CAPÍTULO 2 / TEMA 6

MÍnimo común múltiplo y máximo común divisor

La multiplicación y la división son operaciones básicas relacionadas directamente con dos conceptos: múltiplos y divisores. Ambos términos señalan la cantidad de veces que un número está contenido dentro de otro y la cantidad de veces que un número puede dividir a otro. Gracias a ellos podemos calcular múltiplos y divisores comunes en dos o más números y así poder simplificar operaciones más complejas.

múltiplos y divisores

El múltiplo de un número natural se obtiene al multiplicar ese número por otro número natural, por ejemplo:

  • 4 × 1 = 4
  • 4 × 2 = 8
  • 4 × 3 = 12
  • 4 × 4 = 16
  • 4 × 5 = 20
  • 4 × 6 = 24
  • 4 × 7 = 28
  • 4 × 8 = 32
  • 4 × 9 = 36

Los números marcados en rojo son múltiplos de 4. Estos números resultan de la multiplicación del número 4 por números naturales. Como los números naturales son infinitos, los múltiplos de un número también lo son, así que los múltiplos de 4 y de cualquier número continúan hasta el infinito.

Por otro lado, un divisor es todo número que al dividir a otro resulta en una división exacta, por ejemplo:

  • 12 ÷ 1 = 12
  • 12 ÷ 2 = 6
  • 12 ÷ 3 = 4
  • 12 ÷ 4 = 3
  • 12 ÷ 5 = 2 y resto = 2
  • 12 ÷ 6 = 2
  • 12 ÷ 7 = 1 y resto = 5
  • 12 ÷ 8 = 1 y resto = 4
  • 12 ÷ 9 = 1 y resto = 3

Los números marcados en rojo son divisores de 12 porque su división tiene un cociente entero con resto igual a cero, es decir, son divisiones exactas.

¡Es tu turno!

Escribe los múltiplos y divisores de 25.

Solución

Múltiplos: 25, 50, 75, 100,…

  • 25 × 1 = 25
  • 25 × 2 = 50
  • 25 × 3 = 75
  • 25 × 4 = 100

Divisores: 1, 5, 25

  • 25 ÷ 1 = 25
  • 25 ÷ 5 = 5
  • 25 ÷ 25 = 1
Los múltiplos y los divisores no son conceptos aislados, de hecho, están muy relacionados entre sí. Si un número a es múltiplo de otro número b, este último es divisor del primero. Por ejemplo, el número 6 es múltiplo de 2 porque 2 × 3 = 6, pero al mismo tiempo, 2 es divisor de 6, porque 6 ÷ 2 = 3. ¿Puedes buscar esta relación en otros números? ¡Inténtalo!

Mínimo común múltiplo

Entre dos o más números, el mínimo común múltiplo o mcm es el menor múltiplo que tienen dichos números en común. Por ejemplo, observa los múltiplos de 4 y 5:

Múltiplos de 4 → 4, 8, 12, 16, 20, 24, 28, 28, 32, 36, 40, …

Múltiplos de 5 → 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, …

Tanto el número 4 como el número 5 tienen al 20 y el 40 como múltiplos. Como 20 es el menor de ellos, decimos que el mínimo común múltiplo entre 4 y 5 es 20 y lo representamos de la siguiente forma:

mcm (4, 5) = 20

 

– Otro ejemplo:

¿Cuál es el mcm entre 12 y 18?

Múltiplos de 12 → 12, 24, 36, 48, 60, 72, 84, 96, …

Múltiplos de 18 → 18, 36, 54, 72, 90, 108, 126, …

Así que:

mcm (12, 18) = 36

¿Sabías qué?
Al mínimo común múltiplo también se lo conoce como múltiplo común menor.
El mcm se utiliza en operaciones con fracciones, especialmente en la simplificación de resultados. Por ejemplo, al sumar y restar fracciones es más sencillo calcular el mcm de los denominadores, el cual será el denominador final. Luego calcula las fracciones equivalentes de cada elemento del problema para hacer un cálculo con fracciones homogéneas.

Mcm por descomposición

Hay una forma en la que no es necesario calcular varios múltiplos, consiste en descomponer cada número en sus factores primos, para luego multiplicar a los factores comunes y no comunes con su mayor exponente. Ejemplo:

– Calcula el mcm entre 15 y 36.

1. Descomponemos cada números en sus factores primos:

2. Identificamos el factor común en los dos números y seleccionamos el de mayor exponente. En este caso el factor común de mayor exponente es el 32.

3. Luego multiplicamos por el factor no común. En este caso los factores no comunes son el 22 y el 5. Así que el mínimo común múltiplo entre 15 y 36 se escribe así:

mcm (15, 36) = 32 × 22 × 5 = 180

Los mínimos divisores y los números primos

Los mínimos divisores que calculamos reciben el nombre de “números primos”. Estos números se caracterizan por ser divisibles entre sí mismos y entre 1. Por ejemplo, el 5 solo se divide entre 5 y entre 1. Lo mismo ocurre con el 2, con el 3, con el 7… De hecho los números primos son infinitos y hay ocasiones en las que los matemáticos anuncian el descubrimiento de nuevos números primos.

Máximo común divisor

Entre dos o más números, el máximo común divisor o mcd es el divisor común mayor entre todos los divisores. Por ejemplo, observa los divisores de 32 y 40:

Divisores de 32 → 1, 2, 4, 8, 16, 32

Divisores de 40 → 1, 2, 4, 5, 8, 10, 20, 40

Los números 32 y 40 tienen varios divisores en común: 1, 2, 4 y 8. Como el 8 es el mayor de todos, decimos que el máximo común divisor entre 32 y 40 es 8. Lo escribimos de la siguiente manera:

mcd (32, 40) = 8

– Otro ejemplo:

¿Cuál es el mcd entre 35 y 49?

Divisores de 35 → 1, 5, 7, 35

Divisores de 49 → 1, 7, 49

Así que:

mcd (35, 49) = 7

¿Sabías qué?
El máximo común divisor también es conocido como “divisor común mayor”.

Mcd por descomposición

Otra forma para calcular el mcd es por medio de la factorización o descomposición en factores primos. Luego de esto, multiplicamos solo los factores comunes con su menor exponente. Por ejemplo:

– Calcular el mcd entre 30 y 20.

1. Factorizamos cada número.

2. Multiplicamos los factores comunes con su menor exponente. Los factores no comunes no se consideran para este cálculo. Entonces, el mcd entre 30 y 20 se escribe así:

mcd (30, 20) = 2 × 5 = 10

El mcd en la historia

El estudio del mcd se remonta a la antigua Grecia con Euclides, quien fue un líder de un grupo de matemáticos que vivió en los siglos IV y III a. C. En su obra Elementos, él describió un método para calcular el máximo común divisor de un número por medio del algoritmo de Euclides.

¡A practicar!

1. ¿Cuáles son los divisores de los siguientes números?

  • 56
Solución
1, 2, 4, 8, 7, 14, 28 y 56.
  • 28
Solución
1, 2, 4, 7, 14 y 28.
  • 74
Solución
1, 2, 37 y 74.

 

2. ¿Cuáles son los primeros seis múltiplos de estos números?

  • 34
Solución
34, 68, 102, 136 y 170.
  • 23
Solución
23, 46, 69, 92, 115 y 138.
  • 50
Solución
50, 100, 150, 200, 250 y 300.

 

3. ¿Cuál es el mcm de los siguientes números?

  • 60 y 38.
Solución
mcm (60, 38) = 420
  • 10 y 25.
Solución
mcm (10, 25) = 50
  • 8 y 12.
Solución
mcm (8, 12) = 24

 

4. ¿Cuál es el mcd de los siguientes números?

  • 50 y 80.
Solución
mcd (50, 80) = 10
  • 16 y 72.
Solución
mcd (16, 72) = 8
  • 60 y 75
Solución
mcd (60, 75) = 15

 

RECURSOS PARA DOCENTES

Artículo “Mínimo común múltiplo y máximo común divisor”

Con este recurso podrás poner en práctica los aprendido en este artículo, ya que cuenta con problemas que puedes resolver por medio de mcm y mcd.

VER

Artículo “Mínimo común múltiplo (mcm)”

En esta animación podrás trabajar con tus alumnos una aplicación directa del mcm.

VER

Tabla comparativa “Múltiplos y divisores”

Con este recurso podrás profundizar la información sobre las propiedades de los múltiplos y los divisores.

VER

CAPÍTULO 1 / TEMA 7 (REVISIÓN)

SENTIDO NUMÉRICO | REVISIÓN

UNIVERSO DE LOS NÚMEROS

Los números desde su invención han servido para contar cosas y por eso existen diferentes sistemas y tipos de números que permiten un mejor conocimiento de las cantidades. Para comprender el sentido numérico, dentro del universo de los números se utilizan diversas clasificaciones. Un tipo de números son los ordinales que sirven para establecer un orden. Por otro lado, existen los cardinales que indican cantidades numéricas de elementos que pertenecen a un grupo o conjunto. Actualmente, el sistema más usado es el sistema numérico decimal pero no es el único que existe. Otras culturas crearon sistemas de numeración distintos al decimal, como por ejemplo, los mayas y los romanos.

