CAPÍTULO 1 / TEMA 3

CONJUNTO DE LOS NÚMEROS RACIONALES

El conjunto de los números racionales está conformado por todos aquellos números que pueden ser expresados como una división. Entran en este grupo algunos números decimales y las fracciones. Tienen gran aplicación cotidiana para representar partes de un entero o porciones de una totalidad.

No podemos usar los números enteros para resolver todas las operaciones entre ellos. Por ejemplo, si cortamos una tabla de 1 metro en 2 partes iguales, ¿cuánto mide cada pedazo? La división 1 ÷ 2 no tiene solución dentro de los números enteros, por tal motivo, usamos el conjunto de los números racionales, en el que esta división se representa como 1/2.

¿Sabías qué?
La primera civilización en utilizar los números racionales fueron los egipcios.

¿QUÉ SON LOS NÚMEROS RACIONALES?

Son todos aquellos números que pueden representarse a través de una fracción. De ahí su nombre “racionales”, pues a las fracciones también se las conocen como “razones”.

El conjunto de los números racionales se denota con la letra \mathbb{Q}, que alude al término quotient que significa “cociente”, ya que todo número racional puede ser representado como una fracción con cociente igual a un número decimal.

VER INFOGRAFÍA

Los números racionales como subconjunto de los números reales

Los números racionales (\mathbb{Q}), en conjunto con los números enteros (\mathbb{Z}) y los irracionales (\mathbb{I}), conforman el conjunto de los números reales (\mathbb{R}), donde se encuentran todos los números naturales y decimales.

ELEMENTOS DE LOS NÚMEROS RACIONALES

Los números racionales se forman al dividir dos números enteros que dan como resultado un número decimal. Los números racionales son todos los números del tipo \frac{a}{b} donde a es el numerador y b es el denominador. Ambos elementos, a y b, son número enteros y b es distinto de cero.

Número irracionales

Toda fracción es un número racional. Sin embargo, no todo número decimal pertenece al conjunto de los números racionales, porque no todos tienen una fracción equivalente. Tal es el caso de los decimales no periódicos, los cuales pertenecen al conjunto de los números irracionales, denotados con la letra \mathbb{I}. En esta categoría se encuentran, por ejemplo, \sqrt{7}, \pi o cualquier número con decimales infinitos.

orden de los números racionales

Comparar racionales permite establecer una relación de orden en \mathbb{Q}. Cuando los racionales tienen igual denominador, será mayor aquel con mayor numerador. Por ejemplo, entre \frac{8}{3} y \frac{2}{3}\frac{8}{3} es mayor porque 8 > 2.

Cuando los racionales tienen denominadores diferentes tenemos que convertirlos en fracciones equivalentes de igual denominador y luego comparar. También podemos usar la siguiente regla:

Si \frac{a}{b} y \frac{c}{d} ∈ \mathbb{Q}, con b y d positivos

Se cumple que:

Si  a\times d> b\times c,  entonces   \frac{a}{b}> \frac{c}{d}

Si  a\times d< b\times c,  entonces   \frac{a}{b}< \frac{c}{d}

– Ejemplo:

\frac{8}{5}> \frac{6}{7}   porque  8\times 7> 5\times 6

\frac{4}{7}< \frac{3}{5}  porque  4\times 5< 7\times 3

Fracciones negativas

Si el numerador o el denominador de una fracción es un número negativo podemos escribir el signo “−” antes de la fracción.

\frac{-a}{b}=-\frac{a}{b}

\frac{a}{-b}=-\frac{a}{b}

Las fracciones negativas, al estar más a la izquierda en la recta numérica, son menores que las fracciones positivas.

REPRESENTACIÓN GRÁFICA

Los números racionales se suelen utilizar para expresar partes de una totalidad. Por ejemplo, “un 1/4 de la población mundial utiliza Internet” o “un 1/3 de la población vive en situación de pobreza”, o bien “un 1/2 de los habitantes del planeta son mujeres”. En general, resulta más representativo hablar de fracciones de un total que solo indicar la cantidad de personas.

Para graficar números racionales tenemos que identificar primero qué tipo de fracción es. Si la fracción es propia, es decir, si tiene el numerador menor al denominador, basta con dividir una figura geométrica en tantas partes como indique el denominador y colorear las partes que indique el denominador. Por ejemplo:

\boldsymbol{1=}

\boldsymbol{\frac{2}{2}=}

\boldsymbol{\frac{2}{3}=}

\boldsymbol{\frac{2}{4}=}

\boldsymbol{\frac{2}{5}=}

 

\boldsymbol{\frac{2}{6}=}

\boldsymbol{\frac{2}{7}=}

\boldsymbol{\frac{2}{8}=}

\boldsymbol{\frac{2}{9}=}

\boldsymbol{\frac{2}{10}=}

 

Si la fracción es impropia tenemos que dividir la figura en tantas partes como muestre el denominador y repetirla hasta que se coloreen todas las partes que señale el numerador. Estas fracciones siempre tendrán más de un entero, así que también podemos convertir la fracción impropia en número mixto y seguir los pasos anteriores. Por ejemplo:

\frac{20}{9}=2\frac{2}{9}=

\frac{10}{8}=1\frac{2}{8}=

Fracciones y porcentajes

Los gráficos circulares o de sectores son ampliamente utilizados en estadística y otras áreas en las que son una herramienta de gran utilidad para expresar partes de un todo, por lo que las fracciones son necesarias para determinar las porciones de colores. No obstante, es mucho más práctico hacer estos gráficos con datos mostrados en porcentajes: una forma de representar a una fracción decimal, cuyo denominador es 100.

Convertir fracciones en porcentajes es muy sencillo, solo tenemos que dividir el numerador entre el denominador y después multiplicar por 100 %. Por ejemplo, 1/4 es igual a 25 % porque 1 ÷ 4 = 0,25 y 0,25 × 100 % = 25 %.

