…
  2. Sumar cada columna por separado a partir de las unidades. El resultado de la suma de cada columna se escribe en la parte inferior de esta.
  3. En caso de obtener un número de dos cifras al momento de sumar una columna, se anotará el número de la unidad de dicho número y la decena se sumará a la columna siguiente.

Con estos ejemplos podrás ver mejor cómo resolver una suma por reagrupación:

– Sumar 242 + 351

Lo primero es colocar los números uno debajo del otro según sus mismos valores posicionales.

Luego suma la columna de las unidades y anota el resultado debajo de dicha columna.

Repite el procedimiento anterior en las demás columnas de derecha a izquierda hasta completarlas todas. En este caso el resultado es: 242 + 351 = 593.

– Sumar 198 + 23

Ordena los números de la siguiente manera:

Cuando sumas la columna de las unidades tienes que 8 + 3 = 11, entonces solo debes colocar el 1 de la unidad y el 1 de la decena lo sumas en la siguiente columna. Anota el número en la parte superior de la columna para no olvidar sumarlo al final.

Suma la segunda columna. Allí tienes que 9 + 2 = 11, pero hay que sumarle 1 de la columna anterior, entonces el resultado de la segunda columna es 12. Anota el 2 de la unidad y el 1 de la decena lo sumas a la siguiente columna.

En la tercera columna solamente está el número 1, así que el 1 de la columna anterior se suma a este. Anota el resultado.

El resultado de la suma anterior es: 198 + 23 = 221. En caso de sumar la última columna y obtener un número de dos cifras, este se anotará exactamente igual en el resultado.

Elementos de la sustracción

La sustracción es otra operación básica de la aritmética que consiste en quitar una cantidad a otra, por eso se considera como la operación opuesta a la suma. Se representa con el símbolo “−”.

Este tipo de operación cuenta con un minuendo, número al cual se le quita cierta cantidad; un sustraendo, número que resta al minuendo; y la diferencia, resultado de la operación.

¿Sabías qué?
La diferencia de una resta es la cantidad que falta para que ambos números sean iguales.

Propiedades de la sustracción

La sustracción cumple con dos propiedades básicas:

Elemento neutro

El resultado de cualquier número y cero da como resultado el mismo número. Por ejemplo:

3 − 0 = 3

157 − 0 = 157

Elemento simétrico

El resultado de restar un número con su opuesto (número del mismo valor con signo opuesto) da como resultado el número cero.

5 − 5 = 0

74 − 74 = 0

¿Sabías qué?
En la sustracción no existen ni la propiedad conmutativa ni la asociativa.

Sustracción por reagrupación

Este tipo de problemas se realizan mediante la agrupación de los números uno debajo del otro de forma tal que valores posicionales entre las cifras de los números que se restan sean los mismos. Para las restas con naturales, el número mayor debe estar ubicado en la parte de arriba (minuendo) y el número menor debajo (sustraendo).

¿Sabías qué?
La resta por reagrupacion también es conocida como resta con llevada y sirve para restar una cifra mayor a una menor.
Pasos para resolver restas por reagrupación

  1. Colocar el minuendo y el sustraendo uno debajo del otro de manera que los valores posicionales iguales estén ubicados en la misma columna. El número mayor siempre debe estar ubicado en la parte de arriba.
  2. Comenzar a restar desde la columna de las unidades, de derecha a izquierda.
  3. Si en una columna se tiene que la cifra de arriba es menor que la de abajo, esta cifra toma prestado un valor posicional a la columna del minuendo de la izquierda.
  4. En caso de que la cifra del minuendo le haya “prestado” un valor posicional a la cifra de al lado, esta se reduce en una unidad y se debe considerar el nuevo valor de la cifra al momento de restar en su columna.

Con estos ejemplos podrás apreciar mejor cómo resolver una resta por reagrupación:

– Restar 425 − 263

Lo primero es colocar los números uno debajo del otro con sus valores posicionales iguales, todos ubicados en la misma columna.

Luego resta las cifras en la columna de las unidades.

