CAPÍTULO 1 / TEMA 6 (REVISIÓN)

SISTEMAS NUMÉRICOS ¿QUÉ APRENDIMOS?

¿QUÉ SON LOS NÚMEROS?

LOS NÚMEROS SON EXPRESIONES GRÁFICAS DE UNA CANTIDAD. GRACIAS A ELLOS CONTAMOS JUGUETES, HORAS O EDADES. A LO LARGO DE LA HISTORIA LOS SERES HUMANOS HAN UTILIZADO DIFERENTES RECURSOS COMO PALOS Y PIEDRAS PARA CONTAR, HASTA LLEGAR A UTILIZAR LOS SÍMBOLOS DE LOS NÚMEROS TAL COMO LOS CONOCEMOS HOY: 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9.

LOS NÚMEROS SON NECESARIOS PARA EL HOMBRE PORQUE NOS PERMITEN LLEVAR A CABO UNA TAREA DIARIA: CONTAR.

TIPOS DE NÚMEROS

POR LO GENERAL UTILIZAMOS DOS TIPOS DE NÚMEROS: LOS CARDINALES, QUE NOS SIRVEN PARA INDICAR UNA CANTIDAD DE ELEMENTOS, Y LOS ORDINALES, QUE USAMOS PARA EXPRESAR EL ORDEN O LA POSICIÓN DE UN ELEMENTO DENTRO DE UN GRUPO. LOS NÚMEROS ROMANOS FUERON INVENTADOS MUCHO ANTES DE LOS NÚMEROS QUE USAMOS HOY DÍA, SIN EMBARGO, SU USO HA PERDURADO EN LA HISTORIA Y ES POSIBLE VERLOS EN LOS NOMBRES DE PAPAS, LA NUMERACIÓN DE LAS OLIMPÍADAS DEPORTIVAS O ALGUNOS RELOJES ANTIGUOS.

LOS NÚMEROS ROMANOS SE REPRESENTAN CON SÍMBOLOS PARECIDOS A ALGUNAS DE NUESTRAS LETRAS MAYÚSCULAS.

SERIES Y RELACIONES

UNA SERIE ES UNA SUCESIÓN DE NÚMEROS QUE SIGUEN UN PATRÓN O REGLA. ESTAS SERIES PUEDEN SER DE OBJETOS, FIGURAS O NÚMEROS Y PUEDEN SER ASCENDENTES O DESCENDENTES. LAS SERIES ASCENDENTES SON LAS QUE VAN DE MENOR A MAYOR, POR EJEMPLO, CUANDO CONTAMOS LA CANTIDAD DE LÁPICES QUE TENEMOS: 1, 2, 3, …POR OTRO LADO, LAS SERIES DESCENDENTES SON LAS QUE VAN DE MAYOR A MENOR, COMO CUANDO CONTAMOS LOS SEGUNDOS PARA EL AÑOS NUEVO: 5, 4, 3, 2, 1.

CUANDO CONTAMOS DE 1 EN 1 CREAMOS UNA SERIE NUMÉRICA ASCENDENTE PORQUE CADA NÚMERO TIENE UNA UNIDAD MÁS QUE EL ANTERIOR.

NÚMEROS NATURALES

LOS NÚMEROS NATURALES SON AQUELLOS QUE NOS PERMITEN CONTAR LOS ELEMENTOS DE UN CONJUNTO. CUANDO TIENEN MÁS DE UN DÍGITO, EL VALOR DE CADA UNO DEPENDE DE LA UBICACIÓN DENTRO DEL NÚMERO: SEGÚN SU POSICIÓN PODRÁ OCUPAR EL LUGAR DE LAS UNIDADES, LAS DECENAS O LAS CENTENAS. LOS NÚMEROS NATURALES SE PUEDEN EXPRESAR SIEMPRE COMO EL RESULTADO DE UNA SUMA POR MEDIO DE SU DESCOMPOSICIÓN ADITIVA.

LOS NÚMEROS NATURALES FUERON LOS PRIMEROS NÚMEROS QUE USÓ EL HOMBRE PARA CONTAR.

CONJUNTOS

UN CONJUNTO ES UNA COLECCIÓN DE OBJETOS A LOS QUE LLAMAMOS ELEMENTOS. PARA PODER SER ELEMENTOS DE UN MISMO CONJUNTO, TODOS DEBEN TENER ALGUNA CARACTERÍSTICA EN COMÚN QUE NOS PERMITA AGRUPARLOS, POR EJEMPLO, EL CONJUNTO DE LAS FIGURAS GEOMÉTRICAS ESTARÍA CONFORMADO POR CÍRCULOS, TRIÁNGULOS, CUADRADOS Y RECTÁNGULOS. SI UN ELEMENTO POSEE ESA CARACTERÍSTICA COMÚN CON LOS OTROS OBJETOS SE DICE QUE PERTENECE AL CONJUNTO, SI NO POSEE ESA CARACTERÍSTICA EN COMÚN SE DICE QUE NO PERTENECE AL CONJUNTO.

