CAPÍTULO 4 / TEMA 6 (REVISIÓN)

ORDEN Y RELACIONES | ¿QUÉ APRENDIMOS?

RECTA NUMÉRICA

La recta numérica es un gráfico en el que podemos representar cualquier número que pertenezca al conjunto de los números reales (\mathbb{R}). Tiene intervalos que señalan las unidades y siempre tienen la misma distancia entre un número y su consecutivo. Por otra parte, los distintos tipos de relaciones que existen entre los números se pueden mostrar por medio de los símbolos “<” y “>” que significan “menor que” y “mayor que” respectivamente.

Una regla graduada es muy parecida a una recta numérica.

ORDEN DE NÚMEROS NATURALES Y DECIMALES

Para ubicar los números naturales en la recta numérica ubicamos el 0 en una posición arbitraria y luego colocamos el resto de los números naturales en intervalos regulares. Si deseamos comparar números naturales usamos los símbolos < y > o la recta numérica, pues todo número que esté más a la derecha en la recta siempre será el mayor. Para ubicar números decimales en la recta numérica, debemos agregar subdivisiones entre los números enteros. Cuando queremos compararlos, primero tomamos en cuenta la parte entera y luego comparamos las cifras decimales de izquierda a derecha.

Sí bien algunos expertos afirman que el número cero (0) no pertenece al conjunto de los números naturales, otros aseguran que sí forma parte.

ORDEN DE FRACCIONES

Las fracciones también tiene un lugar en la recta numérica, para esto tenemos que considerar si la fracción es propia o impropia. De ser propia dividimos a la unidad en tantos segmentos como indique el denominador y contamos tantos segmentos como indique el numerador, luego marcamos la fracción. Si la fracción es impropia, tenemos que convertirla primero en un número mixto, en este caso, seguimos el procedimiento anterior pero a partir de la parte entera que tenga el número mixto.

Si comparamos fracciones con igual numerador y diferente denominador, será mayor aquella que tenga menor denominador.

PROPORCIONALIDAD

La proporcionalidad es una relación que existe entre dos magnitudes que podemos medir, y puede ser directa o inversa. Dos cantidades son directamente proporcionales si cuando una aumenta la otra aumenta o si cuando una disminuye la otra también lo hace. Por otro lado, al convertir medidas lo hacemos por medio de una regla de tres, un método muy útil para saber un valor desconocido entre 2 relaciones.

Siempre que vamos a un kiosco, sabemos que mientras más compremos, más tendremos que pagar; eso es porque la “cantidad que compramos” y la “cantidad que debemos pagar” tienen una relación directamente proporcional.

RELACIONES DE TIEMPO

El tiempo es quizás la magnitud más usada y medida diariamente. Sus unidades son variadas y van desde las menores a un día, como los segundos, los minutos y las horas; hasta las que sobrepasan al día como los meses, años y décadas. Si usamos una regla de tres podemos convertir una unidad a otra sin dificultad. También podemos hacer cálculos de suma y resta con el tiempo, esto nos ayuda a saber cuando empezó un partido de fútbol o qué hora salió un tren, por ejemplo.

Los calendarios o agendas son útiles para planificar las actividades a realizar a lo largo del día.

CAPÍTULO 1 / TEMA 6 (REVISIÓN)

SISTEMAS NUMÉRICOS ¿QUÉ APRENDIMOS?

¿QUÉ SON LOS NÚMEROS?

LOS NÚMEROS SON EXPRESIONES GRÁFICAS DE UNA CANTIDAD. GRACIAS A ELLOS CONTAMOS JUGUETES, HORAS O EDADES. A LO LARGO DE LA HISTORIA LOS SERES HUMANOS HAN UTILIZADO DIFERENTES RECURSOS COMO PALOS Y PIEDRAS PARA CONTAR, HASTA LLEGAR A UTILIZAR LOS SÍMBOLOS DE LOS NÚMEROS TAL COMO LOS CONOCEMOS HOY: 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9.

LOS NÚMEROS SON NECESARIOS PARA EL HOMBRE PORQUE NOS PERMITEN LLEVAR A CABO UNA TAREA DIARIA: CONTAR.

TIPOS DE NÚMEROS

POR LO GENERAL UTILIZAMOS DOS TIPOS DE NÚMEROS: LOS CARDINALES, QUE NOS SIRVEN PARA INDICAR UNA CANTIDAD DE ELEMENTOS, Y LOS ORDINALES, QUE USAMOS PARA EXPRESAR EL ORDEN O LA POSICIÓN DE UN ELEMENTO DENTRO DE UN GRUPO. LOS NÚMEROS ROMANOS FUERON INVENTADOS MUCHO ANTES DE LOS NÚMEROS QUE USAMOS HOY DÍA, SIN EMBARGO, SU USO HA PERDURADO EN LA HISTORIA Y ES POSIBLE VERLOS EN LOS NOMBRES DE PAPAS, LA NUMERACIÓN DE LAS OLIMPÍADAS DEPORTIVAS O ALGUNOS RELOJES ANTIGUOS.