¡A practicar!

1. Señala cuáles números son racionales y cuáles son irracionales.

  • \frac{4}{5}
Solución
Es un número racional.
  • \sqrt{2}
Solución
Es un número irracional.
  • \frac{\pi }{3}
Solución
Es un número irracional.
  • \frac{1}{4}
Solución
Es un número racional.

2. Ordena de menor a mayor los siguientes número racionales.

  • \frac{8}{5}\frac{6}{7}\frac{2}{9}\frac{1}{2}
Solución
\frac{2}{9} < \frac{1}{2} < \frac{6}{7} < \frac{8}{5}
  • \frac{10}{3}\frac{6}{8}\frac{2}{3}\frac{5}{2}
Solución
\frac{2}{3} < \frac{6}{8} < \frac{5}{2} < \frac{10}{3}

  • -\frac{8}{4}\frac{3}{7}1\frac{2}{5}
Solución
-\frac{8}{4} < \frac{2}{5} < \frac{3}{7} < 1

3. ¿Qué fracción representan estos gráficos?

Solución
\frac{7}{3}
Solución
\frac{2}{9}
Solución
\frac{8}{5}
Solución
\frac{4}{10}
RECURSOS PARA DOCENTES

Artículo “¿Cómo transformar un número decimal a fracción?”

En este artículo hallará el método y la explicación para obtener la fracción generatriz de un número decimal.

VER

Artículo “La recta numérica”

En este recurso encontrará un método para representar números racionales en la recta real.

VER

Artículo “La clasificación de los números”

En este artículo encontrará la clasificación de los diferentes conjuntos numéricos, a fin de identificar en qué categoría o a qué subconjunto pertenecen los números racionales.

VER

CAPÍTULO 5 / TEMA 3

FRACCIONES Y SUS GRÁFICAS

CUANDO CONTAMOS NUESTROS JUGUETES O LÁPICES USAMOS LOS NÚMEROS NATURALES: 1, 2, 3, … PERO ¿QUÉ SUCEDE SI SOLO TENEMOS LA MITAD DE UN LÁPIZ? EN ESTOS CASOS USAMOS UN TIPO DE NÚMEROS LLAMADO FRACCIÓN. LAS FRACCIONES REPRESENTAN UNA PARTE DE UN ENTERO, ESTÁN FORMADAS POR DOS NÚMEROS NATURALES Y SON MÁS COMUNES DE LOS QUE CREES. ¡APRENDAMOS A GRAFICARLAS!

¿QUÉ ES UNA FRACCIÓN?

UNA FRACCIÓN REPRESENTA LA PARTE DE UN TODO O DE UNA UNIDAD DIVIDIDA EN PARTES IGUALES.

UNA NARANJA ENTERA ES IGUAL A UNA UNIDAD O EL “TODO”. OBSERVA LA IMAGEN, ¿LA NARANJA ESTÁ ENTERA? ¡NO! ESTÁ PICADA A LA MITAD Y HAY DOS MITADES. SI COMEMOS UNA DE ESTAS PARTES, DECIMOS QUE COMIMOS “MEDIA NARANJA”. ESTO ES UN EJEMPLO DE FRACCIÓN PORQUE COMIMOS UNA PARTE DE UN TODO. PIENSA: ¿EN QUÉ OTRA OCASIÓN USAMOS FRACCIONES?

VER INFOGRAFÍA

ELEMENTOS DE UNA FRACCIÓN

LA FRACCIÓN TIENE DOS ELEMENTOS SEPARADOS POR UNA RAYA: EL NÚMERO DE ARRIBA SE LLAMA NUMERADOR Y EL DE ABAJO SE LLAMA DENOMINADOR.

  • EL NUMERADOR ES IGUAL A LA CANTIDAD DE PARTES QUE SE HAN TOMADO DEL ENTERO.
  • EL DENOMINADOR ES IGUAL A LA CANTIDAD DE PARTES EN LAS QUE SE HA DIVIDIDO AL ENTERO.

TIPOS DE FRACCIONES

LAS FRACCIONES PUEDEN SER PROPIAS O IMPROPIAS.

  • LAS FRACCIONES PROPIAS TIENEN EL NUMERADOR MENOR AL DENOMINADOR.

POR EJEMPLO: \frac{1}{2}\frac{3}{5} Y \frac{8}{10}.

  • LAS FRACCIONES IMPROPIAS TIENEN EL NUMERADOR MAYOR AL DENOMINADOR.

POR EJEMPLO: \frac{7}{5}\frac{10}{4} Y \frac{5}{3}.

¿SABÍAS QUÉ?
LAS FRACCIONES TAMBIÉN SE PUEDEN EXPRESAR CON UNA DIAGONAL, POR EJEMPLO,\frac{1}{2} ES IGUAL A 1/2.

¿CÓMO GRAFICAR FRACCIONES?

AL SER LAS PARTES DE UN TODO O UNIDAD, PODEMOS DIBUJAR FRACCIONES POR MEDIO DE GRÁFICOS CON FIGURAS GEOMÉTRICAS.

SI QUEREMOS GRAFICAR LA FRACCIÓN \boldsymbol{\frac{1}{2}} LOS PASOS SON LOS SIGUIENTES:

1. DIBUJAMOS CUALQUIER FIGURA GEOMÉTRICA. EN ESTE CASO DIBUJAMOS UN RECTÁNGULO.

2. VEMOS EL DENOMINADOR DE LA FRACCIÓN. EL DENOMINADOR DE LA FRACCIÓN \boldsymbol{\frac{1}{{\color{Red} 2}}} ES 2, ASÍ QUE DIVIDIMOS EL RECTÁNGULO EN 2 PARTES IGUALES.

