CAPÍTULO 3 / TEMA 6 (REVISIÓN)

FRACCIONES Y PORCENTAJES | REVISIÓN

LAS FRACCIONES Y SUS USOS

En toda fracción podemos distinguir dos partes principales: el numerador y el denominador, ambos se encuentran separados por una línea horizontal. El denominador indica en cuántas partes se divide la unidad y el numerador señala cuántas de esas partes se han de tomar. Las fracciones se pueden clasificar en propias, impropias y aparentes. Las fracciones propias son aquellas en las que el numerador es menor que el denominador y representan un número menor a uno. Las fracciones impropias son la que tienen el numerador mayor que el denominador y representan a un número mayor a uno. Las fracciones aparentes son aquellas cuyo numerador es múltiplo de su denominador.

Además de la raya horizontal también podemos representar a las fracciones con una raya diagonal “/” o con el símbolo de las divisiones “÷”.

FRACCIONES EQUIVALENTES

Decimos que dos o más fracciones son equivalentes cuando todas ellas representan a la misma cantidad. Las fracciones equivalentes se pueden obtener por medio de dos métodos: amplificación y simplificación. Para obtener fracciones equivalentes por amplificación debemos multiplicar al numerador y al denominador de la fracción por un mismo número, distinto de cero. Para obtenerlas por simplificación, debemos dividir al numerador y al denominador de la fracción por un mismo número, distinto de cero y que sea un divisor común entre ambos. Es importante recordar que las fracciones equivalentes se pueden utilizar para sumar y restar fracciones heterogéneas (que tienen distinto denominador).

Media sandía se puede expresar como 1/2, 2/4, 4/8, 8/16, 16/32… Todas ellas son fracciones equivalentes que indican la mitad de un entero.

OPERACIONES CON FRACCIONES

La suma y resta de fracciones depende del tipo de estas. En las fracciones homogéneas (mismo denominador) se suman o restan los numeradores y se conserva el mismo denominador. En las fracciones heterogéneas (diferente denominador) se debe multiplicar el numerador de la primera fracción por el denominador de la segunda y el resultado se suma o se resta al producto del numerador de la segunda fracción por el denominador de la primera, el número obtenido es el numerador de la fracción resultante; luego se multiplican ambos denominadores y el número obtenido corresponderá al denominador de la fracción resultante. Para la multiplicación se multiplican los numeradores y denominadores de forma lineal. Para la división, se debe multiplicar en forma de cruz: el numerador de la primera fracción por el denominador de la segunda es igual al numerador de la fracción resultante y el numerador de la segunda fracción por el denominador de la primera es igual al denominador de la fracción resultante.

Algunas fracciones se pueden simplificar, es decir, pueden expresarse en fracciones equivalentes más sencillas

FRACCIONES MIXTAS

Una fracción mixta o número mixto es una forma de representar a una cantidad  compuesta por una parte entera y una parte fraccionaria. Para graficarla, dividimos al entero en tantas partes como indique el denominador de la parte fraccionaria. Luego, pintamos tantos enteros (completos) como indique el número entero de la fracción mixta. Por último, dibujamos otro entero y pintamos tantas partes de este como indique el numerador de la fracción mixta. Para transformar una fracción mixta a una fracción convencional, lo que se realiza es sumar la parte entera con la parte fraccionaria. Siempre se debe obtener una fracción impropia.

En este caso la parte entera de la fracción mixta es 2, y la parte fraccionaria es 1/3. Se lee “dos enteros y un tercio”.

PORCENTAJES

Un porcentaje, al igual que una fracción, es una forma de indicar una parte de un todo. Un porcentaje siempre representa a una fracción decimal cuyo denominador es 100. El símbolo que utilizamos para indicar un porcentaje es %. Para calcular el porcentaje de una cantidad conocida se multiplican ambos valores y se divide entre 100. Para convertir cualquier fracción a porcentaje, debemos dividir el numerador con el denominador, y luego multiplicar dicho resultado por cien. Por otro lado, para convertir un porcentaje a fracción, simplemente colocamos el porcentaje en el numerador y 100 como denominador, posteriormente se realiza una simplificación.

Los porcentajes se utilizan para indicar descuentos y recargos. También se utilizan en la estadística y en la economía.

CAPÍTULO 5 / TEMA 7 (REVISIÓN)

GEOMETRÍA | ¿QUÉ APRENDIMOS?

CUADRÍCULA

Desde la elaboración de planos y dibujos a escalas en hojas cuadriculadas, hasta la localización de estrellas en la galaxia, la unión de rectas perpendiculares nos ayuda a distinguir la posición de cualquier objeto. Una cuadrícula es un sistema de coordenadas compuesto por líneas perpendiculares verticales y horizontales, que funciona como sistema de referencias y permite ubicar elementos en un espacio definido. El conjunto de líneas horizontales y verticales, también llamadas ejes, suelen nombrarse con números y letras. 