LOS NÚMEROS ROMANOS SE REPRESENTAN CON SÍMBOLOS PARECIDOS A ALGUNAS DE NUESTRAS LETRAS MAYÚSCULAS.

SERIES Y RELACIONES

UNA SERIE ES UNA SUCESIÓN DE NÚMEROS QUE SIGUEN UN PATRÓN O REGLA. ESTAS SERIES PUEDEN SER DE OBJETOS, FIGURAS O NÚMEROS Y PUEDEN SER ASCENDENTES O DESCENDENTES. LAS SERIES ASCENDENTES SON LAS QUE VAN DE MENOR A MAYOR, POR EJEMPLO, CUANDO CONTAMOS LA CANTIDAD DE LÁPICES QUE TENEMOS: 1, 2, 3, …POR OTRO LADO, LAS SERIES DESCENDENTES SON LAS QUE VAN DE MAYOR A MENOR, COMO CUANDO CONTAMOS LOS SEGUNDOS PARA EL AÑOS NUEVO: 5, 4, 3, 2, 1.

CUANDO CONTAMOS DE 1 EN 1 CREAMOS UNA SERIE NUMÉRICA ASCENDENTE PORQUE CADA NÚMERO TIENE UNA UNIDAD MÁS QUE EL ANTERIOR.

NÚMEROS NATURALES

LOS NÚMEROS NATURALES SON AQUELLOS QUE NOS PERMITEN CONTAR LOS ELEMENTOS DE UN CONJUNTO. CUANDO TIENEN MÁS DE UN DÍGITO, EL VALOR DE CADA UNO DEPENDE DE LA UBICACIÓN DENTRO DEL NÚMERO: SEGÚN SU POSICIÓN PODRÁ OCUPAR EL LUGAR DE LAS UNIDADES, LAS DECENAS O LAS CENTENAS. LOS NÚMEROS NATURALES SE PUEDEN EXPRESAR SIEMPRE COMO EL RESULTADO DE UNA SUMA POR MEDIO DE SU DESCOMPOSICIÓN ADITIVA.

LOS NÚMEROS NATURALES FUERON LOS PRIMEROS NÚMEROS QUE USÓ EL HOMBRE PARA CONTAR.

CONJUNTOS

UN CONJUNTO ES UNA COLECCIÓN DE OBJETOS A LOS QUE LLAMAMOS ELEMENTOS. PARA PODER SER ELEMENTOS DE UN MISMO CONJUNTO, TODOS DEBEN TENER ALGUNA CARACTERÍSTICA EN COMÚN QUE NOS PERMITA AGRUPARLOS, POR EJEMPLO, EL CONJUNTO DE LAS FIGURAS GEOMÉTRICAS ESTARÍA CONFORMADO POR CÍRCULOS, TRIÁNGULOS, CUADRADOS Y RECTÁNGULOS. SI UN ELEMENTO POSEE ESA CARACTERÍSTICA COMÚN CON LOS OTROS OBJETOS SE DICE QUE PERTENECE AL CONJUNTO, SI NO POSEE ESA CARACTERÍSTICA EN COMÚN SE DICE QUE NO PERTENECE AL CONJUNTO.

AUNQUE EN LA IMAGEN VEMOS ELEMENTOS DISTINTOS, COMO ANIMALES, ALIMENTOS Y FIGURAS, TODOS TIENEN ALGO EN COMÚN: SON DE COLOR VERDE, POR LO TANTO, FORMAN UN CONJUNTO.

CAPÍTULO 1 / TEMA 4

NÚMEROS NATURALES

USAMOS NÚMEROS NATURALES TODOS LOS DÍAS: CUANDO CONTAMOS LAS HORAS, DAMOS UN NÚMERO DE TELÉFONO O AL DECIR NUESTRA EDAD. CON SOLO 10 DÍGITOS PODEMOS FORMAR CUALQUIER CANTIDAD DE NÚMEROS, Y PARA ESTO ES IMPORTANTE SABER LA POSICIÓN DE CADA CIFRA, ES DECIR, SU VALOR POSICIONAL.

¿QUÉ SON LOS NÚMEROS NATURALES?

LOS NÚMEROS NATURALES SON LOS QUE USAS A DIARIO PARA CONTAR. TODO NÚMERO NATURAL SIEMPRE TIENE UN SUCESOR, ES DECIR, UN NÚMERO QUE VIENE DESPUÉS Y ES MÁS GRANDE.