El sistema de numeración binario se utiliza principalmente en la informática. Está conformado solo por dos cifras: el 0 y el 1.

NÚMEROS PRIMOS Y COMPUESTOS

De acuerdo a la cantidad de divisores que poseen los número, los podemos clasificar en primos y compuestos. Los números primos son aquellos que solo son divisibles por el número uno y por sí mismos. En cambio, los números compuestos son aquellos que además de ser divisibles por el uno y por sí mismos, también son divisibles por otro u otros números, es decir, tienen más de dos divisores. Todos los números compuestos pueden expresarse como un producto de factores primos.

Para determinar los factores primos de un número compuesto se emplean los criterios de divisibilidad.

VALOR POSICIONAL

Una de las principales características de nuestro sistema de numeración decimal es que el valor de los dígitos varía de acuerdo a su ubicación dentro del número. Esta característica se denomina valor posicional y aplica tanto en los números enteros como en los fraccionarios. Una herramienta que nos permite observar directamente el valor de cada dígito de acuerdo al lugar que ocupa es la tabla posicional.

Según la posición de cada dígito, los números pueden descomponerse en forma de suma (descomposición aditiva) o de multiplicación (descomposición multiplicativa).

NÚMEROS DECIMALES

Hay números que se ubican entre dos números enteros consecutivos, estos números se denominan números decimales y se caracterizan porque presentan una parte entera y una decimal, que se encuentran separadas por una coma o punto de acuerdo a la convención del país. Los números decimales se clasifican en racionales y en irracionales. Los racionales se pueden representar en forma de fracción, y los irracionales son números infinitos cuya parte decimal no sigue ningún patrón, como sucede en el caso del número pi.

A menudo se pueden aplicar redondeos en las cifras decimales de un número para simplificar los cálculos.

POTENCIAS

La potenciación es una operación compuesta de tres partes fundamentales: el exponente, la base y la potencia. El exponente indica cuántas veces se debe multiplicar la base por si misma. La base es el número que se multiplica por sí mismo las veces que indique el exponente. La potencia es el resultado de la operación de potenciación. Como toda operación matemática, las potencias cumplen con algunas propiedades. Por ejemplo, todo número elevado a 0 es igual a 1. Para resolver potencias se aplican sus propiedades y se realizan multiplicaciones sucesivas de la base.

Cuando el exponente es 1, la potencia es siempre igual a la base.

RAÍZ DE UN NÚMERO

La radicación es la operación inversa a la potenciación y por ello se encuentran estrechamente relacionadas. Esta operación emplea el símbolo (√) denominado radical. Sus elementos principales son el radicando, el índice y la raíz. El radicando es el número al cual se le va a calcular la raíz y se encuentra en la parte inferior del radical. El índice es el número que índica la cantidad de veces en las que debe multiplicarse un número por sí mismo para que el resultado sea igual al radicando, y se ubica en la parte izquierda del radical. La raíz es el resultado de la operación. Para calcular una raíz se debe buscar un número que multiplicado por sí mismo las veces que indique el índice dé como resultado el mismo valor del radicando.

En las raíces cuadradas, el índice 2 no se coloca en el radical: simplemente se denotan como (√).

 

CAPÍTULO 1 / TEMA 6 (REVISIÓN)

SISTEMAS NUMÉRICOS ¿QUÉ APRENDIMOS?

¿QUÉ SON LOS NÚMEROS?

LOS NÚMEROS SON EXPRESIONES GRÁFICAS DE UNA CANTIDAD. GRACIAS A ELLOS CONTAMOS JUGUETES, HORAS O EDADES. A LO LARGO DE LA HISTORIA LOS SERES HUMANOS HAN UTILIZADO DIFERENTES RECURSOS COMO PALOS Y PIEDRAS PARA CONTAR, HASTA LLEGAR A UTILIZAR LOS SÍMBOLOS DE LOS NÚMEROS TAL COMO LOS CONOCEMOS HOY: 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9.

LOS NÚMEROS SON NECESARIOS PARA EL HOMBRE PORQUE NOS PERMITEN LLEVAR A CABO UNA TAREA DIARIA: CONTAR.

TIPOS DE NÚMEROS

POR LO GENERAL UTILIZAMOS DOS TIPOS DE NÚMEROS: LOS CARDINALES, QUE NOS SIRVEN PARA INDICAR UNA CANTIDAD DE ELEMENTOS, Y LOS ORDINALES, QUE USAMOS PARA EXPRESAR EL ORDEN O LA POSICIÓN DE UN ELEMENTO DENTRO DE UN GRUPO. LOS NÚMEROS ROMANOS FUERON INVENTADOS MUCHO ANTES DE LOS NÚMEROS QUE USAMOS HOY DÍA, SIN EMBARGO, SU USO HA PERDURADO EN LA HISTORIA Y ES POSIBLE VERLOS EN LOS NOMBRES DE PAPAS, LA NUMERACIÓN DE LAS OLIMPÍADAS DEPORTIVAS O ALGUNOS RELOJES ANTIGUOS.

LOS NÚMEROS ROMANOS SE REPRESENTAN CON SÍMBOLOS PARECIDOS A ALGUNAS DE NUESTRAS LETRAS MAYÚSCULAS.

SERIES Y RELACIONES

UNA SERIE ES UNA SUCESIÓN DE NÚMEROS QUE SIGUEN UN PATRÓN O REGLA. ESTAS SERIES PUEDEN SER DE OBJETOS, FIGURAS O NÚMEROS Y PUEDEN SER ASCENDENTES O DESCENDENTES. LAS SERIES ASCENDENTES SON LAS QUE VAN DE MENOR A MAYOR, POR EJEMPLO, CUANDO CONTAMOS LA CANTIDAD DE LÁPICES QUE TENEMOS: 1, 2, 3, …POR OTRO LADO, LAS SERIES DESCENDENTES SON LAS QUE VAN DE MAYOR A MENOR, COMO CUANDO CONTAMOS LOS SEGUNDOS PARA EL AÑOS NUEVO: 5, 4, 3, 2, 1.

CUANDO CONTAMOS DE 1 EN 1 CREAMOS UNA SERIE NUMÉRICA ASCENDENTE PORQUE CADA NÚMERO TIENE UNA UNIDAD MÁS QUE EL ANTERIOR.

NÚMEROS NATURALES

LOS NÚMEROS NATURALES SON AQUELLOS QUE NOS PERMITEN CONTAR LOS ELEMENTOS DE UN CONJUNTO. CUANDO TIENEN MÁS DE UN DÍGITO, EL VALOR DE CADA UNO DEPENDE DE LA UBICACIÓN DENTRO DEL NÚMERO: SEGÚN SU POSICIÓN PODRÁ OCUPAR EL LUGAR DE LAS UNIDADES, LAS DECENAS O LAS CENTENAS. LOS NÚMEROS NATURALES SE PUEDEN EXPRESAR SIEMPRE COMO EL RESULTADO DE UNA SUMA POR MEDIO DE SU DESCOMPOSICIÓN ADITIVA.

LOS NÚMEROS NATURALES FUERON LOS PRIMEROS NÚMEROS QUE USÓ EL HOMBRE PARA CONTAR.

CONJUNTOS

UN CONJUNTO ES UNA COLECCIÓN DE OBJETOS A LOS QUE LLAMAMOS ELEMENTOS. PARA PODER SER ELEMENTOS DE UN MISMO CONJUNTO, TODOS DEBEN TENER ALGUNA CARACTERÍSTICA EN COMÚN QUE NOS PERMITA AGRUPARLOS, POR EJEMPLO, EL CONJUNTO DE LAS FIGURAS GEOMÉTRICAS ESTARÍA CONFORMADO POR CÍRCULOS, TRIÁNGULOS, CUADRADOS Y RECTÁNGULOS. SI UN ELEMENTO POSEE ESA CARACTERÍSTICA COMÚN CON LOS OTROS OBJETOS SE DICE QUE PERTENECE AL CONJUNTO, SI NO POSEE ESA CARACTERÍSTICA EN COMÚN SE DICE QUE NO PERTENECE AL CONJUNTO.

AUNQUE EN LA IMAGEN VEMOS ELEMENTOS DISTINTOS, COMO ANIMALES, ALIMENTOS Y FIGURAS, TODOS TIENEN ALGO EN COMÚN: SON DE COLOR VERDE, POR LO TANTO, FORMAN UN CONJUNTO.

CAPÍTULO 1 / TEMA 4

NÚMEROS NATURALES

USAMOS NÚMEROS NATURALES TODOS LOS DÍAS: CUANDO CONTAMOS LAS HORAS, DAMOS UN NÚMERO DE TELÉFONO O AL DECIR NUESTRA EDAD. CON SOLO 10 DÍGITOS PODEMOS FORMAR CUALQUIER CANTIDAD DE NÚMEROS, Y PARA ESTO ES IMPORTANTE SABER LA POSICIÓN DE CADA CIFRA, ES DECIR, SU VALOR POSICIONAL.

¿QUÉ SON LOS NÚMEROS NATURALES?

LOS NÚMEROS NATURALES SON LOS QUE USAS A DIARIO PARA CONTAR. TODO NÚMERO NATURAL SIEMPRE TIENE UN SUCESOR, ES DECIR, UN NÚMERO QUE VIENE DESPUÉS Y ES MÁS GRANDE.

