Fracciones diversas
Las fracciones pueden clasificarse en dos grupos: fracciones propias y fracciones impropias. Estas clasificaciones dependen de la relación que exista entre el numerador y el denominador. Por otro lado, el denominador de una fracción también permite compararla con otra para saber si es homogénea o heterogénea.
Fracciones propias e impropias
Una fracción propia es aquella donde el denominador es mayor que el numerador. A este tipo de fracción también se la conoce como fracción pura. Las siguientes fracciones son ejemplos de fracciones propias o puras:
; ; ;
Al dividir el numerador entre el denominador de una fracción propia el resultado siempre estará comprendido entre cero (0) y uno (1), es decir:
Una fracción impropia es aquella cuyo numerador siempre es mayor que el denominador. Se la conoce también como fracción impura y algunos ejemplos son los siguientes:
; ; ;
Al dividir el numerador entre el denominador de una fracción impropia el resultado siempre será mayor a uno (1). Por ejemplo:
Son fracciones en las cuales la división entre el numerador y denominador es igual a un número entero. La fracción es una fracción aparente porque 8 ÷ 2 = 4 y el cuatro (4) es un número entero. Las fracciones aparentes se distinguen porque el numerador siempre es un múltiplo del denominador.
Fracciones homogéneas y heterogéneas
Como ya sabemos, el denominador en una fracción determina en cuántas partes está dividido el entero. Sin importar su numerador, dos fracciones son homogéneas si comparten el mismo denominador:
y son fracciones homogéneas porque su denominador es el mismo: 3. En las fracciones homogéneas el entero se ha dividido por la misma cantidad de partes:
Por otro lado, dos fracción son heterogéneas si sus denominadores son diferentes, es decir, el entero se dividió en partes diferentes para cada caso:
¿Qué es una fracción equivalente?
Equivalente quiere decir “de igual valor”, en este sentido, las fracciones equivalentes son aquellas que representan la misma cantidad. Las fracciones ; y son equivalentes:
1. Multiplica el numerador de la primera fracción por el denominador de la segunda.
2. Multiplica el numerador de la segunda fracción por el denominador de la primera.
3. Si los productos anteriores son iguales, entonces las fracciones son equivalentes.
– Determina si las fracciones y son equivalentes.
Lo primero que debemos hacer es multiplicar el numerador de la primera fracción que es 1 por el denominador de la segunda fracción que es 9. Luego multiplicamos el numerador de la segunda fracción que es 3 por el denominador de la primera fracción que también es 3.
En este caso ambas fracciones son equivalentes porque los productos cruzados son iguales.
– Determina si las fracciones y son equivalentes.
Realizamos los productos cruzados y comparamos los resultado:
Como el producto cruzado dio diferente, entonces, las fracciones no son equivalentes.
1. Determina si la fracción mostrada es propia o impropia.
a)
b)
c)
d)
2. Determina si las siguientes fracciones son homogéneas o heterogéneas.
a) y
b) y
c) y
d) y
3. ¿Cuál de las siguientes fracciones es equivalente a ?
a)
b)
c)
d)