LOS NÚMEROS NATURALES SON LOS PRIMEROS QUE USÓ EL HOMBRE PARA CONTAR. DEBIDO A QUE ESTOS NÚMEROS SE UTILIZAN PARA SABER CANTIDADES, EL CERO PUEDE CONSIDERARSE EL NÚMERO IGUAL A LA AUSENCIA DE ALGO. LAS DIEZ CIFRAS DE NUESTRO SISTEMA DE NUMERACIÓN SON LOS PRIMEROS DIEZ NÚMEROS DEL CONJUNTO DE LOS NÚMEROS NATURALES: 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9.

¿SABRÍAS QUÉ?
SI EMPIEZAS A CONTAR NO TERMINARÁS NUNCA, LOS NÚMEROS NO TIENEN FIN.

VALOR POSICIONAL DE LOS NÚMEROS

OBSERVA ESTOS DOS NÚMEROS, ¿SON IGUALES?

12             21

NO, NO SON IGUALES. EL PRIMERO ES EL DOCE Y EL SEGUNDO ES EL VEINTIUNO. 

SI BIEN LOS DOS UTILIZAN LAS MISMAS CIFRAS: 1 Y 2, LA POSICIÓN ES DIFERENTE Y POR LO TANTO, SU VALOR TAMBIÉN ES DIFERENTE. ESTO ES LO QUE CONOCEMOS COMO VALOR POSICIONAL.

 

UNIDADES, DECENAS Y CENTENAS

  • OBSERVA LA IMAGEN, ¿CUÁNTOS CARAMELOS HAY?

HAY UN SOLO CARAMELO.

1 = 1 UNIDAD

  • ¿CUÁNTOS CARAMELOS HAY?

HAY 10 CARAMELOS.

10 = 1 DECENA

  • ¿CUÁNTOS CARAMELOS HAY?

HAY 100 CARAMELOS.

100 = 1 CENTENA

 

AL CONTAR MONEDAS PODEMOS HACER GRUPOS DE 1 EN 1 HASTA TENER 10. SI UNIMOS 10 GRUPOS DE 10 TENDREMOS 100 MONEDAS. CADA MONEDA DE 1 ES IGUAL A LA UNIDAD, EL GRUPO DE 10 ES IGUAL A LA DECENA Y EL GRUPO DE 100 ES IGUAL A LA CENTENA. VISTO DE OTRO MODO:

1 CUADRO = 1 UNIDAD

10 CUADROS = 1 DECENA = 10 UNIDADES

100 CUADROS = 1 CENTENA = 10 DECENAS = 100 UNIDADES

TABLA DE VALOR POSICIONAL

PODEMOS UBICAR CUALQUIER NÚMERO EN UNA TABLA SEGÚN SU VALOR POSICIONAL. EL PRIMER NÚMERO DE DERECHA A IZQUIERDA SERÁ LA UNIDAD, EL SEGUNDO SERÁ LA DECENA Y EL TERCERO SERÁ LA CENTENA.

– EJEMPLO:

¿CUÁNTOS POLLITOS HAY?

SI CONTAMOS LOS PRIMEROS DIEZ Y LOS AGRUPAMOS TENEMOS UNA DECENA. LUEGO CONTAMOS LOS DEMÁS 1 POR 1.

1 DECENA Y 8 UNIDADES SON 18.

EN UNA TABLA DE VALOR POSICIONAL QUEDA ASÍ:

 

– OTRO EJEMPLO:

¿CUÁNTOS HUEVOS DE PASCUA HAY?

2 DECENAS Y 4 UNIDADES SON 24.

ES LA TABLA POSICIONAL:

¡ES TU TURNO!

¿CUÁNTOS GUSANOS HAY?

SOLUCIÓN

3 DECENAS Y 5 UNIDADES SON 35.

EN LA TABLA POSICIONAL QUEDA ASÍ:

DESCOMPOSICIÓN ADITIVA

EL ELEMENTO ENTERO MÁS PEQUEÑO QUE PODEMOS CONTAR SE LLAMA UNIDAD, 10 UNIDADES FORMAN UNA DECENA Y 10 DECENAS FORMAN UNA CENTENA.