3. VEMOS EL NUMERADOR DE LA FRACCIÓN. EL NUMERADOR DE LA FRACCIÓN \boldsymbol{\frac{{\color{Red} 1}}{2}} ES 1, ASÍ QUE COLOREAMOS UNA SOLA PARTE DEL RECTÁNGULO.

 

– OTRO EJEMPLO:

GRAFIQUEMOS LA FRACCIÓN \boldsymbol{\frac{3}{4}}.

PRIMERO DIBUJAMOS LA FIGURA GEOMÉTRICA QUE REPRESENTA AL “TODO”.

¿CUÁL ES EL DE DENOMINADOR? EL DENOMINADOR ES 4. ASÍ QUE DIVIDIMOS LA FIGURA EN 4 PARTES IGUALES.

¿CUÁL ES EL NUMERADOR? EL NUMERADOR ES 3. ENTONCES, COLOREAMOS 3 PARTES DE LA FIGURA.

¡ES TU TURNO!

REALIZA EL GRÁFICO DE ESTAS FRACCIONES:

  • \boldsymbol{\frac{2}{5}}
SOLUCIÓN

  • \boldsymbol{\frac{2}{3}}
SOLUCIÓN

LAS FRACCIONES SON UN TIPO ESPECIAL DE NÚMEROS Y SE LEEN DE UNA MANERA DIFERENTE A LOS DEMÁS. PRIMERO LEEMOS EL NUMERADOR COMO CUALQUIER NÚMERO NATURAL. EL DENOMINADOR CAMBIA SEGÚN EL NÚMERO, SI ES 2 SE LEE “MEDIOS”, SI ES 3 SE LEE “TERCIOS” Y SI ES 4 SE LEE “CUARTOS”. ASÍ, LA FRACCIÓN 1/2 SE LEE “UN MEDIO” Y LA FRACCIÓN 1/3 SE LEE “UN TERCIO”.

FRACCIONES EN LA VIDA COTIDIANA

LAS FRACCIONES FORMAN PARTE DE NUESTRO DÍA A DÍA. USAMOS FRACCIONES CADA VEZ QUE COMPRAMOS PAN, FRUTAS O VEGETALES, PUES PODEMOS PEDIR MEDIO KILOGRAMO DE ALGO. TAMBIÉN USAMOS FRACCIONES CUANDO DAMOS LA HORA Y DECIMOS, POR EJEMPLO, “SON LAS DOS Y CUARTO” LO QUE SIGNIFICA QUE HA PASADO 1/4 DE HORA DESPUÉS DE LAS 2.

– OTRAS SITUACIONES:

  • AL CORTAR UNA FRUTA EN DOS PARTES Y COMER UNA: 
  • AL CORTAR UNA PIZZA EN 4 PARTES Y COMER 2: 
  • AL COMPRAR PRODUCTOS:  KILO DE HARINA.
  • AL REALIZAR UNA PARTE DE UN RECORRIDO. LAURA RECORRIÓ  DE UNA CARRERA.
EN VARIAS SITUACIONES DE NUESTRA VIDA ENCONTRAMOS FRACCIONES DE FORMA GRÁFICA. UN EJEMPLO COMÚN DE FRACCIONES ES CUANDO REPARTIMOS UN PASTEL. EN LA IMAGEN VEMOS UNO CORTADO EN 8 PARTES IGUALES, ES DECIR, EL DENOMINADOR ES 8. TAMBIÉN VEMOS QUE SE TOMA 1 PARTE, ASÍ QUE EL NUMERADOR ES 1 Y LA FRACCIÓN DE ESE PEDAZO ES 1/8. LA TORTA TIENE FORMA DE CÍRCULO Y ES SIMILAR AL GRÁFICO DE LA FRACCIÓN.

¡A PRACTICAR!

ESCRIBE LA FRACCIÓN PARA CADA GRÁFICO:

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 2

PARTES COLOREADAS: 1

FRACCIÓN: \boldsymbol{\frac{1}{2}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 5

PARTES COLOREADAS: 1

FRACCIÓN: \boldsymbol{\frac{1}{5}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 3

PARTES COLOREADAS: 2

FRACCIÓN: \boldsymbol{\frac{2}{3}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 4

PARTES COLOREADAS: 3

FRACCIÓN: \boldsymbol{\frac{3}{4}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 4

PARTES COLOREADAS: 2

FRACCIÓN: \boldsymbol{\frac{2}{4}}

RECURSOS PARA DOCENTES

Artículo “Fracciones”

Este recurso cuenta con ejemplos didáctico sobre los tipos de fracciones y cómo graficarlos.

VER

CAPÍTULO 3 / TEMA 6 (REVISIÓN)

FRACCIONES Y PORCENTAJES | REVISIÓN

LAS FRACCIONES Y SUS USOS

En toda fracción podemos distinguir dos partes principales: el numerador y el denominador, ambos se encuentran separados por una línea horizontal. El denominador indica en cuántas partes se divide la unidad y el numerador señala cuántas de esas partes se han de tomar. Las fracciones se pueden clasificar en propias, impropias y aparentes. Las fracciones propias son aquellas en las que el numerador es menor que el denominador y representan un número menor a uno. Las fracciones impropias son la que tienen el numerador mayor que el denominador y representan a un número mayor a uno. Las fracciones aparentes son aquellas cuyo numerador es múltiplo de su denominador.

Además de la raya horizontal también podemos representar a las fracciones con una raya diagonal “/” o con el símbolo de las divisiones “÷”.