Un claro ejemplo de cuadrícula es un tablero de ajedrez. En este cada cuadro representa una posición que puede ser ocupada por alguna pieza del juego.

TIPOS DE LÍNEAS

Las líneas son un conjunto de puntos ubicados uno junto al otro que generan un trazo continuo. Si los puntos están orientados en una misma dirección, entonces, forman una línea recta. Las líneas rectas son continuas e infinitas, no tienen ni principio ni final y se pueden clasificar según la forma en que interaccionan entre ellas en rectas paralelas (aquellas que nunca se cortan), rectas secantes perpendiculares (aquellas que se cortan formando ángulos rectos) y rectas secantes oblicuas (aquellas que se cortan sin formar ángulos rectos).

Un ejemplo de líneas rectas paralelas son las vías de un ferrocarril. Cuando se cortan con otras forman líneas secantes.

LOS ÁNGULOS Y SUS TIPOS

Un ángulo es una porción del plano delimitado por dos semirrectas. Cada semirrecta es uno de los lados del ángulo y coinciden en un punto de origen al que se denomina vértice. A la distancia entre lado y lado del ángulo se la denomina amplitud, y esta se mide en grados (°). Si queremos medir o trazar un ángulo es indispensable el uso del transportador. Según su amplitud, un ángulo puede ser convexo, cóncavo, nulo, completo, llano, agudo, recto u obtuso.

Las escuadras nos permiten estimar ángulos, pues tienen un ángulo de 90° y dos ángulos de 45°.

LOS TRIÁNGULOS

Los triángulos son polígonos regulares cerrados de tres lados, tres ángulos y tres vértices. Los ángulos interiores de un triángulo siempre suman 180° y los ángulos exteriores suman 360°. Son varios los criterios de clasificación que permiten agrupar a los triángulos de acuerdo a ciertas particularidades, los más utilizados son: la medida de sus lados y la medida de sus ángulos. Según la medida de sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos; mientras que, según la medida de sus ángulos se clasifican en acutángulo, obtusángulo y rectángulo.

Un mismo triángulo puede ser clasificado por más de un criterio, por ejemplo: todos los triángulos equiláteros son, a su vez, triángulos acutángulos, ya que sus tres ángulos iguales miden 60°.

CUADRILÁTEROS

Los cuadriláteros tienen cuatro lados, cuatro ángulos internos, cuatro ángulos externos, cuatro vértices y dos diagonales. Estos se clasifican en paralelogramos, trapecios y trapezoides. Los paralelogramos son aquellos cuadriláteros que poseen dos pares de lados opuestos paralelos y que comparten algunas propiedades específicas; los trapecios, por su parte, son figuras que presentan un par de lados opuestos paralelos a los que se suele denominar base; y los trapezoides son aquellos cuyos lados no son paralelos.

En primer lugar, los cuadriláteros pueden clasificarse en dos grandes grupos: paralelogramos y no paralelogramos. Las pantallas de nuestros móviles y tabletas son ejemplos de un paralelogramo.

POLIEDROS

Los poliedros son cuerpos geométricos tridimensionales con caras planas formados por polígonos. Cada una de las caras de un poliedro es un polígono (triángulo, cuadrado, rombo, etc.). Los poliedros pueden ser regulares cuando sus caras están compuestas por el mismo polígono regular; o irregulares si sus caras presentan diferentes formas. En estos poliedros el número de caras no presenta límites como ocurre con los poliedros regulares y se dividen en prismas (tienen dos bases) y pirámides (tienen una sola base).

Existen cinco poliedros regulares cuyas caras están conformados por polígonos regulares. Estos son conocidos como sólidos platónicos.

CAPÍTULO 5 / TEMA 1

Elementos geométricos

El punto, la recta y el plano representan los cimientos de la geometría. Seguramente, muchos otros conceptos no podrían ser definidos sin ellos y por tal motivo son tan importantes. Cada uno está relacionado: infinitos puntos forman una recta, infinitos puntos y rectas forman un plano e infinitos puntos, rectas y planos forman el espacio.

El punto

El punto es el objeto más pequeño del espacio, por tanto no tiene longitud, área o volumen. Es adimensional, lo que quiere decir que no tiene dimensiones.

Una de las funciones del punto es describir la posición en un sistema de coordenadas como el cartesiano.

¿Sabías qué?
Los puntos se nombran con letras mayúsculas del abecedario, por ejemplo: A, B, C, D, etc.

Entes fundamentales de la geometría

Se denominan así a los entes que por sí solos no tienen definición y se comprenden a partir de las características de elementos similares. La mayoría de las personas tiene noción de lo que cada uno representa. Los entes fundamentales en la geometría son el punto, la recta y el plano.