TODO NÚMERO PUEDE SER REPRESENTADO COMO UNA SUMA DE SUS VALORES POSICIONALES, OBSERVA:

EL NÚMERO 24 TIENE:

  • 2 DECENAS = 2 VECES 10 = 20
  • 4 UNIDADES = 4 VECES 1 = 4

LA DESCOMPOSICIÓN ADITIVA SE ESCRIBE ASÍ:

24 = 20 + 4

– OTRO EJEMPLO:

EL NÚMERO 123 TIENE:

  • 1 CENTENA = 1 VEZ 100 = 100
  • 2 DECENAS = 2 VECES 10 = 20
  • 3 UNIDADES = 3 VECES 1 = 3

LA DESCOMPOSICIÓN ADITIVA ES:

123 = 100 + 20 + 3 

CUADRO DE NÚMEROS

ESTE CUADRO TIENE EN FORMA ORDENADA LOS NÚMEROS DEL 1 AL 100. ES MUY ÚTIL PARA APRENDER A CONTAR Y TAMBIÉN PARA APRENDER EL NOMBRE DE LOS NÚMEROS.

el sucesor de un número

EL SUCESOR DE UN NÚMERO NATURAL ES EL RESULTADO DE SUMARLE 1 A ESE NÚMERO.

– EJEMPLO:

  • EL SUCESOR DE 5 ES 6 PORQUE 5 + 1 = 6.
  • EL SUCESOR DE 26 ES 27 PORQUE 26 + 1 = 27.
  • EL SUCESOR DE 49 ES 50 PORQUE 49 + 1 = 50.

¡A PRACTICAR!

1. ¿CUÁL ES EL SUCESOR DE LOS SIGUIENTES NÚMEROS?

  • 7
SOLUCIÓN
8 PORQUE 7 + 1 = 8.
  • 10
SOLUCIÓN
11 PORQUE 10 + 1 = 11.
  • 56
SOLUCIÓN
57 PORQUE 56 + 1 = 57.
  • 79
SOLUCIÓN
80 PORQUE 79 + 1 = 80.
  • 23
SOLUCIÓN
24 PORQUE 23 + 1 = 24.
  • 4
SOLUCIÓN
5 PORQUE 4 + 1 = 5.
  • 99
SOLUCIÓN
100 PORQUE 99 + 1 = 100.

 

2. COLOCA CADA NÚMERO EN UNA TABLA POSICIONAL.

  • 46
SOLUCIÓN

  • 58
SOLUCIÓN

  • 32
SOLUCIÓN

  • 116
SOLUCIÓN

  • 9
SOLUCIÓN

  • 100
SOLUCIÓN

 

3. REALIZA LA DESCOMPOSICIÓN ADITIVA DE LOS SIGUIENTES NÚMEROS.

  • 32
SOLUCIÓN
32 = 30 + 2
  • 116
SOLUCIÓN
116 = 100 + 10 + 6
  • 91
SOLUCIÓN
91 = 90 + 1
  • 136
SOLUCIÓN
100 = 100 + 30 + 6
  • 58
SOLUCIÓN
58 = 50 + 8
  • 46
SOLUCIÓN
46 = 40 + 6

 

4. AYUDA A LA GALLINA A LLEGAR AL NIDO. ENCUENTRA EL SUCESOR DE CADA NÚMERO A PARTIR DEL 1.

SOLUCIÓN

 

RECURSOS PARA DOCENTES

Artículo “¿Qué es un número natural?”

Este artículo te permitirá profundizar sobre los números naturales y sus características.

VER

Artículo “Composición y descomposición de números”

Con este recurso podrás ampliar la información sobre la composición de número naturales.

VER

CAPÍTULO 4 / TEMA 2

ORDEN DE NÚMEROS NATURALES Y DECIMALES

A cada número natural le corresponde una única posición en la recta numérica y a medida que nos movemos en ella hacia la derecha encontramos números mayores. Esto también sucede con los números decimales, es decir, aquellos más pequeños que la unidad. Todos tienen un orden y, por lo tanto, unos representan una mayor cantidad que otros.

números naturales en la recta numérica

Los números naturales son aquellos que usamos para contar y su conjunto se presenta como:

\mathbb{N}=\left \{ 0,\: 1,\: 2,\: 3,\: 4,\: 5,\: 6,\: 7,... \right \}

Como nuestro sistema de numeración decimal es posicional, cada cifra dentro de un número tiene un valor relativo. Así, un número de siete cifras está formado por unidades de millón, centenas de mil, decenas de mil, unidades de mil, centenas, decenas y unidades. Por ejemplo:

En la tabla vemos que el número 1.895.632 tiene:

  • 1 unidad de millón = 1.000.000
  • 8 centenas de mil = 800.000
  • 9 decenas de mil = 90.000
  • 5 unidades de mil = 5.000
  • 6 centenas = 600
  • 3 decenas = 30
  • 2 unidades = 2

Para representar este tipo de números en la recta numérica lo primero que hacemos es ubicar en ella un punto arbitrario, este será el origen y la posición del cero (0). Luego hacemos marcas con rayas verticales de igual distancia entre una y otra.