AUNQUE EN LA IMAGEN VEMOS ELEMENTOS DISTINTOS, COMO ANIMALES, ALIMENTOS Y FIGURAS, TODOS TIENEN ALGO EN COMÚN: SON DE COLOR VERDE, POR LO TANTO, FORMAN UN CONJUNTO.

CAPÍTULO 1 / TEMA 5

CONJUNTOS

CASI TODOS LOS OBJETOS QUE USAMOS SE PUEDEN ORGANIZAR EN GRUPOS: NUESTROS JUGUETES, ÚTILES ESCOLARES, VESTIMENTA Y HASTA NUESTROS ALIMENTOS. CUANDO AGRUPAMOS VARIOS OBJETOS DE ACUERDO A UNA CARACTERÍSTICA HABLAMOS DE CONJUNTOS. ESTOS SON MUY FÁCILES DE REPRESENTAR Y NOS SIRVEN PARA CLASIFICAR Y HACER COLECCIONES.

LOS NÚMEROS QUE USAMOS PARA CONTAR FORMAN UN CONJUNTO LLAMADO “NÚMEROS NATURALES”. SON UN CONJUNTO PORQUE CUMPLEN CON CARACTERÍSTICAS EN COMÚN. POR EJEMPLO, EN ESTA IMAGEN VEMOS UN GRUPO DE NÚMEROS QUE PODEMOS REPRESENTAR CON NUESTROS DEDOS Y CON LOS QUE PODEMOS CREAR CUALQUIER CANTIDAD DE NÚMEROS, LAS CIFRAS 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9.

NOCIÓN DE CONJUNTO

UN CONJUNTO ES UN GRUPO O UNA COLECCIÓN DE ELEMENTOS QUE COMPARTEN ALGUNA CARACTERÍSTICA. POR EJEMPLO:

OBSERVA ESTE GRUPO DE ELEMENTOS, ¿QUÉ TIENEN EN COMÚN?

TODAS SON FRUTAS. ESTE ES EL CONJUNTO DE LAS FRUTAS.

ELEMENTOS DE UN CONJUNTO

UN ELEMENTO ES UN OBJETO QUE FORMA PARTE DE UN CONJUNTO. POR EJEMPLO:

ESTE ES EL CONJUNTO DE LAS VOCALES, ¿CUÁNTOS ELEMENTOS TIENE?

TIENE 5 ELEMENTOS: A, E, I, O Y U.

 

– OTRO EJEMPLO:

ESTE ES EL CONJUNTO DE LOS ÚTILES ESCOLARES, ¿CUÁNTOS ELEMENTOS TIENE?

TIENE 7 ELEMENTOS: EL LÁPIZ, EL CUADERNO, EL CLIP, EL COMPÁS, LA TIJERA, LA REGLA Y LA MOCHILA.

¿SABÍAS QUÉ?
EN MATEMÁTICA, EL NOMBRE DE LOS CONJUNTOS SE REPRESENTA CON UNA LETRA MAYÚSCULA. POR EJEMPLO, EL CONJUNTO DE LOS ANIMALES SE PUEDE LLAMAR CONJUNTO A.
LOS CONJUNTOS ESTÁN PRESENTES EN NUESTRO DÍA A DÍA Y SON DE GRAN UTILIDAD CUANDO VAMOS CON NUESTROS PADRES DE COMPRAS. EN LOS SUPERMERCADOS VEMOS TODOS LOS ALIMENTOS POR CONJUNTOS. EN UN ESTANTE ESTÁ EL CONJUNTO DE LOS CEREALES, EN OTRO EL CONJUNTO DE LOS PRODUCTOS DE LIMPIEZA, EN OTRO EL CONJUNTO DE LAS CARNES Y EN OTRO EL CONJUNTO DE LAS GOLOSINAS.

REPRESENTACIÓN DE CONJUNTOS

UN CONJUNTO PUEDE SER REPRESENTADO POR MEDIO DEL DIAGRAMA DE VENN O ENTRE LLAVES.

CONJUNTO MEDIANTE DIAGRAMA DE VENN

CONSISTE EN UNA LÍNEA CERRADA QUE ENCIERRA EL GRUPO DE ELEMENTOS DEL CONJUNTO. EL CONJUNTO SE EXPRESA POR MEDIO DE UNA LETRA MAYÚSCULA. POR EJEMPLO:

ESTE ES EL CONJUNTO F O CONJUNTO DE LA FIGURAS GEOMÉTRICAS.