La recta y sus tipos

Una recta es un tipo de línea que se extiende en una misma dirección y está formada por infinitos puntos. Por esta razón, la recta tiene longitud pero no anchura. En geometría, las rectas se suelen denominar con letras minúsculas.

De acuerdo a su posición en el plano, las rectas pueden ser paralelas, perpendiculares y secantes.

¿Sabías qué?
Entre dos puntos, solamente existe una recta que los une.

Rectas paralelas

Son rectas que no tienen ningún punto en común, es decir, nunca se interceptan. Para la construcción de este tipo de rectas se emplean la regla, la escuadra y el compás. En el siguiente ejemplo la recta a es paralela a la recta b.

Un ejemplo de rectas paralelas son los lados opuestos de un cuadrilátero como el cuadrado.

VER INFOGRAFÍA

Rectas secantes

Son aquellas que se interceptan en un punto en común y forman cuatro ángulos internos. Las rectas c y d son secantes.

Un ejemplo de rectas secantes son dos calles que se interceptan en un punto en común.

Rectas perpendiculares

Son aquellas rectas secantes que al cortarse forman cuatro ángulos iguales, específicamente rectos (de 90°). Estas rectas dividen al plano en cuatro regiones. Las rectas e y f son perpendiculares entre sí.

Un ejemplo de rectas perpendiculares son los ejes del plano cartesiano.

La recta es un tipo de línea pero no es la única, existen líneas curvas, quebradas y mixtas. Además de su empleo en la geometría, los diferentes tipos de líneas son recursos usados por artistas plásticos y diseñadores gráficos en sus trabajos para proporcionar expresividad gráfica, dinamismo y movimiento. También son útiles para crear planos y texturas.

Otros conceptos relacionados

Semirrecta

Todo punto que pertenece a una línea recta la divide en dos partes denominadas semirrectas. Las semirrectas también son llamadas rayos y contienen infinitos puntos como la recta. La diferencia es que una recta no tiene origen y una semirrecta sí lo tiene.

Segmento

Corresponde a la parte de una recta que se encuentra delimitada entre dos de sus puntos, cada uno de ellos es denominado extremo. Los segmentos se escriben a través de la escritura sin espacio de sus extremos y con una raya horizontal en la parte superior. En el siguiente ejemplo, la figura corresponde al segmento \overline{PQ}.

El plano

Es un ente ideal que posee dos dimensiones (bidimensional). Se suele representar con letras del alfabeto griego. En geometría, un plano queda definido cuando se cumplen algunas de las siguientes condiciones:

  • Tres puntos no alineados.
  • Dos rectas que son paralelas.
  • Dos rectas secantes.

Un plano contiene infinitas rectas y puntos. En el siguiente ejemplo se puede observar un ejemplo de plano.

Otro ejemplo de plano sería la parte superior de una mesa.

Con el propósito de facilitar su gráfica y simplificar su visualización, los planos suelen representarse como una figura delimitada con bordes irregulares. Sin embargo, un plano contiene infinitos puntos, por lo tanto, al igual que sucede con la recta, sería imposible representarlo completamente, así que se muestra una pequeña porción de su superficie.

El plano cartesiano

Es un sistema de coordenadas desarrollado por el célebre matemático René Descartes en el siglo XVII. Permite asignar ubicación a cualquier punto del plano. Este sistema cuenta con dos ejes numerados que permiten localizar las coordenadas de los puntos. Un eje vertical denominado eje Y o de las ordenadas muestra las coordenadas en Y de un punto, y un eje horizontal denominado eje X o de las abscisas indica las coordenada en X de un punto.

¡A practicar!

1. Observa la siguiente imagen y responde qué tipo de rectas son las indicadas.

a) Las rectas e y h.

Solución
Secantes.

b) Las rectas d y g.

Solución
Secantes perpendiculares.

c) Las rectas e y f.

Solución
Paralelas.

d) Las rectas h y f.

Solución
Secantes.

2. De acuerdo al contenido explicado responde las siguientes preguntas.

a) ¿Cuántos puntos no alineados definen a un plano?

Solución
3

b) ¿Qué diferencia tiene una recta de una semirrecta?

Solución
La semirrecta tiene un origen y la recta no.

c) ¿De qué medida son los ángulos formados por dos rectas perpendiculares?

Solución
90°

d) ¿En cuántos puntos se intersectan dos rectas paralelas?

Solución
En ningún punto.

e) ¿Cuáles entes fundamentales de la geometría suelen nombrarse con letras del alfabeto griego?

Solución
Los planos.

f) ¿Cómo se denominan a los puntos que forman un segmento?

Solución
Extremos.

g) ¿Qué tipo de ente fundamental de la geometría tiene longitud pero no anchura?