Repite la resta en la columna de las decenas, pero como en este caso el 2 es menor que el 6, el 4 presta una centena al 2. De este modo, 4 centenas y 2 decenas, se convierten en 3 centenas y 12 decenas. Ahora sí es posible restar 12 menos 6 en la columna de las decenas.

 

Resta las cifras en la columna de las centenas. Como el 4 le prestó 1 al 2, entonces quedó en 3 centenas que al restarse con el 2 el resultado de la columna es 1.

Ejercicios

1. Resuelve las siguientes sumas:

a) 452 + 395 =

Solución
847
b) 256 + 122 =
Solución
378
c) 603 + 113 =
Solución
716
d) 126 + 460 =
Solución
586
e) 1.830 + 2.178 =
Solución
4.008

2. Resuelve las siguientes restas:

a) 853 − 741 =

Solución
112
b) 544 − 35 =
Solución
509
c) 1.789 − 1.354 =
Solución
435
d) 957 − 362 =
Solución
595
e) 4.780 − 3541 =
Solución
1.239
RECURSOS PARA DOCENTES

Artículo “Operaciones básicas de los números naturales y sus propiedades”

El presente artículo permite profundizar el tema de las operaciones básicas y de sus diferentes propiedades.

VER

Enciclopedia “Nana y Enriqueta en el país de las matemáticas”

Es una enciclopedia diseñada para explicar de manera didáctica los conceptos matemáticos básicos desde la realidad de los niños.

VER

Video “Suma y resta de números decimales”

En este video se muestra como realizar sumas en el conjunto de los números decimales.

VER

CAPÍTULO 1 / TEMA 5

SeCUENCIAS

Al contar los números naturales, ya sea de 1 en 1, 2 en 2, o de 5 en 5, se aplican secuencias de números ordenados que se rigen por ciertas reglas, de manera que cumplen con un orden establecido. Una de las más conocidas es la sucesión de Fibonacci, pero las secuencias pueden ser de varios tipos: finitas o infinas, ascendentes o descendentes.

SeCUENCIAS con figuras

Una secuencia es un conjunto de elementos que están relacionadas entre sí y que se encuentran ordenadas según un criterio.

En las secuencias ordenadas en función de un patrón de figuras, se observa que los objetos están organizados de acuerdo a uno o más atributos. Algunos ejemplos son:

  • Por tamaño:

  • Por color:

  • Por forma:

  • También pueden contener imágenes y patrones más complejos:

El orden de una secuencia numérica no siempre es el mismo, por ejemplo, los elementos pueden estar ordenados de forma ascendente, de manera alternada o de manera decreciente.

Partes de una secuencia numérica

Una de las primeras secuencias que la mayoría de las personas aprende es la secuencia de los números naturales y se expresa de la siguiente forma: \mathbb{N} = {1, 2, 3, 4 ,…} en donde cada uno de los números denominados elementos, se encuentran ordenados de 1 en 1. Los tres puntos suspensivos al final de la secuencia indican que los números continúan.

Las secuencias pueden ser infinitas, como pasa con los números naturales, que siguen la secuencia de manera ilimitada, y también pueden ser finitas como sucede con la secuencia de las vocales: {a, e, i, o, u}.

¿Sabías qué?
Las secuencias numéricas permiten desarrollar el razonamiento matemático.

Secuencias ascendentes y descendentes

– Secuencias ascendentes

Las secuencias numéricas tienen una regla que permite determinar el valor de cada término o elemento de la misma. Por ejemplo, cuando se cuentan los números de 2 en 2, en realidad se incrementan 2 números por cada elemento, es decir, la regla en este caso sería sumar 2 a cada elemento:

En la imagen se puede observar como cada elemento de la secuencia se incrementa por 2, esto significa que es una secuencia ascendente porque todos sus elementos van en aumento, por lo tanto, cada número es mayor que el anterior. Si a 2 se le suma 2, el resultado es 4 y si a este número se le suma 2 el resultado es 6, y así sucesivamente. En este caso, la secuencia numérica se representa como: {2, 4, 6, 8, …}.