FRACCIONES EQUIVALENTES

Decimos que dos o más fracciones son equivalentes cuando todas ellas representan a la misma cantidad. Las fracciones equivalentes se pueden obtener por medio de dos métodos: amplificación y simplificación. Para obtener fracciones equivalentes por amplificación debemos multiplicar al numerador y al denominador de la fracción por un mismo número, distinto de cero. Para obtenerlas por simplificación, debemos dividir al numerador y al denominador de la fracción por un mismo número, distinto de cero y que sea un divisor común entre ambos. Es importante recordar que las fracciones equivalentes se pueden utilizar para sumar y restar fracciones heterogéneas (que tienen distinto denominador).

Media sandía se puede expresar como 1/2, 2/4, 4/8, 8/16, 16/32… Todas ellas son fracciones equivalentes que indican la mitad de un entero.

OPERACIONES CON FRACCIONES

La suma y resta de fracciones depende del tipo de estas. En las fracciones homogéneas (mismo denominador) se suman o restan los numeradores y se conserva el mismo denominador. En las fracciones heterogéneas (diferente denominador) se debe multiplicar el numerador de la primera fracción por el denominador de la segunda y el resultado se suma o se resta al producto del numerador de la segunda fracción por el denominador de la primera, el número obtenido es el numerador de la fracción resultante; luego se multiplican ambos denominadores y el número obtenido corresponderá al denominador de la fracción resultante. Para la multiplicación se multiplican los numeradores y denominadores de forma lineal. Para la división, se debe multiplicar en forma de cruz: el numerador de la primera fracción por el denominador de la segunda es igual al numerador de la fracción resultante y el numerador de la segunda fracción por el denominador de la primera es igual al denominador de la fracción resultante.

Algunas fracciones se pueden simplificar, es decir, pueden expresarse en fracciones equivalentes más sencillas

FRACCIONES MIXTAS

Una fracción mixta o número mixto es una forma de representar a una cantidad  compuesta por una parte entera y una parte fraccionaria. Para graficarla, dividimos al entero en tantas partes como indique el denominador de la parte fraccionaria. Luego, pintamos tantos enteros (completos) como indique el número entero de la fracción mixta. Por último, dibujamos otro entero y pintamos tantas partes de este como indique el numerador de la fracción mixta. Para transformar una fracción mixta a una fracción convencional, lo que se realiza es sumar la parte entera con la parte fraccionaria. Siempre se debe obtener una fracción impropia.

En este caso la parte entera de la fracción mixta es 2, y la parte fraccionaria es 1/3. Se lee “dos enteros y un tercio”.

PORCENTAJES

Un porcentaje, al igual que una fracción, es una forma de indicar una parte de un todo. Un porcentaje siempre representa a una fracción decimal cuyo denominador es 100. El símbolo que utilizamos para indicar un porcentaje es %. Para calcular el porcentaje de una cantidad conocida se multiplican ambos valores y se divide entre 100. Para convertir cualquier fracción a porcentaje, debemos dividir el numerador con el denominador, y luego multiplicar dicho resultado por cien. Por otro lado, para convertir un porcentaje a fracción, simplemente colocamos el porcentaje en el numerador y 100 como denominador, posteriormente se realiza una simplificación.

Los porcentajes se utilizan para indicar descuentos y recargos. También se utilizan en la estadística y en la economía.

CAPÍTULO 4 / TEMA 3

ORDEN DE FRACCIONES

Si tienes que elegir entre 1/2 de pizza o 3/4 de pizza, ¿cuál elegirías? Para responder esta pregunta es importante que sepas comparar distintos tipos de fracciones. Estas expresiones matemáticas constan de un numerador y un denominador, y según la relación entre ellos pueden ser mayores o menores que otras. ¡Aprende cómo ordenar fracciones!

Una fracción es una división entre dos números: un numerador y un denominador. El denominador indica en cuantas partes se divide la unidad y el numerador señala cuántas de esas partes se han de tomar. Si el numerador es menor que el denominador, la fracción es propia; pero si es mayor al denominador, la fracción es impropia.

Ubicación de fracciones en la recta numérica

Fracciones propias

Las fracciones propias son aquellas que tienen el numerador menor al denominador, por lo que siempre son menores a 1. Para ubicar estas fracciones en la recta numérica dividimos a la unidad en tantos segmentos como indique el denominador de la fracción que queremos representar. Luego, contamos tantos espacios como indique el numerador a partir del cero.

– Ejemplo:

La fracción \frac{4}{5} es propia porque su numerador es menor al denominador (4 < 5).

Para representarla en la recta dividimos el segmento entre el 0 y el 1 en 5 espacios (denominador). Después contamos 4 espacios (numerador) y ubicamos la fracción.

Fracciones impropias

Las fracciones impropias son aquellas cuyo numerador es mayor al denominador, por lo que siempre son mayores a 1. Para representar este tipo de fracciones en la recta numérica tenemos que transformarlas a números mixtos.

¿Qué es un número mixto?

Es aquel que tiene una parte entera y una parte fraccionaria. Por ejemplo:

\boldsymbol{2\frac{1}{2}=} 

Este número mixto se lee “dos enteros y un medio”.

¿Cómo transformar una fracción impropia a un número mixto?

Realiza la división entre el numerador y el denominador. Al terminar con la cuenta, el cociente de la división indica el entero del número mixto; el resto junto al divisor van a conformar la parte fraccionaria: el resto será el numerador y el divisor será el denominador.

– Ejemplo:

¿Cuál es el número mixto equivalente a la fracción \frac{5}{2}?

Por lo tanto:

\boldsymbol{\frac{5}{2}=2\frac{1}{2}}

 

De este modo, para poder representar el número mixto 2\frac{1}{2} en la recta numérica consideramos el número entero, en este caso el 2, y a partir de este seguimos los mismos pasos que en las fracciones propias: dividimos el segmento entre el 2 y el 3 en 2 segmentos iguales (denominador), después contamos un espacio (numerador) y ubicamos la fracción.