Solución
La recta.

h) ¿Qué tipo de ente fundamental de la geometría no tiene dimensiones?

Solución
El punto.

i) ¿Con qué otro nombre se denominan las semirrectas?

Solución
Rayos.

j) ¿Quién inventó el sistema cartesiano?

Solución
René Descartes.

RECURSOS PARA DOCENTES

Artículo “Determinación de rectas y puntos notables de los triángulos”

El artículo explica cuáles son las rectas y puntos notables que presentan los triángulos y qué características geométricas poseen.

VER

Micrositio “Tarjetas educativas – Geometría y medidas”

En este micrositio podrá encontrar una variedad de tarjetas que resumen los elementos principales de la geometría como el punto, la recta y las principales figuras geométricas.

VER

Artículo “Las rectas en el plano”

El artículo explica la clasificación de las rectas según su posición en el plano y muestra cómo graficar cada una de ellas mediante el uso de regla, escuadra y compás.

VER

CAPÍTULO 6 / TEMA 3

Probabilidad

Hay eventos que siempre ocurren con seguridad, por ejemplo, al día lunes siempre le sigue el martes; hay otros otros, en cambio, en los que no sucede lo mismo, y es allí cuando las leyes de la probabilidad juegan un papel fundamental. Por ejemplo, si lanzamos un dado sabemos que el resultado será un número del 1 al 6, pero no sabemos con certeza cuál de ellos será.

Fenómenos y hechos que se pueden predecir

Existen sucesos que ocurren con total seguridad y se denominan sucesos deterministas o seguros porque el resultado se conoce de antemano. Cuando se realizan experimentos de este tipo, el resultado siempre se puede predecir. Por ejemplo, “mañana será de día” es un suceso determinista porque sabemos que siempre va a pasar.

– Otros ejemplos de sucesos deterministas:

  • El número al lanzar un dado siempre será menor a 7.
  • Al lanzar una roca al suelo esta caerá.
  • La próxima semana tendrá 7 días.

Los sucesos deterministas contienen a todos los elementos del espacio muestral.

¿Sabías qué?
Se denomina espacio muestral al conjunto de todos los resultados posibles de un experimento aleatorio.
Fenómenos deterministas

Los fenómenos en el universo que siguen las leyes de la física pueden considerarse como fenómenos deterministas porque siempre son iguales. Por ejemplo, la órbita de los planetas y las atracciones gravitacionales.

Fenómenos de azar

Hay experimentos aleatorios que son imposibles de predecir porque ocurren al azar y su resultado está dentro de los resultados posibles del fenómeno estudiado. Por ejemplo, al lanzar un dado sabemos que los resultados posibles son 1, 2, 3, 4, 5 y 6, pero no sabemos qué número se obtendrá con certeza, por eso se trata de un fenómeno de azar. En los experimentos de este tipo, el resultado no se puede predecir sin importar las veces que se repita la experiencia bajo las mismas condiciones.

– Algunos ejemplos de sucesos aleatorios:

  • Lanzar una moneda y que el resultado sea cara.
  • Extraer una carta de un manojo de cartas y que sea de corazones.
  • Extraer un número de las bolas de bingo y que sea par.
Los juegos de azar

Existen juegos en los que la posibilidad de ganar o perder dependen del azar, de donde proviene su nombre. En estos juegos la habilidad del jugador puede influir en los resultados y buscar minimizar la probabilidad de resultados desfavorables para aumentar la probabilidad de resultados favorables. Algunos ejemplos de juegos de azar son el bingo, los dados y la lotería.

Suceso imposible

Es lo contrario a un suceso determinista. Este tipo de suceso nunca se va a cumplir. Por ejemplo, lanzar un dado y obtener el número 7 es un suceso imposible porque el dado tiene valores del 1 al 6. Este tipo de eventos suele denotarse con el símbolo .

¿Qué es la probabilidad?

Es un cálculo matemático que permite evaluar las posibilidades de que un evento ocurra cuando interviene el azar. Algunos eventos pueden ocurrir con mayor o menor frecuencia que otros, pero como no sabemos si pueden ocurrir o no, se denominan eventos aleatorios. En este tipo de eventos aplicamos el concepto de probabilidad.

La genética emplea la probabilidad para entender cuán posible sería para una persona heredar ciertos tipos de genes que la hagan más susceptibles a ciertas condiciones o enfermedades. Otros campos que emplean cálculos probabilísticos son la física, la biología, la mercadotecnia, las empresas aseguradoras y la industria.