Cada uno de los pequeños segmentos simboliza una unidad, por lo que en la línea vertical que se encuentra inmediatamente a la derecha del 0 se coloca el 1, después el 2 y así se continúa con el resto de los números naturales:

¿Siempre se comienza desde el 0?

No necesariamente. Podemos utilizar solo una parte de la recta y mostrar el intervalo de números. Por ejemplo, entre el 726.580 y el 726.590 está ubicado el número 726.586.

Los números naturales son los primeros números utilizados en la historia del hombre. Los usaban principalmente para contar objetos. Algunos autores coinciden en que el cero no es un número natural, pero algunos otros prefieren incluirlo por ser la ausencia de algo. Los números naturales no incluyen a las fracciones ni a los números decimales.

COMPARACIÓN DE NÚMEROS NATURALES

Todos los números naturales tienen un orden, es decir, siguen una secuencia en la que un número es mayor o menor que otro. Para mostrar esta relación usamos los siguientes símbolos:

> que significa “mayor que”.

< que significa “menor que”.

= que significa “igual a”.

 

En una recta numérica, el número que se encuentre más a la derecha será el mayor.

– Ejemplo:

Compara los números 726.589 con 726.592, ¿cuál es mayor?

Como 756.592 está más a la derecha en la recta numérica, decimos que 756.592 es mayor que 756.589. Se escribe así:

756.592 > 726.589

 

– Otros ejemplos:

  • Compara los números 1.252 y 1.256.

 

 

1.252 < 1.256

1.256 > 1.252

 

  • Compara los números 500, 590 y 540.

 

500 < 540 < 590

590 > 540 > 500

 

Comparación de números naturales por el método aritmético

  • Si uno de los dos números tiene más cifras que el otro, entonces el que tenga mayor cantidad de cifras será el mayor. Por ejemplo, 1.225.988 > 899.999 ya que el primer número tiene 7 cifras y el segundo tiene 6.
  • Si los dos tienen la misma cantidad de cifras, comparamos cifra por cifra de izquierda a derecha. Por ejemplo, 8.225.988 y 8.225.899 tienen la misma cantidad de cifras, así que comparamos una por una:

Como 9 > 8, podemos afirmar que 8.225.988 > 8.225.899.

PROBLEMAS DE APLICACIÓN CON NÚMEROS NATURALES

1. Máximo, Joaquín y Lucía quieren comprar una guitarra. Máximo tiene $ 1.000, Lucía $ 2.000 y Joaquín $ 6.000. La guitarra cuesta $ 11.000. ¿Cuánto dinero falta para poder comprar la guitarra?

  • Datos

Dinero de Máximo: $ 1.000

Dinero de Lucía: $ 2.000

Dinero de Joaquín: $ 6.000

  • Pregunta

¿Cuánto dinero falta para poder comprar la guitarra?

  • Piensa

Para poder calcular la cantidad de dinero que falta debemos saber cuánto hay en total, así que sumamos las cantidades de Máximo, Lucía y Joaquín. Luego, por medio de una recta numérica, contamos los espacio que faltan desde el punto que representa la cantidad total de dinero hasta los $ 11.000.

  • Calcula

Total de dinero:

$ 1.000 + $ 2.000 + $ 6.000 = $ 9.000

Dinero que falta:

Faltan dos espacios para llegar a $ 11.000 y como cada espacio es igual a 1 unidad de mil: 2 × 1.000 = 2.000.

  • Respuesta

Faltan $ 2.000 para poder comprar la guitarra.

 


2. La cantidad de habitantes de la ciudad de Córdoba es 1.329.604 y la de Montevideo es 1.319.108. ¿Cuál ciudad tiene mayor cantidad de habitantes?

  • Datos

Habitantes de Córdoba: 1.329.604

Habitantes de Montevideo: 1.319.108

  • Pregunta

¿Cuál ciudad tiene mayor cantidad de habitantes?

  • Piensa

Como ambos número son grandes y tienen la misma cantidad de cifras, tenemos que comparar cifra por cifra. El primer dígito que sea diferente nos indicará cuál número es mayor.

  • Resuelve

Por lo tanto, 1.329.604 > 1.319.108

  • Respuesta

La ciudad de Córdoba tiene más habitantes que la de Montevideo.

 


3. Carla tiene 10 años. José es su hermano y tiene 5 años más que ella. Martina es su hermana y tiene 7 años menos que José. ¿Cuántos años tiene José y y cuántos tiene Martina? ¿Cuál es el hermano mayor?

  • Datos

Edad de Carla: 10 años

Edad de José: 5 años más que Carla

Edad de Martina: 7 años menos que José

  • Preguntas

¿Cuántos años tiene José y cuántos tiene Martina? ¿Cuál es el hermano mayor?