VER INFOGRAFÍA

¡Es tu turno!

Representa las siguientes fracciones en una recta numérica.

  • \frac{7}{5}
Solución

Como la fracción es impropia, la transformamos a número mixto.

\boldsymbol{\frac{7}{5}=1\frac{2}{5}}

  • \frac{1}{5}
Solución

  • \frac{8}{10}
Solución

  • \frac{9}{6}
Solución

Como la fracción es impropia, la transformamos a número mixto.

\boldsymbol{\frac{9}{6}=1\frac{3}{6}}

 

Las fracciones representan una parte del todo. No solo son importantes en el ámbito escolar, sino que son muy utilizadas en la vida diaria. Usamos fracciones cada vez que partimos un pastel, cuando pedimos media docena de empanadas o cuando cortamos la mitad de un pan. También vemos fracciones en las etiquetas de los productos, por ejemplo, 1/2 litro de jugo.

comparación de fracciones

Cuando comparamos fracciones, determinamos cuál es mayor o menor que otra. Para esto, debemos tomar en cuenta sus elementos y ver si los denominadores son iguales o si sus numeradores son iguales.

Comparar fracciones con igual denominador

Entre dos fracciones con igual denominador será mayor la fracción que tenga mayor numerador.

– Ejemplo:

\boldsymbol{\frac{8}{3}>\frac{6}{3}}

Observa que los denominadores son iguales (3 = 3) pero los numeradores no; y como 8 > 6, la fracción 8/6 es mayor que 6/3.

Comparar fracciones con igual numerador

Entre dos fracciones con igual numerador será mayor la fracción que tenga menor denominador.

– Ejemplo:

\boldsymbol{\frac{12}{5}<\frac{12}{4}}

Observa que los numeradores son iguales (12 = 12) pero los denominadores no; y como 5 > 4, la fracción 12/4 es mayor que 12/5.

Fracciones con distintos numeradores y denominadores

Cuando las dos fracciones tienen numeradores y denominadores diferentes, buscamos homogeneizar, es decir, encontrar fracciones equivalentes con igual denominador.

¿Cómo homogeneizar dos fracciones?

Para encontrar las fracciones equivalentes con igual denominador de unas fracciones seguimos estos pasos:

  1. Determinamos el mínimo común múltiplo de los denominadores. Ese será el denominador de las fracciones equivalentes.
  2. Encontramos el número por el que hay que multiplicar el numerador y el denominador de las fracciones.

– Ejemplo:

Homogeneiza las fracciones \boldsymbol{\frac{2}{3}} y \boldsymbol{\frac{3}{4}}. Luego compara.

1. Calculamos el m. c. m. de los denominadores 3 y 4.

2. Encontramos el número por el que hay que multiplicar el numerador y el denominador de las fracciones.

Como 3 × 4 = 12, entonces también multiplicamos el numerador por 4.

\frac{2}{3}=\frac{2\times 4}{12}=\boldsymbol{ \frac{8}{12}}

Como 4 × 3 = 12, entonces también multiplicamos el numerador por 3.

\frac{3}{4}=\frac{3\times 3}{12}=\boldsymbol{\frac{9}{12}}

 

Ahora es más sencillo comparar las fracciones, pues tenemos fracciones homogéneas por lo que seguimos los pasos anteriores: entre dos fracciones con igual denominador será mayor la fracción que tenga mayor numerador. Así que:

\boldsymbol{\frac{9}{12}>\frac{8}{12}} Como \frac{9}{8} es la fracción equivalente de \frac{3}{4}; y \frac{8}{12} es la fracción equivalente de \frac{2}{3}, podemos decir que:

\boldsymbol{\frac{3}{4}>\frac{2}{3}}

 

¿Sabías qué?
En el año 1800 a. C. el pueblo babilonio introdujo las fracciones.

Comparación de números mixtos

Entre dos números mixtos, será mayor aquel que tenga mayor parte entera. Por ejemplo:

\boldsymbol{2\frac{3}{4}<3\frac{5}{3}}

Pero si las partes enteras son iguales, comparamos la parte fraccionaria por medio de cualquier de los métodos aplicados anteriormente. Por ejemplo:

\boldsymbol{1\frac{4}{6}>1\frac{1}{6}}

Las dos partes entera son iguales (1 = 1), pero las partes fraccionarias no. Como ves, ambas son fracciones homogéneas porque los denominadores son iguales (6 = 6), así que comparamos los numeradores, y como 4 > 1, el número mixto 1\frac{4}{6} es mayor que 1\frac{1}{6}.

Un uso muy popular de las fracciones es cuando damos la hora. Por ejemplo, cuando decimos que son “las dos y media”, hacemos referencia a un número mixto en la que la parte entera es 2, y la parte fraccionaria es 1/2. También ocurre cuando decimos que “son las cinco y cuarto”, allí la parte entera es 5 y la parte fraccionaria es 1/4.

 

¡A practicar!

1. Representa las siguientes fracciones en la recta numérica.

  • \frac{4}{9}
Solución

  • \frac{9}{5}
Solución

\frac{9}{5}=1\frac{4}{5}

  • \frac{2}{10}
Solución

  • 6\frac{3}{5}
Solución

 

2. Compara los siguientes números mixtos.

  • 4\frac{1}{6} y 2\frac{1}{2}
Solución
4\frac{1}{6}>2\frac{1}{2}
  • 1\frac{7}{8} y 2\frac{2}{6}
Solución
1\frac{7}{8}<2\frac{2}{6}
  • 1\frac{1}{3} y 1\frac{2}{6}
Solución
1\frac{1}{3}=1\frac{2}{6} porque \frac{1}{3}=\frac{2}{6}
  • 1\frac{5}{6} y 1\frac{1}{2}
Solución
1\frac{5}{6}>1\frac{1}{2}
RECURSOS PARA DOCENTES

Artículo “Partes y porciones”

En este artículo podrás ampliar la información sobre la comparación de fracciones por medio del método del común denominador (sin utilizar recta numérica).