Tipos de eventos

En estadística se denomina “evento” al resultado o conjunto de resultados posibles en un experimento. Se clasifican de la siguiente manera:

  • Eventos mutuamente excluyentes: son aquellos que no pueden ocurrir de manera simultánea. Por ejemplo, leer cara o sello luego de lanzar una moneda. Este es un evento mutuamente excluyente, porque no se puede tener un resultado de cara y sello al mismo tiempo.
  • Eventos independientes: son eventos que no se ven afectados por la ocurrencia de otro. Por ejemplo: comprar un auto y que llueva son eventos independientes, porque es posible comprar un auto sin que llueva o que llueva sin comprar el auto.
  • Eventos dependientes: son eventos en los que uno de ellos se ve afectado por la ocurrencia de otro. Por ejemplo, ir a un examen y obtener una calificación. Son eventos dependientes porque si no vas al examen no tienes calificación.

 

¡A practicar!

1. Determina si es un suceso determinista, aleatorio o imposible.

a) Que llueva y las gotas caigan hacia abajo.

Solución
Suceso determinista.

b) Lanzar una moneda y obtener cara.

Solución
Suceso aleatorio.

c) Jugar bingo y ganar.

Solución
Suceso aleatorio.

d) Lanzar una moneda y que no caiga hacia abajo nunca.

Solución
Suceso imposible.

e) Observar un cuadrado de cinco lados.

Solución
Suceso imposible.

 

2. Los experimentos __________ son imposibles de predecir.

a) aleatorios

b) seguros

c) deterministas

Solución
a) aleatorios

 

3. ¿Cuál de los siguientes sucesos no es aleatorio?

a) Lanzar un dado y que el número sea par.

b) Lanzar una moneda y que el resultado sea cara.

c) Sacar una carta y que sea una reina de corazones.

a) Lanzar un objeto y que este caiga.

Solución
a) Lanzar un objeto y que este caiga.

 

4. ¿A qué tipo de evento corresponde?

a) “Es un evento que no se ve afectado por la ocurrencia de otro”.

Solución
Evento independiente.

b) “Evento que no pueden ocurrir de manera simultánea con otro”.

Solución
Evento mutuamente excluyente.

c) “Evento que se ve afectado por la ocurrencia de otro”.

Solución
Evento dependiente.

 

RECURSOS PARA DOCENTES

Artículo “Historia de la estadística”

Este artículo detalla las fases en las que se desarrolló la estadística hasta convertirse en una de las ramas más usadas de la matemática.

VER

Artículo “Probabilidad”

Este artículo describe los conceptos relacionados al campo de la probabilidad como lo son los fenómenos aleatorios y deterministas, así como los tipos de sucesos.

VER

Artículo “Relación de la contabilidad con la administración y la estadística”

Este artículo explica por qué estas tres disciplinas se encuentran relacionadas entre sí, y se concentra en explicar qué es la estadística administrativa.

VER

CAPÍTULO 5 / TEMA 8 (REVISIÓN)

Geometría y mediciones | ¿Qué aprendimos?

Perímetro

El perímetro es el contorno de una figura geométrica. En el caso de los polígonos regulares, el perímetro lo calculamos al multiplicar la cantidad de sus lados por la longitud de uno de estos. Otra forma de calcular el perímetro es a través de la suma de cada uno de los lados de una figura. En cambio, el perímetro del círculo es igual a la multiplicación del número pi por el diámetro de la circunferencia. Existen también figuras compuestas que están formadas por dos o más figuras geométricas, para calcular su perímetro basta con sumar cada uno de los lados.

El perímetro tiene múltiples aplicaciones en disciplinas como la arquitectura y también se usa en el ámbito militar.

Ángulos

Uno de los elementos fundamentales para la geometría es el ángulo, el cual está formado por un par de semirrectas denominadas lados que tienen un origen común o vértice. Uno de los sistemas más usados para medir ángulos es el sistema sexagesimal, en el que medimos los ángulos en grados, minutos y segundos. De acuerdo a su tamaño, los ángulos pueden clasificarse en agudos, rectos, obtusos y llanos. Los agudos son mayores a 0° pero menores a 90°, los rectos miden 90°, los obtusos son mayores a 90° pero menores de 180° y los llanos miden siempre 180°.

El transportador es uno de los instrumentos más usados para medir ángulos.

Área

Para calcular superficies usamos el área, que es la extensión comprendida por una figura. Para cada figura plana existe una fórmula que permite determinar su área. En el Sistema Internacional de Unidades se emplea el metro cuadrado (m2) como unidad de medida de área, pero también podemos usar otras unidades derivadas, como el centímetro cuadrado (cm2) o el milímetro cuadrado (mm2). Podemos obtener el área de las figuras compuestas al descomponerlas en figuras geométricas más simples, para luego sumar las áreas de cada una.

El conocimiento del área puede ser aplicado para calcular cuántas baldosas son necesarias para cubrir una superficie.