LOS NÚMEROS NATURALES SON LOS PRIMEROS QUE USÓ EL HOMBRE PARA CONTAR. DEBIDO A QUE ESTOS NÚMEROS SE UTILIZAN PARA SABER CANTIDADES, EL CERO PUEDE CONSIDERARSE EL NÚMERO IGUAL A LA AUSENCIA DE ALGO. LAS DIEZ CIFRAS DE NUESTRO SISTEMA DE NUMERACIÓN SON LOS PRIMEROS DIEZ NÚMEROS DEL CONJUNTO DE LOS NÚMEROS NATURALES: 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9.

¿SABRÍAS QUÉ?
SI EMPIEZAS A CONTAR NO TERMINARÁS NUNCA, LOS NÚMEROS NO TIENEN FIN.

VALOR POSICIONAL DE LOS NÚMEROS

OBSERVA ESTOS DOS NÚMEROS, ¿SON IGUALES?

12             21

NO, NO SON IGUALES. EL PRIMERO ES EL DOCE Y EL SEGUNDO ES EL VEINTIUNO. 

SI BIEN LOS DOS UTILIZAN LAS MISMAS CIFRAS: 1 Y 2, LA POSICIÓN ES DIFERENTE Y POR LO TANTO, SU VALOR TAMBIÉN ES DIFERENTE. ESTO ES LO QUE CONOCEMOS COMO VALOR POSICIONAL.

 

UNIDADES, DECENAS Y CENTENAS

  • OBSERVA LA IMAGEN, ¿CUÁNTOS CARAMELOS HAY?

HAY UN SOLO CARAMELO.

1 = 1 UNIDAD

  • ¿CUÁNTOS CARAMELOS HAY?

HAY 10 CARAMELOS.

10 = 1 DECENA

  • ¿CUÁNTOS CARAMELOS HAY?

HAY 100 CARAMELOS.

100 = 1 CENTENA

 

AL CONTAR MONEDAS PODEMOS HACER GRUPOS DE 1 EN 1 HASTA TENER 10. SI UNIMOS 10 GRUPOS DE 10 TENDREMOS 100 MONEDAS. CADA MONEDA DE 1 ES IGUAL A LA UNIDAD, EL GRUPO DE 10 ES IGUAL A LA DECENA Y EL GRUPO DE 100 ES IGUAL A LA CENTENA. VISTO DE OTRO MODO:

1 CUADRO = 1 UNIDAD

10 CUADROS = 1 DECENA = 10 UNIDADES

100 CUADROS = 1 CENTENA = 10 DECENAS = 100 UNIDADES

TABLA DE VALOR POSICIONAL

PODEMOS UBICAR CUALQUIER NÚMERO EN UNA TABLA SEGÚN SU VALOR POSICIONAL. EL PRIMER NÚMERO DE DERECHA A IZQUIERDA SERÁ LA UNIDAD, EL SEGUNDO SERÁ LA DECENA Y EL TERCERO SERÁ LA CENTENA.

– EJEMPLO:

¿CUÁNTOS POLLITOS HAY?

SI CONTAMOS LOS PRIMEROS DIEZ Y LOS AGRUPAMOS TENEMOS UNA DECENA. LUEGO CONTAMOS LOS DEMÁS 1 POR 1.

1 DECENA Y 8 UNIDADES SON 18.

EN UNA TABLA DE VALOR POSICIONAL QUEDA ASÍ:

 

– OTRO EJEMPLO:

¿CUÁNTOS HUEVOS DE PASCUA HAY?

2 DECENAS Y 4 UNIDADES SON 24.

ES LA TABLA POSICIONAL:

¡ES TU TURNO!

¿CUÁNTOS GUSANOS HAY?

SOLUCIÓN

3 DECENAS Y 5 UNIDADES SON 35.

EN LA TABLA POSICIONAL QUEDA ASÍ:

DESCOMPOSICIÓN ADITIVA

EL ELEMENTO ENTERO MÁS PEQUEÑO QUE PODEMOS CONTAR SE LLAMA UNIDAD, 10 UNIDADES FORMAN UNA DECENA Y 10 DECENAS FORMAN UNA CENTENA.

TODO NÚMERO PUEDE SER REPRESENTADO COMO UNA SUMA DE SUS VALORES POSICIONALES, OBSERVA:

EL NÚMERO 24 TIENE:

  • 2 DECENAS = 2 VECES 10 = 20
  • 4 UNIDADES = 4 VECES 1 = 4

LA DESCOMPOSICIÓN ADITIVA SE ESCRIBE ASÍ:

24 = 20 + 4

– OTRO EJEMPLO:

EL NÚMERO 123 TIENE:

  • 1 CENTENA = 1 VEZ 100 = 100
  • 2 DECENAS = 2 VECES 10 = 20
  • 3 UNIDADES = 3 VECES 1 = 3

LA DESCOMPOSICIÓN ADITIVA ES:

123 = 100 + 20 + 3 

CUADRO DE NÚMEROS

ESTE CUADRO TIENE EN FORMA ORDENADA LOS NÚMEROS DEL 1 AL 100. ES MUY ÚTIL PARA APRENDER A CONTAR Y TAMBIÉN PARA APRENDER EL NOMBRE DE LOS NÚMEROS.

el sucesor de un número

EL SUCESOR DE UN NÚMERO NATURAL ES EL RESULTADO DE SUMARLE 1 A ESE NÚMERO.

– EJEMPLO:

  • EL SUCESOR DE 5 ES 6 PORQUE 5 + 1 = 6.
  • EL SUCESOR DE 26 ES 27 PORQUE 26 + 1 = 27.
  • EL SUCESOR DE 49 ES 50 PORQUE 49 + 1 = 50.

¡A PRACTICAR!

1. ¿CUÁL ES EL SUCESOR DE LOS SIGUIENTES NÚMEROS?

  • 7
SOLUCIÓN
8 PORQUE 7 + 1 = 8.
  • 10
SOLUCIÓN
11 PORQUE 10 + 1 = 11.
  • 56
SOLUCIÓN
57 PORQUE 56 + 1 = 57.
  • 79
SOLUCIÓN
80 PORQUE 79 + 1 = 80.
  • 23
SOLUCIÓN
24 PORQUE 23 + 1 = 24.
  • 4
SOLUCIÓN
5 PORQUE 4 + 1 = 5.
  • 99
SOLUCIÓN
100 PORQUE 99 + 1 = 100.

 

2. COLOCA CADA NÚMERO EN UNA TABLA POSICIONAL.

  • 46
SOLUCIÓN

  • 58
SOLUCIÓN

  • 32
SOLUCIÓN

  • 116
SOLUCIÓN

  • 9
SOLUCIÓN

  • 100
SOLUCIÓN

 

3. REALIZA LA DESCOMPOSICIÓN ADITIVA DE LOS SIGUIENTES NÚMEROS.

  • 32
SOLUCIÓN
32 = 30 + 2
  • 116
SOLUCIÓN
116 = 100 + 10 + 6
  • 91
SOLUCIÓN
91 = 90 + 1
  • 136
SOLUCIÓN
100 = 100 + 30 + 6
  • 58
SOLUCIÓN
58 = 50 + 8
  • 46
SOLUCIÓN
46 = 40 + 6

 

4. AYUDA A LA GALLINA A LLEGAR AL NIDO. ENCUENTRA EL SUCESOR DE CADA NÚMERO A PARTIR DEL 1.

SOLUCIÓN

 

RECURSOS PARA DOCENTES

Artículo “¿Qué es un número natural?”

Este artículo te permitirá profundizar sobre los números naturales y sus características.

VER

Artículo “Composición y descomposición de números”

Con este recurso podrás ampliar la información sobre la composición de número naturales.

VER

CAPÍTULO 4 / TEMA 5

APLICACIÓN DE LA POTENCIA Y DE LA RADICACIÓN

La potenciación y la radicación son operaciones estrechamente relacionadas. Mientras que la primera es una multiplicación condensada de un número por sí mismo n cantidad de veces, la segunda busca ese número que multiplicado por sí mismo resulte en el radicando. Si bien sus propiedades ya se trataron en temas anteriores, aquí aprenderás otras aplicaciones de estos cálculos.

operaciones que simplifican

Tanto la potenciación como la radicación son operaciones útiles para mostrar números de manera más simple. Por ejemplo, dentro del conjunto de los números reales encontramos otros tipos de números que no son sencillos de representar, como los números irracionales, cuyas expresiones decimales son ilimitadas y no periódicas, por lo que es más fácil mostrarlo como una raíz:

\boldsymbol{\sqrt{2}=1,414213562...}

\boldsymbol{\sqrt{3}=1,732050807...}

\boldsymbol{\sqrt{5}=2,236067977...}

Por su parte, la potencia nos ayuda a expresar números muy grandes o muy pequeños de manera resumida, pues la potencia no es más que una multiplicación abreviada.

La descomposición en factores primos y la notación científica son solo dos de los procesos que pueden verse involucrados con la potenciación y la radicación. Ambas operaciones son empleadas en múltiples cálculos cotidianos y en diversas áreas como la astronomía, la ingeniería o la biología.