VER

Enciclopedia “Enciclopedia de Matemáticas Primaria”

Con el Tomo 2 de esta enciclopedia podrás profundizar en el concepto de fracciones y su clasificación, así como en la comparación de fracciones y números mixtos.

VER

Artículo “Clasificación de fracciones”

En este artículo podrás encontrar más información sobre la clasificación de fracciones.

VER

CAPÍTULO 3 / TEMA 6 (REVISIÓN)

Fracciones | ¿Qué aprendimos?

¿Qué son las fracciones?

Una fracción está formada por dos términos principales: el numerador y el denominador. Estos son números enteros que están separados por una línea horizontal denominada raya divisoria o raya fraccionaria. Una fracción es la división de un entero o una unidad en partes iguales. El numerador indica las partes a considerar de esa división y el denominador indica las partes en las que se dividió el entero o unidad. Estos números son más antiguos que lo que se piensa y están relacionados con la división.

Las fracciones están presentes en la vida cotidiana, sobre todo en las mediciones usadas en la cocina, pero también están presentes en algunas monedas.

Fracciones diversas

De acuerdo a la relación que exista entre el numerador y el denominador, las fracciones pueden ser propiasimpropias. Las fracciones propias son aquellas en las que el numerador es menor que el denominador, contrario a las fracciones impropias, en las que el numerador es mayor que el denominador. Por otro lado, si comparamos dos o más fracciones, estas pueden ser homogéneas o heterogéneas. Las fracciones homogéneas son las que poseen el mismo denominador, las heterogéneas, en cambio, presentan diferentes denominadores.

Las fracciones pueden expresarse en forma de gráfica o viceversa. Lo emocionante de ellas es que las usamos a diario para dividir cosas o cantidades.

Gráficas de fracciones

Las fracciones suelen expresarse en gráficos para interpretar de manera más sencilla los datos. La forma para representar estos gráficos dependen del tipo de fracción. Si la fracción es propia elegimos cualquier figura, la dividimos en partes iguales según el denominador y señalamos las partes que indique el numerador. Cuando se trata de una fracción impropia dividimos una figura geométrica en las partes que señale el denominador, pero debido a que en este tipo de fracción el numerador es mayor que el denominador, serán necesarias más de una figuras.

Los números mixtos son un tipo de número fraccionario que posee una parte entera y otra fraccionaria.

Orden de fracción

Las fracciones presentan un sentido de orden, es decir, hay fracciones que son mayores o menores que otras. Una herramienta muy útil para reconocer este orden es la recta numérica. Se trata de un gráfico en forma de línea horizontal en el que los números están ordenados de menor a mayor. Para ubicar fracciones propias en la recta numérica dividimos la unidad en segmentos iguales según indique el denominador y la fracción se ubicaría en el número de segmento indicado por el numerador. Las fracciones impropias, por su parte, deben ser transformadas en números mixtos.

En la recta numérica, si se toma un número como referencia, los números de su izquierda son menores a él y los de la derecha mayores.

Problemas con fracciones

Las fracciones, además de ayudarnos a resolver problemas que impliquen proporciones, nos permiten resolver las operaciones básicas matemáticas como la adición, la sustracción, la multiplicación y al división. En el caso de la adición y la sustracción de fracciones debemos tener en cuenta su tipo: si las fracciones son homogéneas sumamos o restamos los numeradores y colocamos el denominador, si son heterogéneas usamos el método de cruz para resolverlas. Las multiplicaciones se resuelven de forma lineal, al multiplicar los numeradores y los denominadores.

La adición y sustracción de fracciones heterogéneas suele realizarse por el método en cruz que permite calcular de manera directa fracciones equivalentes.

CAPÍTULO 3 / TEMA 2

Fracciones diversas

Las fracciones pueden clasificarse en dos grupos: fracciones propias y fracciones impropias. Estas clasificaciones dependen de la relación que exista entre el numerador y el denominador. Por otro lado, el denominador de una fracción también permite compararla con otra para saber si es homogénea o heterogénea.

Fracciones propias e impropias

Una fracción propia es aquella donde el denominador es mayor que el numerador. A este tipo de fracción también se la conoce como fracción pura. Las siguientes fracciones son ejemplos de fracciones propias o puras:

\frac{1}{8}\frac{5}{33}\frac{9}{10}\frac{97}{99}

Al dividir el numerador entre el denominador de una fracción propia el resultado siempre estará comprendido entre cero (0) y uno (1), es decir:

\frac{1}{8}= 0,125

\frac{5}{33}=0,\widehat{15}

\frac{1}{9} = 0,\widehat{1}

\frac{97}{99}=0,\widehat{97}

 

¿Sabías qué?
De acuerdo a cada país se pueden usar los términos fracción propia o pura e impropia o impura para referirse a los mismos tipos de fracciones.

Una fracción impropia es aquella cuyo numerador siempre es mayor que el denominador. Se la conoce también como fracción impura y algunos ejemplos son los siguientes:

\frac{5}{2}\frac{7}{3}\frac{14}{5}\frac{3}{2}

Al dividir el numerador entre el denominador de una fracción impropia el resultado siempre será mayor a uno (1). Por ejemplo:

\frac{5}{2}=2,5

\frac{7}{3}=2,\widehat{3}

\frac{14}{5}=2,8

\frac{3}{2}=1,5

 

Fracciones aparentes

Son fracciones en las cuales la división entre el numerador y denominador es igual a un número entero. La fracción \frac{8}{2} es una fracción aparente porque 8 ÷ 2 = 4 y el cuatro (4) es un número entero. Las fracciones aparentes se distinguen porque el numerador siempre es un múltiplo del denominador.