Sistemas de referencia

Uno de los sistemas de referencias más usados es el sistema cartesiano, el cual está formado por dos ejes en el plano: uno horizontal denominado eje X o de las abscisas y otro vertical denominado eje Y o de las ordenadas. Para representar un punto en el plano cartesiano necesitamos sus coordenadas en el eje X y en el eje Y: la intersección de ambas coordenadas constituye su ubicación. Por otro lado, las figuras pueden experimentar transformaciones isométricas, es decir, cambios de posición y orientación que no afectan su forma. Estas transformaciones son: traslación, rotación y simetría.

Los sistemas de referencia son usados por el ser humano para medir las posiciones y las magnitudes de las cosas.

Cuadriláteros

Un cuadrilátero es un polígono de cuatro lados, y aunque se pueden clasificar en varios grupos, comparten elementos en común: tienen cuatro ángulos, la suma de estos es siempre igual 360° y tienen dos diagonales que dividen al cuadrado en triángulos. De manera general, los cuadriláteros son clasificados como paralelogramos, trapecios y trapezoides. Los paralelogramos tienen sus lados opuestos paralelos y pueden ser cuadrados, rombos y rectángulos. Los trapecios tienen dos de sus lados paralelos y los trapezoides no tienen ningún lado paralelo.

El campo de fútbol tiene forma de rectángulo que es un tipo de cuadrilátero.

Capacidad y volumen

El volumen es el espacio que ocupa un objeto mientras que la capacidad indica la cantidad que un objeto puede contener dentro de él. Todos los objetos tienen volumen pero no todos tienen capacidad. En el caso de los sólidos y los líquidos mientras mayor sea su volumen, mayor espacio van a ocupar. No es lo mismo el volumen de un grano de arroz que el de un edificio. Algunas unidades de volumen son el metro cúbico (m3), el centímetro cúbico (cm3) y milímetro cúbico (mm3), entre otras. El litro es una medida de capacidad que equivale a 1.000 cm3.

A pesar de estar muy relacionadas, no se deben confundir las medidas de volumen con las de capacidad.

La circunferencia

La circunferencia es una curva plana con todos sus puntos ubicados a la misma distancia del origen o centro. No debe ser confundida con el círculo que corresponde al área contenida dentro de ella, es decir, la circunferencia es el perímetro del círculo. Presenta ciertos elementos como el radio, el diámetro, la tangente, la cuerda, el arco y la semicircunferencia. Uno de los instrumentos usados para su trazado es el compás.

Los antiguos griegos empleaban la recta y la circunferencia como figuras básicas en sus cálculos.

CAPÍTULO 5 / TEMA 2

Ángulos

El ángulo es uno de los elementos fundamentales para la geometría porque está presente en las figuras ¡Incluso las paredes de nuestras casas forman ángulos entre ellas! Se puede definir como la porción del plano que se encuentra delimitada por dos semirrectas que comparten el mismo origen. 

Tipos de ángulos

Antes de poder reconocer los diferentes tipos de ángulos es necesario comprender los elementos que los forman.

  • Lado: es cada una de las semirrectas que conforman el ángulo y que tienen un origen en común.
  • Vértice: es el punto común o de origen de los lados.

 

Sistema de medida

El sistema usado para medir ángulos se denomina sistema sexagesimal, su unidad de medida es el grado (°) y resulta de dividir un ángulo llano en 180 partes, cada una de ellas representa un grado. Para medidas más pequeñas se usa el minuto (′) y el segundo (′′). Se denomina sexagesimal porque cada unidad es 60 veces mayor que la siguiente y 60 veces inferior que la anterior. Es por ello que 1° = 60′ y 1′ = 60′′.

De acuerdo a su tamaño los ángulos se clasifican en:

  • Ángulo agudo: es aquel mayor a 0° pero menor a 90°.
  • Ángulo recto: es aquel que mide 90°.
  • Ángulo obtuso: es aquel cuya medida es mayor a 90°pero menor a 180°.
  • Ángulo llano: es aquel cuyo ángulo es igual a 180°.

VER INFOGRAFÍA

Medición de ángulos

Uno de los instrumentos más usados para medir ángulos es el transportador, este presenta una serie de marcas que indican los grados. El más común es el transportador semicircular el cual viene graduado en 180°. Sus partes fundamentales son:

Para medir un ángulo con el transportador debemos seguir los siguientes pasos:

  1. Ubicar el origen del transportador en el vértice del ángulo que se va a medir.
  2. Hacer coincidir uno de los lados del ángulo con la línea horizontal de la base.
  3. Leer el ángulo que corta el segundo lado. Si el ángulo está abierto hacia la izquierda se usa la escala externa, si está abierto hacia la derecha se usa la escala interna (de acuerdo al tipo de instrumento las escalas pueden invertirse).