  • Piensa

Tenemos que realizar una recta numérica y ubicar la edad de Carla que es la única conocida. Luego nos movemos 5 espacios a la derecha para saber la edad de José y desde allí nos movemos 7 espacios a la izquierda para saber la edad de Martina. Finalmente comparamos cantidades.

  • Resuelve

15 > 10 > 8

  • Respuesta

José tiene 15 años y Martina tiene 8 años.

José es el hermano mayor.

Primeros números arábigos

La actual representación de los números arábigos encuentra su origen en la India, aunque se introdujo en Europa a través de textos árabes. El Codex Vigilanus es el primer texto europeo que los contiene, aunque no en el estado actual y, además, sin el 0. El nombre de este texto se debe a su autor, el monje Vigila, que lo redactó en el año 976, en Albelda, España.

 

NÚMEROS DECIMALES en la recta numérica

Los números decimales están formados por dos partes: una entera y una decimal, ambas separadas por una coma. Después de la coma, cada cifra tiene una valor según su posición.

Podemos observar en la tabla que el número 632,549 tiene:

  • 6 centenas = 600
  • 3 decenas = 30
  • 2 unidades = 2
  • 5 décimas = 0,5
  • 4 centésimas = 0,04
  • 9 milésimas = 0,009

Unidades decimales

Décimas Centésimas Milésimas
Es igual a la unidad dividida en 10 partes iguales. Es igual a la unidad dividida en 100 partes iguales. Es igual a la unidad dividida en 1.000 partes iguales.
\frac{1}{10}=0,1 \frac{1}{100}=0,01 \frac{1}{1.000}=0,001

Como los números decimales se encuentran entre los enteros, también podemos representarlos en una recta numérica, solo tenemos que crear subdivisiones. Por ejemplo, para ubicar las décimas entre los enteros 1 y 2 basta con dividir en diez partes iguales el espacio entre ambos números:

 

– Ejemplo:

El número 1,7 está ubicado entre los números 1 y 2.

 

También podemos representar las centésimas si subdividimos el espacio entre dos décimas.

– Ejemplo:

El número 1,74 está ubicado entre los números 1,7 y 1,8.

 

Los números decimales expresan números no enteros. Contienen una parte entera y una parte decimal. Para compararlos, debemos tomar en cuenta la parte entera. Siempre será mayor el número decimal que tenga mayor parte entera. En el caso de que las partes enteras sean iguales, procedemos a comparar las cifras decimales de izquierda a derecha.

COMPARACIÓN DE NÚMEROS DECIMALES

Los números decimales siguen un orden y tal como en el caso de los números naturales usamos < y > para indicar que una cantidad es menor o mayor que otra. En una recta numérica, mientras más a la derecha esté el número mayor será su valor.

– Ejemplo:

Compara los números 4,31 y 4,35.

El número 4,35 es mayor que 4,31 porque está más a la derecha en la recta numérica. Se escribe así:

4,35 > 4,31

– Otros ejemplos:

  • Compara los números 9,5 y 9,3.

9,5 > 9,3

9,3 < 9,5

  • Compara los números 6,72 y 6,79.

 

6,79 > 6,72

6,72 < 6,79

¿Sabías qué?
Aunque en los números naturales la cantidad de cifras determina si un número es mayor que otro, en los números decimales no sucede lo mismo, por ejemplo, 3,5 > 3,359875.

Comparación de números decimales el método aritmético

En este método, primero comparamos las parte enteras. Si las partes enteras son iguales, seguimos con las décimas, y así sucesivamente hasta hallar las cifras que sean diferentes. Por ejemplo, 9,125 < 9,145 porque la centésima 2 es menor que 4.

PROBLEMAS DE APLICACIÓN CON NÚMEROS DECIMALES

1. Para un examen físico se midieron las estaturas de algunos estudiante. La estatura de Luis es 1,78 m, la de Carlos es 1,86 m y la de Juan 1,77 m. ¿Quién es el más alto de los tres?, ¿quien es el más bajo de los tres?

  • Datos

Estatura de Luis: 1,78 m

Estatura de Carlos: 1,86 m

Estatura de Juan: 1,76 m

  • Pregunta

¿Quién es el más alto de los tres?, ¿quien es el más bajo de los tres?

  • Piensa

Hay que saber quién es el más alto y el más bajo, así que solo tenemos que compara esos tres números por medio de una recta numérica.

  • Resuelve

1,86 > 1,78 > 1,76

  • Respuesta

Carlos es el estudiante más alto y Juan es el estudiante más bajo.

 


2. Varios estudiantes participaron en una prueba de saltos de longitud. María saltó 1,58 m; Pedro salto 1,62 m y Santiago saltó 1,56 m. Si Juan saltó más que Santiago y menos que María, ¿qué longitud pudo saltar Juan? ¿Quién hizo el salto de mayor longitud?