Las bacterias son microorganismos que crecen con un ritmo acelerado. Este crecimiento suele expresarse en forma de potencia con exponente positivo y se grafica en forma de línea curva ascendente. Saber que tan rápida puede ser la reproducción de una bacteria puede prevenir focos de infección en un paciente y evitar que este sea una víctima mortal.

descomposición en factores primos

También conocida como descomposición factorial o factorización, consiste en escribir un número como producto de sus números primos. Cada vez que un factor se repita en la descomposición, este se convertirá  en la base de una potencia y la cantidad de veces que se repita será el exponente.

– Ejemplo:

¿Qué es un número primo?

Un número primo es un número natural que tiene dos divisores positivos: al uno y a sí mismo. Esta tabla muestra los primero números primos en color azul.

¿Sabías qué?
Las factorización es un paso indispensable para calcular el mínimo común múltiplo y el máximo común divisor de un número.

Las raíces también se pueden obtener por medio de la descomposición del radicando en sus números primos.

– Ejemplo:

Halla la raíz cuadrada de 625 por descomposición de sus factores primos.

1. Descomponemos al número 625 en sus factores primos.

2. Expresamos la raíz cuadrada con producto de la descomposición.

\boldsymbol{\sqrt{625}=\sqrt{5^{4}}}

3. Aplicamos la propiedad “raíz de un potencia”.

\boldsymbol{\sqrt{5^{4}}=5^{\frac{4}{2}}=5^{2}=25}

4. Escribimos el resultado.

\boldsymbol{\sqrt{625}=25}


– Otro ejemplo:

Halla la raíz cuadrada de 196 por descomposición de sus factores primos.

1. Descomponemos al número 196 en sus factores primos.

2. Expresamos la raíz cuadrada con su radicando igual al producto de su descomposición.

\boldsymbol{\sqrt{196}=\sqrt{2^{2}\times 7^{2}}}

3. Aplicamos la propiedad “raíz de un producto”.

\boldsymbol{\sqrt{2^{2}\times 7^{2}}=\sqrt{2^{2}}\times \sqrt{7^{2}}}

4. Aplicamos la propiedad “raíz de una potencia”.

\boldsymbol{\sqrt{2^{2}}\times \sqrt{7^{2}}=2^{\frac{2}{2}}\times 7^{\frac{2}{2}}=2\times 7=14}

5. Escribimos el resultado.

\boldsymbol{\sqrt{196}=14}


– Otro ejemplo:

Halla la raíz cúbica de 1.728 por descomposición de sus factores primos.

  1. Descomponemos el número 1.728 en sus factores primos.

2. Expresamos la raíz cúbica con su radicando igual al producto de su descomposición.

\boldsymbol{\sqrt[3]{1.728}=\sqrt[3]{2^{6}\times 3^{3}}}

3. Aplicamos la propiedad “raíz de un producto”.

\boldsymbol{\sqrt[3]{2^{6}\times 3^{3}}=\sqrt[3]{2^{6}}\times \sqrt[3]{3^{3}}}

4. Aplicamos la propiedad “raíz de una potencia”.

\boldsymbol{\sqrt[3]{2^{6}}\times \sqrt[3]{3^{3}}=2^{\frac{6}{3}}\times 3^{\frac{3}{3}}=2^{2}\times 3=4\times 3=12}

5. Escribimos el resultado.

\boldsymbol{\sqrt[3]{1.728}=12}

Velocidad de un auto en un accidente

Cuando ocurre una accidente de tránsito, por lo general las llantas de los autos dejan una marca sobre el pavimento al frenar. Esta marca es de gran utilidad para los fiscales de tránsito, pues la raíz cuadrada del producto entre la aceleración y la longitud de la marca de frenado es igual a la velocidad del vehículo al momento del choque.

\boldsymbol{\sqrt{-2ax}}

Donde:

a = aceleración

x = longitud de las marcas de frenado

NOTACIÓN CIENTÍFICA

La notación científica es la expresión de números a partir de potencias de base 10. De forma general se representan así:

a × 10n

Donde:

a: es el número entero o decimal que multiplica a la potencia de base 10. Su módulo debe tener un valor igual o mayor que 1 pero menor que 10.

n: es un número entero distinto de cero que corresponde al exponente de la potencia de base 10. Es conocido también como “orden de magnitud”.

Se escriben de la siguientes manera:

  • 10−5 = 0,00001
  • 10−4 = 0,0001
  • 10−3 = 0,001
  • 10−2 = 0,01
  • 10−1 = 0,1
  • 100 = 1
  • 101 = 10
  • 102 = 100
  • 103 = 1.000
  • 104 = 10.000
  • 105 = 100.000

Signos del exponente

Cuando los números son muy pequeños o menores a 1 el exponente es negativo, mientras que si el número es muy grande o mayores a 1 el exponente es positivo.

  • Los exponentes positivos indican la cantidad de ceros que se encuentran a la derecha del número que multiplica la potencia. Por ejemplo, el número 2.000.000 representado en notación científica es 2 × 106 en donde el exponente 6 indica la cantidad de ceros que están después del dos.
  • Los exponentes negativos indican la cantidad de ceros a la izquierda del número que multiplica la potencia. Por ejemplo, el número 0,00000004 representado en notación científica es 4 × 10−8. En este caso el signo menos indica que hay 8 ceros delante del 4.
Nuestro planeta Tierra se encuentra en la galaxia espiral llamada Vía Láctea, la cual tiene unos 100.000 años luz de diámetro. Los científicos estiman que hay alrededor de 400.000.000.000 estrellas en esta galaxia. Estos número tan grandes podemos expresarlos por medio de notación científica como 1 × 105 años luz de diámetro y 4 × 1011 estrellas.

– Otros ejemplos:

  • 3,2 × 10−3 = 0,0032
  • 4 × 10−4 = 0,0004
  • 1,05 × 106 = 1.050.000
  • 6,78 × 10−1 = 0,678
  • 9,43 × 102 = 943

¿Sabías qué?
En el caso de números muy grandes, lo primero que se debe hacer es mover la coma decimal a un número que esté comprendido entre 1 y 10. El número de espacios recorridos hasta dicho número corresponderá al exponente de la potencia de base 10.
  • 8.956.000.000.000 = 8,956 × 1012
  • 243.000 = 2,43 × 105
  • 90.000 = 9 × 104
  • 0,00000045 = 4,5 × 10−7
  • 0,007 = 7 × 10−3

¡A practicar!

1. Expresa los siguientes números como producto de sus factores primos.

  • 520
Solución
520 = 23 × 5 × 13
  • 156
Solución
156 = 22 × 3 × 13
  • 200
Solución
200 = 23 × 52
  • 86
Solución
86 = 2 × 43
  • 22
Solución
22 = 2 × 11

2. Calcula las siguientes raíces por descomposición de sus factores primos.

  • \sqrt[3]{729}
Solución
\sqrt[3]{729}=9
  • \sqrt[3]{64}
Solución
\sqrt[3]{64}=4
  • \sqrt[3]{343}
Solución
\sqrt[3]{343}=7
  • \sqrt{324}
Solución
\sqrt{324}=18
  • \sqrt{400}
Solución
\sqrt{400}=20

3. Calcula:

  • 6 × 108
Solución
6 × 108 = 600.000.000
  • 3 × 10−5
Solución
3 × 10−5 = 0,00003
  • 1,26 × 10−6 
Solución
1,26 × 10−6 = 0,00000126
  • 1,78 × 105
Solución
1,78 × 105 = 178.000 
  • 2 × 104
Solución
2 × 104 = 20.000

RECURSOS PARA DOCENTES

Video “Notación científica”

Este recurso audiovisual le permitirá poner en práctica lo aprendido sobre la notación científica.

VER

Artículo “Factorización de números”

Este artículo detalla cómo descomponer números en sus factores primos y su relación con el cálculo del mínimo común múltiplo y máximo común divisor.

VER

CAPÍTULO 1 / TEMA 5 (REVISIÓN)

números | ¿qué aprendimos?

Lectura y representación de números

Cada número está formado por diferentes cifras y cada una de estas cifras tiene un valor según la posición que ocupan dentro del número. Por ejemplo, el 300 se lee “trescientos” porque el 3 se ubica en el lugar de las centenas, pero el 30 se lee “treinta” porque el 3 está en el lugar de las decenas. Además de los números naturales que usamos para contar, también existen otros que representan orden, como los ordinales; y otros que podemos ver en relojes antiguos, como los números romanos.

Con los diez dígitos de nuestro sistema de numeración podemos crear cualquier número.

Valor posicional

El valor posicional es el valor que tiene una cifra dentro de un número, por ejemplo, el número 555, a pesar de tener tres cifras iguales, cada una tiene un valor distinto: 500, 50 y 5. Estos valores los podemos representar en una tabla posicional en la que están los órdenes (unidades, decenas, centenas) y las clases (miles, millones, etc.). Por otro lado, la descomposición aditiva nos ayuda a expresar un número como la suma de sus valores posicionales.

El ábaco es un instrumento que sirve para realizar diferentes operaciones matemáticas. Una esfera de color puede representar una unidad, una decena o una centena.