¿Sabías qué?
El teodolito es un instrumento con mayor precisión que el transportador que permite medir grados, minutos y segundos.

Construcción de ángulos

Una de las formas de construir ángulos es a través de una regla y un transportador. Para ello debemos realizar los siguientes pasos:

1. Trazamos con ayuda de la regla una semirrecta que será más adelante uno de los lados del ángulo.

 

2. Ubicamos el origen del transportador en uno de los extremos de la semirrecta (este también será el origen del ángulo), de manera que el número cero de la escala coincida con el otro extremo.

 

3. Ubicamos en la escala el ángulo que deseamos construir, para este ejemplo queremos construir un ángulo de 40°.

 

4. Hacemos una marca en el punto donde leímos el ángulo deseado.

 

5. Unimos el origen con la lectura marcada, de esta forma construimos un ángulo agudo de 40°.

Además del transportador, otros instrumentos usados para construir ángulos son el compás y la escuadra. Esta última permite construir ángulos rectos. Disciplinas como la arquitectura hacen uso de los ángulos en sus diseños. La exactitud en las mediciones es importante porque de lo contrario muchas de las estructuras podrían sufrir daños y afectar a las personas.

 

Comparación de ángulos

Luego de conocer cómo funciona el sistema sexagesimal en la medición de ángulos, podemos concluir que los ángulos llanos son mayores que los obtusos, que los obtusos son mayores que los rectos y que estos últimos son mayores que los agudos.

De manera que cuando necesitemos comparar ángulos lo primero que debemos hacer es identificar qué tipo de ángulo es. En el caso de conocer los valores de los ángulos, realizamos la comparación de de los números de acuerdo a la cantidad que representan, es decir: un ángulo de 35° es mayor que uno de 20°, pero es menor que uno de 150°.

Los ángulos y el triángulo

Los ángulos son tan importantes que en sí mismos determinan un criterio de clasificación de los triángulos. En este sentido, los triángulos se clasifican en acutángulos, rectángulos y obtusángulos. Los triángulos acutángulos tienen todos sus ángulos internos agudos, los triángulos rectángulos tienen un ángulo recto y los otros dos agudos, los triángulos obtusángulos tienen un ángulo obtuso y los otros dos agudos. En los triángulos se cumple que la suma de sus ángulos internos siempre es igual 180°.

¡A practicar!

1. ¿A qué tipo de ángulo corresponde cada imagen?

a)

Solución
Ángulo recto.
b) 
Solución
Ángulo llano.
c) 
Solución
Ángulo obtuso.
d) 
Solución
Ángulo agudo.

2. ¿Cuál de los siguientes ángulos no es agudo?

a) 95°

b) 30°

c) 3°

d) 84°

Solución
a) 95°. No es agudo porque no es menor a 90°.

3. ¿Cuál de los siguientes ángulos no es obtuso?

a) 125°

b) 95°

c) 160°

d) 180°

Solución
d) 180°. No es obtuso porque es igual a 180°, los ángulos obtusos deben ser mayores a 90° y menores a 180°.

4. ¿Cuál de los siguientes ángulos es agudo?

a) 90°

b) 180°

c) 200°

d) 50°

Solución
d) 50°. Es agudo por ser menor a 90°.

RECURSOS PARA DOCENTES

Artículo “Ángulos”

El presente artículo profundiza más en los diferentes tipos de ángulos que existen según su medida, su posición y sus características.

VER

Video “Propiedades de los ángulos de los polígonos”

En el presente video se muestra de manera animada cómo varían los ángulos externos e internos de los principales polígonos regulares.

VER

Artículo “Ángulo”

Este artículo detalla los elementos y tipos de ángulos, su construcción y el uso del transportador. Al final se proponen una serie de ejercicios relacionados.

VER

 

CAPÍTULO 3 / TEMA 2

Fracciones diversas

Las fracciones pueden clasificarse en dos grupos: fracciones propias y fracciones impropias. Estas clasificaciones dependen de la relación que exista entre el numerador y el denominador. Por otro lado, el denominador de una fracción también permite compararla con otra para saber si es homogénea o heterogénea.

Fracciones propias e impropias

Una fracción propia es aquella donde el denominador es mayor que el numerador. A este tipo de fracción también se la conoce como fracción pura. Las siguientes fracciones son ejemplos de fracciones propias o puras:

\frac{1}{8}\frac{5}{33}\frac{9}{10}\frac{97}{99}

Al dividir el numerador entre el denominador de una fracción propia el resultado siempre estará comprendido entre cero (0) y uno (1), es decir:

\frac{1}{8}= 0,125

\frac{5}{33}=0,\widehat{15}

\frac{1}{9} = 0,\widehat{1}

\frac{97}{99}=0,\widehat{97}

 

¿Sabías qué?
De acuerdo a cada país se pueden usar los términos fracción propia o pura e impropia o impura para referirse a los mismos tipos de fracciones.