– Secuencia descendente

Las secuencias descendentes, en cambio, se desarrollan en forma regresiva y cada número es menor que el anterior. En la siguiente imagen se puede observar un ejemplo de secuencia descendente:

La regla en esta secuencia descendente es restar 3 a cada número, de manera que es fácil calcular el número a continuación del 9, para ello realizamos la regla: 9 – 3 = 6, así, el número siguiente a 9 en esta secuencia es 6.

¿Sabías qué?
Hay secuencias ascendentes cuya regla consiste en multiplicar un número a cada elemento y secuencias descendentes donde se divide un número a cada elemento.

Números de Fibonacci

Son conocidos también como secuencia de Fibonacci. Su nombre proviene de quien la describió por primera vez en Europa: el matemático italiano Leonardo Fibonacci. Es una secuencia en la cual el número siguiente se obtiene al sumar los dos números anteriores a este y se detalla a continuación {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 ,…}. En la secuencia se puede observar que, por ejemplo, los dos números anteriores al 13 son el 5 y el 8, que al sumarlos dan como resultado al número siguiente: 5 + 8 = 13. Esto se cumple para todos los números de la secuencia.

VER INFOGRAFÍA

Divisiones y restas sucesivas

Antes de comenzar con este tema es importante recordar que multiplicar es lo mismo que sumar muchas veces el mismo número, por ejemplo:

4 x 3 = 12   es igual a   4 + 4 + 4= 12

Esto se debe a que la multiplicación está muy relacionada con la adición. Algo similar sucede con la división, la cual guarda relación con la resta. Por ejemplo, si se tiene la división 12 ÷ 3, hay que restarle 3 a 12 tantas veces como sea posible:

Al observar la imagen se razona que 12 fue restado 4 veces por el número 3. De esta manera se tiene que 12 ÷ 3 = 4.

Pasos para dividir a través de restas sucesivas

Las divisiones pueden realizarse a través de restas sucesivas de la siguiente manera:

  1. Resta el divisor al dividendo tantas veces como sea posible. Hazlo hasta que el resultado sea 0 o un número menor al divisor.
  2. Se cuenta el número de veces que se restó el divisor.
  3. El cociente de la división será igual al número de veces que se restó el divisor y el resto será igual al último número que dio como resultado la resta.

Otro ejemplo:

– Resuelve la división 30 ÷ 5

Se resuelve a través de los pasos anteriores, para simplificar se sugiere utilizar una tabla similar a esta:

El resultado es 30 ÷ 5 = 6, y se trata de una división exacta porque el resto es igual a 0.

A continuación se muestra otro ejemplo de división pero en este caso es inexacta:

En el ejercicio anterior 27 ÷ 4 = 6 pero existe un resto igual a 3, como 3 es menor que el divisor no se puede continuar las restas en este método.

Ejercicios

  1. Completa las siguientes oraciones:
    a. En las secuencias ________ todos sus elementos van en aumento.
    Solución
    ascendentes
    b. La secuencia {25, 20, 15, 10 , …} es una secuencia ______.
    Solución
    descendente
    c. Las divisiones pueden calcularse con el método de ______.
    Solución
    restas sucesivas
  2. Completa las siguientes secuencias numéricas:
    a. {50, 40, ___, 20, …}
    Solución
    30
    b. {12, ___, 8, 6, …}
    Solución
    10
    c) {15, 30, ___, 60, 75, …}
    Solución
    45
    d) { ___, 5.000, 4.000, 3.000, 2.000, …}
    Solución
    6.000
  3. Resuelve las siguientes divisiones a través de restas sucesivas
    a. 20 ÷ 5
    b. 24 ÷ 6
    c. 16 ÷ 5
    d. 20 ÷ 3
    Solución
RECURSOS PARA DOCENTES

Artículo “Sucesiones y series”

El siguiente artículo explica la diferencia entre una serie y una sucesión:

VER

Video “Aprendiendo restas por descomposición” 

El video muestra cómo realizar restas por descomposición que el docente puede emplear para relacionar la secuencias de sistema decimal con las secuencias numéricas estudiadas.

VER