CONJUNTO MEDIANTE LLAVES

CONSISTE EN ESCRIBIR TODOS LOS ELEMENTOS DEL CONJUNTO DENTRO DE UNAS LLAVES. POR EJEMPLO:

F = {CUADRADO, TRIÁNGULO, CÍRCULO, RECTÁNGULO}

¡ES TU TURNO!

OBSERVA ESTOS ELEMENTOS. ¿QUÉ TIENEN EN COMÚN?

REPRESENTA EL CONJUNTO POR MEDIO DEL DIAGRAMA DE VENN Y MEDIANTE LLAVES.

SOLUCIÓN

TODOS SON GLOBOS. ESTE ES EL CONJUNTO G:

G = {GLOBO AMARILLO, GLOBO ROSA, GLOBO MORADO, GLOBO AZUL, GLOBO ROJO}

PERTENENCIA Y NO PERTENENCIA

SI UN ELEMENTO COMPARTE LA CARACTERÍSTICA QUE NOS PERMITE AGRUPARLO CON OTROS, SE DICE QUE PERTENECE A ESE CONJUNTO. SI NO LA TIENE SE DICE QUE ESE ELEMENTO NO PERTENECE A ESE CONJUNTO. POR EJEMPLO:

ESTE ES EL CONJUNTO L DE LOS LÁPICES DE COLORES.

 PERTENECE AL CONJUNTO L.                                        NO PERTENECE AL CONJUNTO L.

TODO EL CONJUNTO L TIENE OBJETOS CON UNA CARACTERÍSTICA EN COMÚN: SON LÁPICES DE COLORES. EL LÁPIZ ROJO PERTENECE AL CONJUNTO L, MIENTRAS QUE EL PINCEL, POR NO SER UN LÁPIZ DE COLOR, NO PERTENECE AL CONJUNTO L.

TAMBIÉN PODEMOS USAR SÍMBOLOS ESPECIALES COMO (PERTENECE) O (NO PERTENECE.)

– OTRO EJEMPLO:

OBSERVA ESTOS DOS CONJUNTOS.

 

AL CONJUNTO P.                    AL CONJUNTO A.

AL CONJUNTO A.                        ∉ AL CONJUNTO P.

CUANTIFICADORES

A VECES PODEMOS EXPRESAR LAS CANTIDADES Y RELACIONES DE LOS ELEMENTOS DE UN CONJUNTO SIN UTILIZAR NÚMEROS. LO HACEMOS POR MEDIO DE PALABRAS COMO “TODOS”, “ALGUNOS” O “NINGUNO”. POR EJEMPLO, EN LA IMAGEN SE MUESTRA UNA ENSALADA DE FRUTAS. ESTA ENSALADA REPRESENTA UN CONJUNTO EN EL QUE:

  • TODOS SUS ELEMENTOS SON FRUTAS.
  • ALGUNOS ELEMENTOS SON DE COLOR ROJOS.
  • NINGÚN ELEMENTO ES DE COLOR BLANCO .

¡A PRACTICAR!

1. OBSERVA ESTE CONJUNTO Y RESPONDE:

  • ¿QUÉ TIENEN EN COMÚN?
SOLUCIÓN
TODAS SON CAMISETAS.
  • ¿CUÁNTOS ELEMENTOS TIENE EL CONJUNTO R?
SOLUCIÓN
TIENE 4 ELEMENTOS.
  • ¿CÓMO REPRESENTARÍAS ESTE CONJUNTO MEDIANTE LLAVES?
SOLUCIÓN
R = {CAMISETA BLANCA, CAMISETA VERDE, CAMISETA ROJA, CAMISETA AZUL}

 

2. OBSERVA EL CONJUNTO H Y RESPONDE.

 

  • ¿CUÁNTOS ELEMENTOS TIENE EL CONJUNTO H?
SOLUCIÓN
TIENE 7 ELEMENTOS.
  • ¿QUÉ CARACTERÍSTICA TIENEN EN COMÚN?
SOLUCIÓN
TODOS SON ALIMENTOS DE COLOR AMARILLO.
  • COMPLETA CON  (PERTENECE) O (NO PERTENECE) SEGÚN CORRESPONDA.

 ______ AL CONJUNTO H.

SOLUCIÓN

  AL CONJUNTO H.

 ______ AL CONJUNTO H.

SOLUCIÓN

  AL CONJUNTO H.

 ______ AL CONJUNTO H.

SOLUCIÓN

  AL CONJUNTO H.

______ AL CONJUNTO H.

SOLUCIÓN

 AL CONJUNTO H.

 ______ AL CONJUNTO H.

SOLUCIÓN

  AL CONJUNTO H.

RECURSOS PARA DOCENTES

Artículo “Relaciones entre conjuntos”

Con este recurso se podrá profundizar en algunas nociones sobre el concepto de conjuntos y de qué manera se relacionan entre ellos.

VER