Una fracción impropia es aquella cuyo numerador siempre es mayor que el denominador. Se la conoce también como fracción impura y algunos ejemplos son los siguientes:

\frac{5}{2}\frac{7}{3}\frac{14}{5}\frac{3}{2}

Al dividir el numerador entre el denominador de una fracción impropia el resultado siempre será mayor a uno (1). Por ejemplo:

\frac{5}{2}=2,5

\frac{7}{3}=2,\widehat{3}

\frac{14}{5}=2,8

\frac{3}{2}=1,5

 

Fracciones aparentes

Son fracciones en las cuales la división entre el numerador y denominador es igual a un número entero. La fracción \frac{8}{2} es una fracción aparente porque 8 ÷ 2 = 4 y el cuatro (4) es un número entero. Las fracciones aparentes se distinguen porque el numerador siempre es un múltiplo del denominador.

Fracciones homogéneas y heterogéneas

Como ya sabemos, el denominador en una fracción determina en cuántas partes está dividido el entero. Sin importar su numerador, dos fracciones son homogéneas si comparten el mismo denominador:

\frac{1}{3} y \frac{2}{3} son fracciones homogéneas porque su denominador es el mismo: 3. En las fracciones homogéneas el entero se ha dividido por la misma cantidad de partes:

Por otro lado, dos fracción son heterogéneas si sus denominadores son diferentes, es decir, el entero se dividió en partes diferentes para cada caso:

¿Qué es una fracción equivalente?

Equivalente quiere decir “de igual valor”, en este sentido, las fracciones equivalentes son aquellas que representan la misma cantidad. Las fracciones \frac{1}{2}\frac{2}{4} y \frac{3}{6} son equivalentes:

Pasos para determinar si dos fracciones son equivalentes

1. Multiplica el numerador de la primera fracción por el denominador de la segunda.

2. Multiplica el numerador de la segunda fracción por el denominador de la primera.

3. Si los productos anteriores son iguales, entonces las fracciones son equivalentes.

– Determina si las fracciones \frac{1}{3} y \frac{3}{9} son equivalentes.

Lo primero que debemos hacer es multiplicar el numerador de la primera fracción que es 1 por el denominador de la segunda fracción que es 9. Luego multiplicamos el numerador de la segunda fracción que es 3 por el denominador de la primera fracción que también es 3.

En este caso ambas fracciones son equivalentes porque los productos cruzados son iguales.

– Determina si las fracciones \frac{2}{5} y \frac{3}{4} son equivalentes.

Realizamos los productos cruzados y comparamos los resultado:

Como el producto cruzado dio diferente, entonces, las fracciones no son equivalentes.

Existen otras maneras para comprobar fracciones equivalentes, una de las más conocidas es transformar las fracciones a decimales, es decir; dividir el numerador de cada una entre su denominador correspondiente, ambos resultados deben ser iguales para que sean consideradas fracciones equivalentes; por ejemplo; 1/2 y 2/4 son equivalentes porque 1 ÷ 2 = 0,5 y 2 ÷ 4 =0,5.
¡A practicar!

1. Determina si la fracción mostrada es propia o impropia.

a) \frac{23}{40}

Solución
Propia.

b) \frac{3}{2}

Solución
Impropia.

c) \frac{2}{5}

Solución
Propia.

d) \frac{12}{11}

Solución
Impropia.

2. Determina si las siguientes fracciones son homogéneas o heterogéneas.

a) \frac{7}{10} y \frac{9}{10}

Solución
Son fracciones homogéneas.

b) \frac{11}{6} y \frac{14}{9}

Solución
Son fracciones heterogéneas.

c) \frac{13}{4} y \frac{9}{4}

Solución
Son fracciones homogéneas.

d) \frac{58}{7} y \frac{58}{17}

Solución
Son fracciones heterogéneas.

3. ¿Cuál de las siguientes fracciones es equivalente a \frac{5}{2}?

a) \frac{2}{5}

b) \frac{10}{2}

c) \frac{52}{10}

d) \frac{15}{6}

Solución
d) \frac{15}{6}

RECURSOS PARA DOCENTES

Artículo “Clasificación de fracciones”

Este artículo destacado trata sobre las características principales de las fracciones y los diferentes criterios para clasificarlas. También se muestran una serie de ejemplos que facilitan su comprensión.

VER

Micrositio “Tarjetas educativas – Operaciones matemáticas”

En el siguiente micrositio se presentan las principales operaciones matemáticas, especialmente las operaciones básicas realizadas con fracciones.

VER

Video “Fracciones decimales”

Este video permite convertir números decimales en fracciones y con ello se puede establecer una relación con las fracciones propias.

VER