Fracciones homogéneas y heterogéneas

Como ya sabemos, el denominador en una fracción determina en cuántas partes está dividido el entero. Sin importar su numerador, dos fracciones son homogéneas si comparten el mismo denominador:

\frac{1}{3} y \frac{2}{3} son fracciones homogéneas porque su denominador es el mismo: 3. En las fracciones homogéneas el entero se ha dividido por la misma cantidad de partes:

Por otro lado, dos fracción son heterogéneas si sus denominadores son diferentes, es decir, el entero se dividió en partes diferentes para cada caso:

¿Qué es una fracción equivalente?

Equivalente quiere decir “de igual valor”, en este sentido, las fracciones equivalentes son aquellas que representan la misma cantidad. Las fracciones \frac{1}{2}\frac{2}{4} y \frac{3}{6} son equivalentes:

Pasos para determinar si dos fracciones son equivalentes

1. Multiplica el numerador de la primera fracción por el denominador de la segunda.

2. Multiplica el numerador de la segunda fracción por el denominador de la primera.

3. Si los productos anteriores son iguales, entonces las fracciones son equivalentes.

– Determina si las fracciones \frac{1}{3} y \frac{3}{9} son equivalentes.

Lo primero que debemos hacer es multiplicar el numerador de la primera fracción que es 1 por el denominador de la segunda fracción que es 9. Luego multiplicamos el numerador de la segunda fracción que es 3 por el denominador de la primera fracción que también es 3.

En este caso ambas fracciones son equivalentes porque los productos cruzados son iguales.

– Determina si las fracciones \frac{2}{5} y \frac{3}{4} son equivalentes.

Realizamos los productos cruzados y comparamos los resultado:

Como el producto cruzado dio diferente, entonces, las fracciones no son equivalentes.

Existen otras maneras para comprobar fracciones equivalentes, una de las más conocidas es transformar las fracciones a decimales, es decir; dividir el numerador de cada una entre su denominador correspondiente, ambos resultados deben ser iguales para que sean consideradas fracciones equivalentes; por ejemplo; 1/2 y 2/4 son equivalentes porque 1 ÷ 2 = 0,5 y 2 ÷ 4 =0,5.
¡A practicar!

1. Determina si la fracción mostrada es propia o impropia.

a) \frac{23}{40}

Solución
Propia.

b) \frac{3}{2}

Solución
Impropia.

c) \frac{2}{5}

Solución
Propia.

d) \frac{12}{11}

Solución
Impropia.

2. Determina si las siguientes fracciones son homogéneas o heterogéneas.

a) \frac{7}{10} y \frac{9}{10}

Solución
Son fracciones homogéneas.

b) \frac{11}{6} y \frac{14}{9}

Solución
Son fracciones heterogéneas.

c) \frac{13}{4} y \frac{9}{4}

Solución
Son fracciones homogéneas.

d) \frac{58}{7} y \frac{58}{17}

Solución
Son fracciones heterogéneas.

3. ¿Cuál de las siguientes fracciones es equivalente a \frac{5}{2}?

a) \frac{2}{5}

b) \frac{10}{2}

c) \frac{52}{10}

d) \frac{15}{6}

Solución
d) \frac{15}{6}

RECURSOS PARA DOCENTES

Artículo “Clasificación de fracciones”

Este artículo destacado trata sobre las características principales de las fracciones y los diferentes criterios para clasificarlas. También se muestran una serie de ejemplos que facilitan su comprensión.

VER

Micrositio “Tarjetas educativas – Operaciones matemáticas”

En el siguiente micrositio se presentan las principales operaciones matemáticas, especialmente las operaciones básicas realizadas con fracciones.

VER

Video “Fracciones decimales”

Este video permite convertir números decimales en fracciones y con ello se puede establecer una relación con las fracciones propias.

VER

CAPÍTULO 3 / TEMA 1

¿Qué son las fracciones?

Las fracciones, a diferencia de los números enteros, permiten expresar proporciones de algo. Son útiles en la vida cotidiana y se usan con más frecuencia de lo que piensas. Frases como “un cuarto de kilo” o “un tercio de taza” son algunos ejemplos. En matemática son tan relevantes que forman su propio conjunto de números: los racionales. 

Partes de una fracción

Una fracción resulta de dividir un número entero en partes iguales. En matemática es representada por dos números enteros ,denominados términos, que están separados por una línea horizontal, denominada raya de división o raya fraccionaria.

Los números que componen a una fracción se denominan numerador y denominador. El primero está ubicado en la parte superior de la raya de división y el segundo está en la parte inferior de esta. El numerador indica el número de partes que se han tomado de un entero, mientras que el denominador representa el número de partes en que se ha dividido el entero.

 

Podemos expresar las fracciones con una línea divisoria horizontal o diagonal. En este sentido, a la fracción \frac{1}{2} también la podríamos expresar como 1/2.

Para entender el significado de la fracción anterior imaginemos que una pizza representa el “todo”, es decir, sería el entero que queremos dividir, el denominador de una fracción representa el número de partes que se ha dividido el entero, lo que nos permite concluir que la pizza se ha dividido en dos parte. Por otro lado, el numerador representa el número de partes que se ha tomado, en este ejemplo es 1, lo que quiere decir que 1/2 de pizza sería una de las dos porciones de la pizza.

La expresión 1/2 de pizza sería lo mismo que dividir la pizza en dos partes iguales y tomar una de esas partes. En la cocina se emplean fracciones para hablar de unidades de medición como tazas de ingrediente, por ejemplo: 1/2 de taza de harina, 1/3 de taza de agua, etc. Recuerda que el denominador indica cuántas veces se ha dividido algo en partes iguales (una taza, un litro, una naranja…).
¿Sabías qué?
El denominador de una fracción nunca es igual a cero (0).