  • Datos 

Salto de María: 1,58 m

Salto de Pedro: 1,62 m

Salto de Santiago: 1,56 m

Salto de Juan: mayor al de Santiago y menor al de María

  • Preguntas

¿Qué longitud pudo saltar Juan? ¿Quién hizo el salto con mayor longitud?

  • Piensa

Para saber la longitud del salto de Juan debemos dibujar una recta numérica y ver las posibles opciones entre 1,58 (salto de María) y 1,56 (salto de Santiago). Luego, para saber quién hizo el salto de mayor longitud, comparamos todos lo valores y el que esté más a la derecha en la recta numérica será el mayor.

  • Resuelve

1,62 > 1,58 >1,57 > 1,56

  • Respuesta

Juan saltó 1,57 m.

Pedro hizo el salto de mayor longitud.

 


3. En una carrera, Araceli tardó 8 minutos y 6 décimas en llegar a la meta; Francisco tardó 8 minutos y 6 centésimas y Agustín tardó 8 minutos y 6 milésimas. ¿Quién llegó primero a la meta? ¿quién llegó de último?

  • Datos

Tiempo que tardó Araceli: 8 minutos y 6 décimas = 8,6

Tiempo que tardó Francisco: 8 minutos y 6 centésimas = 8,06

Tiempo que tardó Agustín: 8 minutos y 6 milésimas = 8,006

  • Preguntas

¿Quién llegó primero a la meta? ¿quién llegó de último?

  • Piensa

Para comparar estos números debemos fijarnos solo en la parte decimal porque la parte entera es igual en los tres casos. Entonces vemos cifra por cifra, la primera que sea mayor o menor que otra indicará el valor del número.

  • Resuelve

Como 6 > 0, podemos decir que 8,6 > 8,06 > 8,006.

  • Respuesta

Agustín llegó primero y Araceli llegó última.

 

La coma y el punto son usados como separadores de los números decimales y ambos son válidos. La diferencia en usar una u otra radica en el lugar en donde te encuentres. En gran parte de Europa y América del Sur se emplea la coma, pero algunos países como Estados Unidos, Canadá, México y Reino Unido emplean el punto.

 

¡A practicar!

1. Escribe el símbolo de relación que sea necesario.

  • 1.893.697 ____ 999.265
Solución
1.893.697 > 999.265
  • 56,98 ____ 56,09
Solución
56,98 > 56,09
  • 678.654 ____ 678.655
Solución
678.654 < 678.655
  • 9.625.369 ____ 9.630.999
Solución
9.625.369 < 9.630.999
  • 2.369.845 ____ 2.369.835
Solución
2.369.845 > 2.369.835
  • 23,896 ____ 23,9
Solución
23,896 < 23,9
  • 198.654,023 ____ 198.654,003
Solución
198.654,023 > 198.654,003
  • 1.268,96 ____ 1.278,99
Solución
1.268,96 < 1.278,99

 

2. Ordena de mayor a menor los siguientes números. Usa los símbolos de relación necesarios.

1.893.697      678.654      9.625.369      1.268,96      2.369.845      23,896      198.654,023      56,98

Solución
9.625.369 > 2.369.845 > 1.893.697 > 678.654 > 198.654,023 > 1.268,96 > 56,98 > 23,896
RECURSOS PARA DOCENTES

Artículo “Redondeo de números naturales”

En este artículo encontrarás el procedimiento a realizar para redondear tanto números enteros como números decimales.

VER

Artículo “Operaciones con números decimales”

En este artículo podrás encontrar el procedimiento a realizar en la suma, resta, multiplicación y división de números decimales.

VER

Artículo “Recta numérica”

Este recurso te permitirá complementar la explicación sobre cómo ubicar los números en una recta numérica.

VER

CAPÍTULO 1 / TEMA 1

LECTURA Y REPRESENTACIÓN DE NÚMEROS

Los números son símbolos escritos que reflejan cantidades de objetos reales e imaginarios. Por ejemplo, vemos números en las medidas y posiciones en el orden de llegada de una carrera, en la tabla de puntajes de un juego o en actividades cotidianas, como cuando cambiamos de canal con el control remoto del televisor.

Lectura de números hasta el 10.000

Existen ocasiones en las que usamos números que involucran una, dos, tres o más cifras. Cada una de estas cifras tiene un valor según la posición que tengan dentro del número. De acuerdo a esta posición y a los nombres de cada dígito podremos nombrar números de hasta cinco o más cifras.