Recta numérica

La recta numérica, como su nombre lo indica, es una recta que contiene infinitos números. Para graficarla basta con hacer una línea recta, dibujar flechas a los lados, ubicar el cero (0) y hacer separaciones de igual distancia en las que colocaremos los puntos que simbolizan los números. Es importante recordar que cada número tiene un orden y pueden ser mayores o menores que otros. Para esto usamos símbolos de relación como mayor que (>), menor que (<) o igual a (=).

Con una regla graduada o escuadra podemos dibujar una recta numérica. Este instrumento nos ayudará no solo con el trazo de la línea recta, sino también con las separaciones entre punto y punto.

series

Las series numéricas son conjuntos de números organizados bajo una misma regla o patrón, pueden ser ascendentes y descendentes. Una serie es ascendente cuando los números están ordenados de menor a mayor y el patrón es una suma sucesiva; mientras que una serie numérica descendente es aquella en la que los números están ordenados de mayor a menor y el patrón es una resta sucesiva. A estos patrones los podemos identificar si restamos dos números contiguos de la serie. También vemos patrones en las tablas de 100 números.

Contar es una de las primeras tareas que aprendemos a hacer. Gracias al conteo con nuestros dedos podemos realizar operaciones básicas como la suma y resta de números pequeños.

CAPÍTULO 1 / TEMA 3

VALOR POSICIONAL

El sistema de numeración decimal se caracteriza por ser de base 10 y por ser posicional. Esto significa que solo usa diez dígitos y que la posición de cada uno de ellos determina el valor que tienen. La tablas posicionales y la descomposición son algunas técnicas que podemos emplear para escribir y leer números con más de cinco cifras de manera sencilla. A continuación verás lo fácil que es.

VALOR POSICIONAL DE CIFRAS HASTA 1.000.000

En el sistema de numeración decimal contamos con los siguientes dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. Con ellos podemos formar todos los números del sistema ya que si variamos la posición de las cifras dentro del número, también cambiamos su valor. Esta característica se denomina valor posicional.

Como podemos observar en este ejemplo, todas las cifras que componen el número 999.999 son las mismas: 9, pero cada una tiene un valor diferente debido a su posición dentro del número.

Como ya sabemos, luego de 3 cifras debemos colocar un punto. En este caso, dicho punto separa a los miles de los millones. El número que le sigue al 999.999 es el millón, que se escribe de la siguiente manera:

1.000.000

¿Sabías qué?
Si empiezas a contar de uno en uno no terminarás nunca porque los números no tienen un final, es decir, son infinitos.
Cuando algo no termina decimos que es infinito, y los números son un ejemplo de ello. No hay un límite final para los números, pero tampoco hay un comienzo, ya que antes del 0 hay una infinidad de número negativos. Cuando queramos expresar que una cuenta es infinita podemos utilizar el símbolo que lo representa: ∞.

LA TABLA POSICIONAL

Existe una clasificación según la posición que tengan las cifras dentro del número. Cada posición recibe el nombre de un orden, como las unidades, decenas y centenas. Cada tres órdenes se forma una clase, que va desde las unidades, miles, millones, millares de millón, billones, etc. Podemos observar toda esta información en una tabla posicional.

– Ejemplo:

Según la tabla posicional, los valores de cada cifra de derecha a izquierda son los siguientes:

  • 2 unidades = 2 se lee “dos”.
  • 3 decenas = 30 se lee “treinta”
  • 5 centenas = 500 se lee “quinientos”.
  • 9 unidades de mil = 9.000 se lee “nueve mil”.
  • 4 decenas de mil = 40.000 se lee “cuarenta mil”.
  • 8 centenas de mil = 800.000 se lee “ochocientos mil”.
  • 1 unidad de millón = 1.000.000 se lee “un millón”

Por lo tanto, el número 1.849.532 se lee “un millón ochocientos cuarenta y nueve mil quinientos treinta y dos”.

 

– Otro ejemplo:

Según la tabla posicional, los valores son:

  • 5 unidades = 5 se lee “cinco”.
  • 8 decenas = 80 se lee “ochenta”.
  • 9 centenas = 900 se lee “novecientos”.
  • 2 unidades de mil = 2.000 se lee “dos mil”.
  • 4 decenas de mil = 40.000 se lee “cuarenta mil”.
  • 6 centenas de mil = 600.000 se lee “seiscientos mil”.
  • 1 unidad de millón = 1.000.000 se lee “un millón”.

Entonces, el número 1.642.985 se lee “un millón seiscientos cuarenta y dos mil novecientos ochenta y cinco”.

¡Es tu turno!

Coloca los siguientes números en sus tablas posicionales:

  • 1.022.467
Solución

  • 270.628
Solución

  • 896.501
Solución

VALOR POSICIONAL DE DECIMALES

Los números decimales se componen de una parte entera y una parte decimal que van separadas por una coma. Esto quiere decir que de un lado de la coma vamos a tener la parte de los números enteros con unidades, decenas, centenas, etc.; y del otro lado, la parte decimal que también tiene valores posicionales conocidos como décimas, centésimas, milésimas, etc.

 

La parte decimal de los números decimales también puede ser representada en una tabla posicional. Al igual que la parte entera, el valor cambia de acuerdo a la posición de la cifra.

Unidades decimales

Son las que obtenemos al dividir la unidad en partes iguales. Las primeras unidades decimales son las décimas, las centésimas y las milésimas.

Décimas Centésimas Milésimas
\boldsymbol{\frac{1}{10}=0,1} \boldsymbol{\frac{1}{100}=0,01} \boldsymbol{\frac{1}{1.000}=0,001}
1 unidad = 10 décimas

1 décima = 0,1 unidades

1 unidad = 100 centésimas

1 centésima = 0,01 unidades

1 unidad = 1.000 milésimas

1 milésima = 0,001 unidades

– Ejemplo:

Podemos leer los números decimales de dos formas:

  1. Leemos la parte entera seguida de la palabra “enteros”. Luego leemos la parte decimal como se lee la parte entera y mencionamos la posición en la que está la última cifra.
  2. Leemos la parte entera seguida de la palabra “coma”. Después leemos la parte decimal de la misma forma en la que lees la parte entera.

De este modo, el número 5.897,234 puede ser leído de dos formas, ambas correctas:

  1. “Cinco mil ochocientos noventa y siete enteros doscientos treinta y cuatro milésimas“.
  2. “Cinco mil ochocientos noventa y siete coma doscientos treinta y cuatro”.

DESCOMPOSICIÓN ADITIVA DE UN NÚMERO

Todos los números pueden descomponerse de diversas maneras. Una de ellas es la descomposición aditiva, la cual consiste en representar números como la suma de otros.

Por ejemplo, podemos descomponer el número 128 de forma aditiva y representarlo así:

128 = 100 + 20 + 8

Observa que sumamos los valores posicionales de cada cifra.

– Otros ejemplos:

  • 419.847 = 400.000 + 10.000 + 9.000 + 800 + 40 + 7
  • 1.589.634 = 1.000.000 + 500.000 + 80.000 + 9.000 + 600 + 30 + 4
  • 25,39 = 20 + 5 + 0,3 + 0,09 
Cualquier número puede ser expresado a través de la suma, en lo que se conoce como descomposición aditiva. Este tipo de descomposición considera el valor posicional de cada una de sus cifras, pero también es posible verlo como la suma de diferentes cifras, por ejemplo, 15 = 10 + 5, pero también lo podemos escribir como 15 = 7 + 8.

DESCOMPOSICIÓN MULTIPLICATIVA DE UN NÚMERO

Es otro tipo de descomposición en el que representamos números por medio de multiplicaciones. Aquí tomamos en cuenta el valor del dígito por el valor de su posición.

– Ejemplo:

Este número tiene:

  • 2 unidades = 2 × 1
  • 3 decenas = 3 × 10
  • 9 centenas = 9 × 100
  • 6 unidades de mil = 6 × 1.000

Su descomposición multiplicativa es:

6.932 = 6 × 1.000 + 9 × 100 + 3 × 10 + 2 ×

– Otros ejemplos:

  • 958.348 = 9 × 100.000 + 5 × 10.000 + 8 × 1.000 + 3 × 100 + 4 × 10 + 8 × 1
  • 22.076 = 2 × 10.000 + 2 × 1.000 + 7 × 10 + 6 × 1
  • 143,896 =1 × 100 + 4 × 10 + 3 × 1 + 8 × 0,1 + 9 × 0,01 + 6 × 0,001

¡A practicar!

1. Coloca los siguientes números en tablas posicionales.

  • 775.426
Solución

  • 2.325,682
Solución

  • 987.110,85
Solución

 

2. Escribe la descomposición aditiva de los siguientes números:

  • 6.887
Solución

6.887 = 6.000 + 800 + 80 + 7

  • 359
Solución

359 = 300 + 50 + 9

  • 856.421
Solución

856.421 = 800.00 + 50.00 + 6.000 + 400 + 20 + 1

  • 1.325.644,856
Solución

1.325.644,856 = 1.000.000 + 300.000 + 20.000 + 5.000 + 600 + 40 + 4 + 0,8 + 0,05 + 0,006

 

3. Escribe la descomposición multiplicativa de los siguientes números:

  • 427
Solución

427 = 4 × 100 + 2 × 10 + 7 × 1

  • 17.504
Solución

17.504 = 1 × 10.000 + 7 × 1.000 + 5 × 100 + 4 × 1

266.915

Solución

266.915 = 2 × 100.000 + 6 × 10.000 + 6 × 1.000 + 9 × 100 + 1 × 10 + 5 × 1

RECURSOS PARA DOCENTES

Artículo destacado “Sistemas posicionales de numeración”

El siguiente artículo te permitirá conocer más acerca del valor posicional en distintos sistemas de numeración.