VER INFOGRAFÍA

Lectura de fracciones

Como ya sabemos, el denominador indica en cuántas partes se dividió un número entero. Cada una de esas partes recibe un nombre, por ejemplo, si dividimos en dos son medios, si dividimos en tres son tercios, si dividimos en cuatro son cuartos y así hasta el número once, a partir de ese número añadimos el sufijo –avos al número: onceavos, doceavos, treceavos y así sucesivamente.

Esta tabla muestra el nombre de cada una de las partes en las que se puede dividir un entero hasta el cien:

Partes que se divide del entero Nombre
2 Medios
3 Tercios
4 Cuartos
5 Quintos
6 Sextos
7 Séptimos
8 Octavos
9 Novenos
10 Décimos
11 Onceavos
12 Doceavos
13 Treceavos
14 Catorceavos
15 Quinceavos
16 Dieciseisavos
17 Diecisieteavos
18 Dieciochoavos
19 Diecinueveavos
20 Veinteavos
30 Treintavos
40 Cuarentavos
50 Cincuentavos
60 Sesentavos
70 Setentavos
80 Ochentavos
90 Noventavos
100 Centavo

Para leer una fracción primero indicamos el número del numerador y luego las partes en las que está dividido el entero de acuerdo a la tabla anterior. Por ejemplo, \frac{}{}\frac{1}{2} se lee como “un medio”. Observemos otros ejemplos:

a) \frac{2}{3} se lee “dos tercios”.

b) \frac{6}{8} se lee “seis octavos”.

c) \frac{15}{30} se lee “quince treintavos”.

d) \frac{12}{23} se lee “doce veintitresavos”.

e) \frac{32}{40} se lee “treinta y dos cuarentavos”.

f) \frac{97}{100} se lee “noventa y siete centavos”.

¿Sabías qué?
Los centavos también son llamados céntimos.

Origen muy antiguo

Las antiguas civilizaciones como la babilónica, la egipcia y la griega usaban las fracciones en sus cálculos. Cada una tenía una manera particular de expresarlas y no fue sino hasta el siglo XIII cuando el matemático italiano Leonardo Fibonacci difundió el uso de la línea horizontal, símbolo que se emplea en la actualidad para separar el numerador y denominador en una fracción.

Relación de las fracciones y la división

Las fracciones representan porciones de un todo, es por ello que de alguna manera están estrechamente relacionadas con la división. De hecho, toda fracción es una división sin resolver, es decir; \frac{a}{b} es equivalente a a\div b. Por lo tanto, \frac{1}{2} es igual a 1\div 2.

En algunas ocasiones podemos expresar operaciones en forma de fracción, pero también podemos hacerlo como división y resolver la misma.

¿Sabías qué?
Existen fracciones que están formadas por una parte entera y una fraccionaria, a ellas se las conoce como fracciones mixtas.

Aplicación en la vida cotidiana de las fracciones

El ser humano siempre ha tenido la necesidad de contar, medir y repartir; razón por la que inventó los números. Las fracciones no están lejos de esta realidad y son usadas para entender porciones de cosas.

Están presentes en recetas de cocinas, en mediciones de telas y de volúmenes de productos (como en las gaseosas de medio litro o 1/2 L). Hay autos donde los indicadores del nivel de gasolina son expresados en fracciones para saber si el tanque está lleno, tiene la mitad o un cuarto de su capacidada.

Incluso, están presentes en algunas monedas como el dólar, donde existe una denominación llamada “centavo de dólar”, es decir, si el valor de un dólar lo pudiéramos dividir en 100 partes iguales, una de esas partes sería el centavo.

En resumen, las fracciones permiten expresar cantidades cotidianas de manera más sencilla.

Además de sus múltiples aplicaciones en los cálculos matemáticos, las fracciones se emplean en situaciones cotidianas de la vida como lo son las mediciones. También se usan en gráficos que permiten comprender datos de manera más simple. Muchos países del mundo las emplean en sus monedas y ciertos dispositivos usan escalas expresadas en fracciones.
¡A practicar!

1. ¿Cómo se leen las siguientes fracciones?

a) \frac{5}{3}

Solución
Cinco tercios.

b) \frac{1}{100}

Solución
Un centavo.

c) \frac{23}{40}

Solución
Veintitrés cuarentavos.

d) \frac{3}{2}

Solución
Tres medios.

e) \frac{2}{5}

Solución
Dos quintos.

f) \frac{12}{11}

Solución
Doce onceavos.

g) \frac{7}{10}

Solución
Siete décimos.

h) \frac{11}{6}

Solución
Once sextos.

i) \frac{13}{4}

Solución
Trece cuartos.

j) \frac{58}{7}

Solución
Cincuenta y ocho séptimos.

2. ¿Cómo se escriben en número estas fracciones?

a) Nueve décimos.

Solución
\frac{9}{10}

b) Catorce novenos.

Solución
\frac{14}{9}

c) Setenta y tres centavos.

Solución
\frac{73}{100}

d) Ochenta y ocho novenos.

Solución
\frac{88}{9}

RECURSOS PARA DOCENTES

Video “Fracciones decimales”

Este video ayuda a entender la relación entre las fracciones y los números decimales así como la manera en transformar una fracción en decimal.

VER

Artículo “La clasificación de los números”

El presente artículo permite indagar más sobre los diferentes tipos de números y sus características principales.

VER

Enciclopedia “Matemáticas Primaria”

En el presente tomo de la Enciclopedia Matemáticas Primaria tendrás acceso a información más detallada sobre las fracciones, así como la posibilidad de obtener diferentes recursos educativos sobre este tema.

VER