VER

Artículo destacado “Composición y descomposición de números”

El siguiente artículo te permitirá profundizar la información sobre la composición y descomposición de los números.

VER

CAPÍTULO 1 / TEMA 8 (REVISIÓN)

SISTEMA DE NUMERACIÓN | ¿qUÉ APRENDIMOS?

LECTURA DE NÚMEROS

Los números naturales (\boldsymbol{\mathbb{N}}) son los que utilizamos para contar. Cada número tiene un valor relativo según la posición que ocupe dentro de una cifra y esto permite una correcta lectura de los mismos. Además de los números naturales, existen los números decimales que están formados por una parte entera y otra decimal. También hay sistemas de numeración no posicionales como los números romanos, los cuales constan de siete letras del abecedario latino.

Para leer un número de manera correcta es necesario conocer el valor que ocupa cada una de sus cifras. Para esto podemos usar una tabla posicional.

descomposición de números

Existen distintas formas de descomponer números grandes: la aditiva con combinaciones básicas, la aditiva por medio de valor posicional, la polinómica o la multiplicativa. En la aditiva con combinaciones básicas usamos una o más sumas que expresen el mismo resultado; en la aditiva con valor posicional empleamos los valores posicionales de cada cifra; en la polinómica utilizamos las potencias de base 10; y en la multiplicativa descomponemos la cantidad en sus factores primos.

Estas diferentes maneras de expresar los números permiten resolver situaciones de forma más rápida y sencilla.

números enteros

Los números enteros (\boldsymbol{\mathbb{Z}}) están compuestos por todos los números naturales (\boldsymbol{\mathbb{N}}), sus opuestos negativos y el cero. Los enteros negativos requieren el uso obligatorio del signo (−) a diferencia de los positivos que pueden o no estar acompañados con el signo (+). Estos pueden ser representados en una recta numérica, la cual contiene todos los números reales (\boldsymbol{\mathbb{R}}). Los números enteros se aplican en diversas situaciones de la vida, como para indicar altitudes sobre el nivel del mar, registrar entradas y salidas de dinero de un banco, dibujar el eje de coordenadas, o para indicar temperaturas.

Otra de las tantas aplicaciones que se les da a los números enteros es para señalar los niveles de un edificios, en donde planta baja representa el 0, los niveles superiores los positivos y los niveles inferiores los negativos.

NÚMEROS decimales

Los números decimales están formados por una parte entera y una parte decimal, ambas divididas por una coma. Estos se clasifican en tres tipos según su parte decimal: exactos, periódicos y no periódicos. Los exactos tienen un número limitado de cifras; los periódicos poseen cifras decimales infinitas y, a su vez, estos se dividen en dos tipos: los puros y los mixtos; y los decimales no periódicos no tienen un patrón que se repita infinitamente. Estos números se pueden redondear para reducir la cantidad de cifras decimales y así obtener un valor muy parecido.

Los números decimales pueden ser utilizados en diversas situaciones de la vida, como para indicar la estatura de las personas o los precios de los productos.

sucesiones

Las sucesiones son un grupo de elementos que se ordenan uno detrás de otro. Estos elementos son llamados términos, siguen una regla dentro del conjunto y pueden ser números, letras, figuras o imágenes. En una sucesión, los términos son representados como subíndices (a1, a2, a3, …). Usamos sucesiones cada vez que contamos los días de la semana o las horas del día. También las usamos para ordenar de mayor a menor o de menor a mayor, o para aprender a leer el abecedario. Podemos encontrar sucesiones con operaciones matemáticas como la suma, la resta, la multiplicación, la división o la potencia.

Cuando se ordenan los ganadores de una carrera de automóviles, estos siguen un patrón de acuerdo al tiempo de llegada. Este es un ejemplo de sucesión.

potencias

La potenciación consiste en expresar de manera reducida una multiplicación de factores iguales. Tiene tres elementos: una base, un exponente y la potencia. La base es el número que se multiplicará tantas veces como indica el exponente y la potencia es el resultado de la multiplicación de los factores. Algunas de las propiedades de las potencias son: potencia de exponente 0, potencia de exponente 1, potencia de exponente negativo, multiplicación y división de potencias con igual base y la potencia de una potencia.

Las potencias sirven para aplicar teoremas, expresar notación científica, realizar sucesiones matemáticas y para demostrar problemas de crecimiento exponencial como la multiplicación de virus y bacterias.

raíz de un número

La raíz de un número es la operación inversa a la potencia de un número. Consiste en buscar el número que se ha multiplicado tantas como indica n bajo un operador radical. Los elementos de una raíz son el radicando, el índice, el radical y la raíz. El radicando es el resultado de la multiplicación de la raíz de un número tantas veces como indica el índice de la raíz. El índice indica el grado de una raíz, lo que se traduce en cuántas veces se multiplicó por sí mismo el resultado de la radicación. El radical representa el símbolo de la operación de radicación y la raíz es resultado de la operación matemática.

Todas las operaciones matemáticas poseen una operación inversa que revierte los cálculos realizados.

CAPÍTULO 1 / TEMA 2

vALOR POSICIONAL

En nuestro sistema de numeración utilizamos solo 10 cifras para escribir todos los números, pero cada una de estas cifras puede tener valores distintos según su posición, por ejemplo, en el número 222, el primer 2 de izquierda a derecha vale 200, el segundo 20 y el tercero 2. Esto es lo que llamamos valor posicional y puedes aplicarlo a cualquier número.

¿qué es el Valor posicional?

Estos son los diez dígitos de nuestro sistema de numeración decimal. Con ellos podemos formar cualquier cantidad de números. El valor posicional de cada uno importa porque nos indica el valor total, pues no es lo mismo tener $ 321 que $ 123. A pesar de que tienen las mismas cifras (1, 2 y 3), con $ 321 puedes comprar más cosas que con $ 123.

El valor posicional es el valor que tiene una cifra en un número y depende de su posición o lugar. Estas posiciones se conocen como unidad, decena y centena; y según la clase pueden ser “de miles” o “de millones. Observa estas equivalencias:

  • 1 unidad = 1 U
  • 1 decena = 10 U
  • 1 centena = 100 U
  • 1 unidad de mil = 1.000 U
  • 1 decena de mil = 10.000 U

– Ejemplo 1:

El número 473 tiene tres cifras y cada una ocupa estas posiciones:

 

– Ejemplo 2:

El número 2.984 tiene 4 cifras y cada una ocupa estas posiciones:

¿Sabías qué?
Los valores posicionales tienen estas abreviaturas: U (unidades), D (decenas), C (centenas), UM (unidades de mil) y DM (decenas de mil).

Tabla posicional

Podemos ubicar todas las cifras de un número en una tabla posicional. Esta nos ayuda a ver con facilidad el valor de cada una de las cifras por medio de columnas identificadas.

Esta es una tabla posicional para números de 6 cifras. Observa que en las columnas de color en azul están las unidades, las decenas y las centenas; mientras que en las columnas de color naranja están las unidades de mil, las decenas de mil y las centenas de mil.

¿cómo representar números en la tabla posicional?

Si queremo ubicar las cifras de un número en la tabla posicional tenemos que empezar por la primera cifra de derecha a izquierda, esa será la unidad. La segunda cifra de derecha a izquierda será la decena, la siguiente la centena y así sucesivamente.

– Ejemplo:

Ubica las cifras del número 7.946 en la tabla posicional.

Como la primera cifra de derecha a izquierda es el 6, colocamos el 6 en la casilla de las unidades. Luego el 4 en la de las decenas, el 9 en las centena y el 7 en las unidades de mil.

¡A practicar!

Ubica estos números en la tabla posicional:

  • 8.104
Solución

  • 582
Solución

  • 1.789
Solución

Conocer el valor posicional de las cifras de cada número resulta de gran utilidad cuando manejamos dinero. Por lo general, los billetes y monedas vienen con valores de 1, 10 y 100 unidades. De este modo, si necesitamos pagar una cuenta de $ 483, solo debemos tomar 4 billetes de $ 100, 8 de $ 10 y 3 de $ 1.

– Problema 1

En una pastelería se hacen entregas de donas todas las semanas. El transporte de las donas se hace en cajas de 100, cajas de 10 y otras sueltas. Esta semana se pidieron las siguientes cantidades: 318, 173, 486 y 300. Si el encargado prepara los pedidos, ¿cuántas cajas de 100 y de 10 necesita para cada orden? ¿cuántas donas irán sueltas en cada caso?

  • Primer pedido

El primer pedido es de 318 donas. Lo primero que hacemos es ubicar este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 3 centenas = 3 veces 100
  • 1 decena = 1 vez 10
  • 8 unidades = 8 veces 1

Hagamos la representación con las cajas y donas:

Por lo tanto, el encargado necesita 3 cajas de 100, 1 caja de 10 y 8 donas sueltas.


  • Segundo pedido

El segundo pedido es de 163 donas. Ubicamos este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 1 centenas = 1 vez 100
  • 6 decenas = 6 veces 10
  • 3 unidades = 3 veces 1

Hagamos la representación con las cajas y donas:

Para este pedido el encargado necesita 1 caja de 100, 6 cajas de 10 y 3 donas sueltas.

¡Responde!

¿Cómo preparó el encargado los demás pedidos?

  • Tercer pedido
Solución

Este pedido es de 245 donas. Ubicamos este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 2 centenas = 2 veces 100
  • 4 decenas = 4 veces 10
  • 5 unidades = 5 veces 1

Hagamos la representación con las cajas y donas:

Para este pedido el encargado necesita 2 cajas de 100, 4 cajas de 10 y 5 donas sueltas.

  • Cuarto pedido
Solución

Este pedido es de 300 donas. Ubicamos este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 3 centenas = 3 veces 100

Hagamos la representación con las cajas y donas:

Para este pedido el encargado necesita 3 cajas de 100.

– Problema 2

En un juego de fichas, cada una de estas figuras indica una cantidad de puntos.

Observa que:

  • 1 cubo azul = 1 unidad
  • 1 barra roja = 1 decena
  • 1 placa verde = 1 centena
  • 1 caja amarilla = 1 unidad de mil

Carla sacó estas fichas, ¿cuántos puntos obtuvo?

  • Hay 2 cajas amarillas → 2 unidades de mil
  • Hay 1 placa verde → 1 centena
  • Hay 3 barras rojas → 3 decenas
  • Hay 8 cubos azules → 8 unidades

En una tabla posicional colocamos cada cifra según el valor que tenga.

Carla obtuvo 2.138 puntos.


Pedro sacó estas fichas, ¿cuántos puntos obtuvo?

  • Hay 5 cajas amarillas → 5 unidades de mil
  • Hay 0 placa verde → 0 centena
  • Hay 2 barras rojas → 2 decenas
  • Hay 3 cubos azules → 3 unidades

En una tabla posicional colocamos cada cifra según el valor que tenga.

Pedro obtuvo 5.023 puntos.

¿Sabías qué?
Hubo dos civilizaciones antiguas que usaron el principio de posición y representaron la ausencia de unidades mediante el cero: los babilonios y los mayas.

Descomposición aditiva de un número

La descomposición aditiva consiste en expresar un número como una suma de dos o más números. Para esta descomposición consideramos los valores posicionales.

Por ejemplo, el número 3.456 se coloca de esta manera en una tabla posicional:

En la tabla vemos que hay:

  • 3 unidades de mil = 3 veces 1.000 = 3.000
  • 4 centenas = 4 veces 100 = 400
  • 5 decenas = 5 veces 10 = 50
  • 6 unidades = 6 veces 1 = 6

Por lo tanto, podemos decir que el número 3.456 es igual a la suma de todos sus valores posicionales. Observa:

3.456 = 3.000 + 400 + 50 + 6

 

El ábaco es uno de los objetos más antiguos utilizados por el hombre para realizar sus operaciones matemáticas y quizás el de mayor distribución a nivel mundial. Esta herramienta o instrumento se utiliza para hacer cálculos manuales por medio de piezas de colores que representan los valores posicionales de una cifra.

¡A practicar!

Escribe la descomposición aditiva de los siguientes números:

  • 7.342
Solución

Valores posicionales

  • 7 unidades de mil = 7 veces 1.000 = 7.000
  • 3 centenas = 3 veces 100 = 300
  • 4 decenas = 4 veces 10 = 40
  • 2 unidades = 2 veces 1 = 2

Descomposición aditiva

7.342 = 7.000 + 300 + 40 + 2

  • 9.716
Solución

Valores posicionales

  • 9 unidades de mil = 9 veces 1.000 = 9.000
  • 7 centenas = 7 veces 100 = 700
  • 1 decena = 1 vez 10 = 10
  • 6 unidades = 6 veces 1 = 6

Descomposición aditiva

9.716 = 9.000 = 700 + 10 + 6

  • 8.053
Solución

Valores posicionales

  • 8 unidades de mil = 8 veces 1.000 = 8.000
  • 5 decenas = 5 veces 10 = 50
  • 3 unidades = 3 veces 1 = 3

Descomposición aditiva

8.053 = 8.000 + 50 + 3

¿Sabías qué?
Cuando el valor de una cifra es cero (0) no se escribe en la descomposición.

¡Hora de practicar!

1. Escribe el valor posicional de los dígitos en color rojo.

216

Solución
Unidad.

1.971

Solución
Centena.

7.031

Solución
Centena.

532

Solución
Decena.

828

Solución
Unidad.

6.220

Solución
Decena.

9.483

Solución
Unidad de mil.

2. Une la descomposición con el numero correspondiente.

Solución

RECURSOS PARA DOCENTES

Artículo “Composición y descomposición de números”

Este artículo explica cómo realizar composiciones y descomposiciones aditivas que ayudarán al alumno a realizar cálculos mentales con números naturales.

VER 

Artículo “Sistemas posicionales de numeración”

En este artículo podrás profundizar sobre la representación de los números en varios sistemas de numeración.

VER

Artículo “Descomposición de números”

Con este recurso tendrás las herramientas necesarias para hacer la descomposición de aditiva de los números naturales.

VER

CAPÍTULO 2 / TEMA 1

ADICIÓN

MUCHAS VECES NECESITAMOS AGRUPAR OBJETOS, POR EJEMPLO, LAS TARJETAS DE UN COMPAÑERO CON LAS NUESTRAS, PERO ¿CÓMO SABER CUÁNTAS HAY AL FINAL? PARA ESTO USAMOS UNA OPERACIÓN LLAMADA ADICIÓN O SUMA QUE CONSISTE EN UNIR CANTIDADES. SEGURO LA USAS DIARIAMENTE. HOY APRENDERÁS CUÁLES SON SUS PROPIEDADES Y CÓMO CALCULARLA.

LA ADICIÓN Y SUS ELEMENTOS

LA ADICIÓN ES UNA OPERACIÓN MATEMÁTICA QUE UNE DOS O MÁS CANTIDADES. EN ESA UNIÓN SE FORMA OTRA CANTIDAD LLAMADA SUMA. SUS ELEMENTO SON LOS SUMANDOS Y LA SUMA TOTAL.

– EJEMPLO:

JOSÉ Y CARLOS COMPRARON PALETAS PARA TODOS SUS AMIGOS. SI JOSÉ COMPRÓ 4 PALETAS Y CARLOS COMPRÓ 5 PALETAS, ¿CUÁNTAS PALETAS COMPRARON EN TOTAL?

ESTE PROBLEMA SE RESUELVE CON UNA SUMA. LOS SUMANDOS SON 4 Y 5 Y LA SUMA TOTAL ES LA UNIÓN DE ESAS DOS CANTIDADES, ES DECIR, 9.

LA SUMA ES UNA DE LAS PRIMERAS OPERACIONES MATEMÁTICAS QUE APRENDEMOS PORQUE ES UNA DE LAS MÁS USADAS EN LA VIDA COTIDIANA. DESDE LA ANTIGÜEDAD SE HAN AGRUPADO NÚMEROS PARA SABER CANTIDADES. INICIAMOS A SUMAR CON LOS DEDOS, PERO CUANDO LAS CIFRAS SON MAYORES TENEMOS QUE USAR LOS SÍMBOLOS DE LOS NÚMEROS Y SUS VALORES EN TABLAS POSICIONALES.

SUMA CON TABLA DE VALORES

ES UNA MANERA SENCILLA DE REPRESENTAR LAS SUMAS. AQUÍ DEBEMOS COLOCAR EN COLUMNAS LAS UNIDADES, LAS DECENAS Y LAS CENTENAS DE CADA NÚMERO.

– EJEMPLO:

¡ES TU TURNO!

REALIZA LAS SIGUIENTES SUMAS:

  • 15 + 14
  • 45 + 2
  • 45 + 51
SOLUCIÓN

 

SUMA CON LLEVADAS

A VECES LA SUMA DE LAS UNIDADES DE LOS SUMANDOS PUEDE SER MAYOR A 10, EN ESE CASO SEGUIMOS ESTOS PASOS:

1. SUMAMOS LAS UNIDADES Y COLOCAMOS EL 1 EN LA COLUMNA DE LAS DECENAS.

2. SUMAMOS LAS DECENAS CON EL 1 QUE SE COLOCÓ ANTES.

 

– EJEMPLOS:

 

TAMBIÉN PUEDE OCURRIR CON LAS CENTENAS. OBSERVA:

 

NUESTRO SISTEMA DE NUMERACIÓN SOLO TIENE DIEZ DÍGITOS: 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9. CON ELLOS FORMAMOS TODOS LOS NÚMEROS QUE EXISTEN Y CADA CIFRA TENDRÁ UN VALOR DIFERENTE SEGÚN EL LUGAR QUE OCUPE DENTRO DEL NÚMERO. POR EJEMPLO, EN EL NÚMERO 25, EL 2 VALE 20 Y EL 5 VALE 5, PERO EN EL NÚMERO 52, EL 5 VALE 50 Y EL 2 VALE 2.

PROPIEDADES DE LA ADICIÓN

PROPIEDAD CONMUTATIVA

EN UNA SUMA DE DOS CANTIDADES, SI CAMBIAMOS EL ORDEN DE LOS SUMANDOS EL RESULTADO ES EL MISMO.

PROPIEDAD ASOCIATIVA

EN UNA SUMA DE TRES SUMANDOS, SI CAMBIAMOS LA AGRUPACIÓN DE LOS SUMANDOS EL RESULTADO ES EL MISMO.

ELEMENTO NEUTRO

LA SUMA DE CUALQUIER NÚMERO CON CERO DA COMO RESULTADO SU NÚMERO INICIAL.

DESCOMPOSICIÓN ADITIVA

SE TRATA DE REPRESENTAR UN NÚMERO COMO LA SUMA DE OTROS. EN ESTE CASO CONSIDERAMOS LOS VALORES POSICIONALES. RECUERDA QUE:

  • 1 UNIDAD = 1 UNIDAD
  • 1 DECENA = 10 UNIDADES
  • 1 CENTENA = 100 UNIDADES

– EJEMPLO 1:

EL NÚMERO 156 TIENE:

  • 1 CENTENA = 1 × 100 = 100
  • 5 DECENAS = 5 × 10 = 50
  • 6 UNIDADES = 6 × 1 = 6

DESCOMPOSICIÓN ADITIVA:

156 = 100 + 50 + 6

 

– EJEMPLO 2:

EL NÚMERO 84 TIENE:

  • 8 DECENAS = 8 × 10 = 80
  • 4 UNIDADES = 4 × 1 = 4

DESCOMPOSICIÓN ADITIVA:

84 = 80 + 4

¡ANTES DE LAS CALCULADORAS!

DESDE HACE MILES DE AÑOS EL SER HUMANO HA NECESITADO CONTAR, ¡Y CLARO! SUMAR. AL PRINCIPIO LO HACÍA CON LOS DEDO, CON PALOS O CON PIEDRAS. TAMBIÉN HACÍAN NUDOS EN CUERDAS PARA CONTAR CANTIDADES. PERO UNO DE LOS MÁS IMPORTANTES INVENTOS FUE EL ÁBACO: UN HERRAMIENTA QUE HACE CÁLCULOS MANUALES POR MEDIO DE CONTADORES O ESFERAS QUE REPRESENTAN CANTIDADES.

¡PRACTIQUEMOS LO APRENDIDO!

1. PARA UN TORNEO DE BALONCESTO SE INSCRIBIERON 78 NIÑOS DE PRIMERO GRADO Y 81 NIÑOS DE SEGUNDO GRADO, ¿CUÁNTO NIÑOS SE INSCRIBIERON EN TOTAL?

  • DATOS

NIÑOS DE PRIMERO GRADO: 78

NIÑOS DE SEGUNDO GRADO: 81

  • PREGUNTA

¿CUÁNTOS NIÑOS SE INSCRIBIERON EN TOTAL?

  • ANALIZA

HAY QUE HACER UNA SUMA. PARA ESTO COLOCAMOS LOS SUMANDOS UNO SOBRE Y OTRO. SUMAMOS PRIMERO LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

SE INSCRIBIERON 159 NIÑOS PARA EL TORNEO.


2. EN UN DÍA, UNA LIBRERÍA VENDIÓ 45 LÁPICES AMARILLOS Y 82 LÁPICES ROJOS, ¿CUÁNTOS LÁPICES SE VENDIERON ESE DÍA?

  • DATOS

LÁPICES AMARILLOS VENDIDOS: 45

LÁPICES ROJOS VENDIDOS: 82

  • PREGUNTA

¿CUÁNTOS LÁPICES SE VENDIERON ESE DÍA?

  • ANALIZA

HAY QUE HACER UNA SUMA. PARA ESTO COLOCAMOS LOS SUMANDOS UNO SOBRE Y OTRO. SUMAMOS PRIMERO LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

SE VENDIERON 127 LÁPICES ESE DÍA.


3. ANTONIO TIENE 3 PAQUETES CON CARAMELOS. EN EL PRIMERO HAY 29 CARAMELOS, EN EL SEGUNDO HAY 8 Y EN EL TERCERO HAY 2. ¿CUÁNTOS CARAMELOS TIENE ANTONIO?, ¿CUÁL ES LA SOLUCIÓN MÁS FÁCIL PARA ESTE PROBLEMA?

  • DATOS

CANTIDAD DE CARAMELOS EN PAQUETE 1: 29

CANTIDAD DE CARAMELOS EN PAQUETE 2: 8

CANTIDAD DE CARAMELOS EN PAQUETE 3: 2

  • PREGUNTA

¿CUÁNTOS CARAMELOS TIENE ANTONIO?, ¿CUÁL ES LA SOLUCIÓN MÁS FÁCIL PARA ESTE PROBLEMA?

  • ANALIZA

EN ESTE CASO UTILIZAMOS LA PROPIEDAD ASOCIATIVA. AGRUPAMOS LOS PRIMEROS DOS TÉRMINOS Y LUEGO SUMAMOS EL TERCERO. LUEGO AGRUPAMOS EL SEGUNDO Y EL TERCER TÉRMINO Y SUMAMOS EL PRIMERO. AL COMPARAR LAS DOS OPCIONES VEREMOS CUÁL ES LA MÁS FÁCIL.

  • CALCULA

  • RESPUESTA

ANTONIO TIENE 39 CARAMELOS.

ES MÁS FÁCIL SUMAR 8 + 2 = 10 Y LUEGO SUMARLE 29.


4. CAROLINA DEBE PAGAR $ 134 EN EL SUPERMERCADO. SI SOLO TIENE BILLETES DE $ 100, $ 10 Y $ 1, ¿CUÁNTOS BILLETES DE CADA DENOMINACIÓN TIENE QUE USAR PARA PAGAR LA CUENTA?

  • DATOS

PAGO QUE TIENE QUE HACER CAROLINA: $ 134

BILLETES QUE TIENE CAROLINA: $ 100, $ 10 Y $ 1

  • PREGUNTA

¿CUÁNTOS BILLETES DE CADA DENOMINACIÓN TIENE QUE USAR PARA PAGAR LA CUENTA?

  • ANALIZA

HAY DE HACER UNA DESCOMPOSICIÓN ADITIVA DE 134. DE ESTE MODO TENDREMOS UNA SUMA DE VALORES QUE REPRESENTAN LA MISMA CANTIDAD. TENEMOS QUE VER LA CANTIDAD DE UNIDADES (QUE VALEN 1), DECENAS (QUE VALEN 10) Y CENTENAS (QUE VALEN 100) HAY EN LA SUMA.

  • CALCULA

EL NÚMERO 134 TIENE:

  • 1 CENTENA = 1 × 100 = 100
  • 3 DECENAS = 3 × 10 = 30
  • 4 UNIDADES = 4 × 1 = 4

DESCOMPOSICIÓN ADITIVA:

134 = 100 + 30 + 4

COMO YA VIMOS, 100 = 1 VEZ 100, 30 = 3 VECES 10 Y 4 = A VECES 1.

  • RESPUESTA

CAROLINA TIENE QUE USAR 1 BILLETE DE $ 100, 3 BILLETE DE $ 10 Y 4 BILLETES DE $ 1.


¡A PRACTICAR!

1. RESUELVE LAS SUMAS. COMPRUEBA LA PROPIEDAD CONMUTATIVA.

  • 15 + 10 =
SOLUCIÓN

15 + 10 = 25

10 + 15 = 25

  • 60 + 20 =
SOLUCIÓN

60 + 20 = 80

20 + 60 = 80

  • 48 + 2 =
SOLUCIÓN

48 + 2 = 50

2 + 48 = 50

 

2. RESUELVE LAS SUMAS. COMPRUEBA LA PROPIEDAD ASOCIATIVA.

  • 40 + 25 + 10 =
SOLUCIÓN

(40 + 25) + 10 = 65 + 10 = 75

40 + (25 + 10) = 40 + 35 = 75

  • 15 + 60 + 10 =
SOLUCIÓN

(15 + 60) + 10 = 75 + 10 = 85

15 + (60 + 10) = 15 + 70 = 85

  • 40 + 14 + 20 =
SOLUCIÓN

(40 + 14) + 20 = 54 + 20 = 74

40 + (14 + 20) = 40 + 34 = 74

 

3. REALIZA LA DESCOMPOSICIÓN ADITIVA DE LOS SIGUIENTES NÚMEROS.

  • 189
SOLUCIÓN
189 = 100 + 80 + 9
  • 74
SOLUCIÓN
74 = 70 + 4
  • 123
SOLUCIÓN
123 = 100 + 20 + 3
RECURSOS PARA DOCENTES

Artículo “Propiedades de la suma”

Este recurso te permitirá ampliar la información sobre las propiedades de la adición.

VER

Artículo “Cómo enseñar a sumar y a restar”

Con este artículo obtendrás algunas orientaciones y ejemplos prácticos de gran utilidad al momento de enseñar estas operaciones matemáticas.

VER