Desde hace miles de años, el hombre ha sentido la necesidad de expresar cantidades a partir de sistemas de signos comprensibles por toda su comunidad. Los números arábigos, desarrollados en la India y transmitidos por los árabes, son los diez dígitos del sistema de numeración decimal: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. Con ellos formamos infinidad de números.

Ejemplo:

Si queremos leer el número 542, lo primero que hacemos es ubicar cada cifra en una tabla de valor posicional como esta:

Donde:

U: unidades

D: decenas

C: centenas

Observa que:

  • El 5 está ubicado en la posición de las centenas → 5 x 100 = 500, se lee “quinientos”.
  • El 4 está ubicado en la posición de la decenas → 4 x 10 = 40, se lee “cuarenta”.
  • El 2 está ubicado en la posición de la unidades → 2 x 1 = 2, se lee “dos”.

Por lo tanto, el número 542 se lee: “quinientos cuarenta y dos”.

 

Otro ejemplo:

Para el leer el número 709 realizamos una tabla de valor posicional y ubicamos sus cifras:

Observa que:

  • El 7 está ubicado en la posición de las centenas → 7 x 100 = 700, se lee “setecientos”.
  • El 9 está ubicado en la posición de la unidades → 9 x 1 = 2, se lee “nueve”.

El número 709 se lee: “setecientos nueve”.

¡Atención a los ceros!

¿Qué pasa cuando una posición está ocupada por el cero (0)?

En estos casos no tomamos en cuenta su valor posicional para la lectura del número.

Para leer números mayores a 999 colocamos un punto después de las centenas, es decir, a la izquierda de la tercera cifra. Este punto indica el comienzo de una clase llamada miles.

De este modo, para escribir y leer correctamente el número 2435, primero colocamos un punto al lado izquierdo de la centena. El punto rojo se lee “mil”:

2.435

Luego ubicamos cada cifra en una tabla posicional. Esta vez, añadimos las unidades, decenas y centenas de mil.

Observa que:

  • El 2 está ubicado en la posición de las unidades de mil → 2 x 1.000 = 2.000, se lee “dos mil”.
  • El 4 está ubicado en la posición de la centenas → 4 x 100 = 400, se lee “cuatrocientos”.
  • El 3 está ubicado en la posición de la decenas → 3 x 10 = 30, se lee “treinta”.
  • El 5 está ubicado en la posición de las unidades → 5 x 1 = 5, se lee “cinco”.

El número 2.435 se lee: “dos mil cuatrocientos treinta y cinco”.

 

Ejemplo:

– Lee el número 6.028.

  • El 6 está ubicado en la posición de las unidades de mil → 6 x 1.000 = 6.000, se lee “seis mil”.
  • El 2 está ubicado en la posición de la decenas → 2 x 10 = 20, se lee “veinte”.
  • El 8 está ubicado en la posición de las unidades → 8 x 1 = 8, se lee “ocho”.

El número 6.028 se lee: “seis mil veintiocho”

Representación de cantidades

La cinta métrica o metro es un instrumento de medida que consiste en una cinta flexible graduada. Con ella medimos líneas rectas y superficies curvas. Se utiliza en casa y en la construcción. Tiene marcas divisorias con números que representan los centímetros (cm) y los milímetros (mm). Su largo promedio es de 2 metros.

Para representar cantidades utilizamos 10 dígitos que combinados entre sí forman infinitos números y, como ya sabes, cada dígito cambia su valor según la posición que tenga en el número. Por lo tanto, la misma cifra puede tener distintos valores. Observa:

Esta información es útil si tuviésemos, por ejemplo, que pagar una cuenta y debemos descomponer un número grande. Los billetes y monedas por lo general señalan el valor de una unidad (1), de una decena (10) o de una centena (100). Por ejemplo, si tienes monedas de $ 1 y billetes de $ 10 y $ 100  y debes pagar $ 435, ¿cuántos billetes y monedas tomarías de cada uno?

De la tabla de valor posicional observamos sus valores relativos:

Ahora sabemos que si tomamos 5 monedas de $ 1; 3 billetes de $ 10 y 4 billetes de $ 100, tenemos $ 435. De modo gráfico puedes verlo a continuación:

Podemos concluir que 435 = (4 x 100) + (3 x 10) + (5 x 1)

¡A practicar!

¿Cuántos billetes y monedas de $ 1 , $ 10 y $ 100 necesitarías para formar estas cantidades?

  • 876
Solución

8 billetes de $ 100

7 billetes de $ 10

6 monedas de $ 1

  • 1.000
Solución
10 billetes de $ 100 
  • 611
Solución
6 billetes de $ 100

1 billete de $ 10

1 moneda de $ 1

¿Dónde usamos los números?

  • En los carteles que indican la numeración de las calles. Por ejemplo, calle Maipú del 800 al 900.
  • En los precios de los productos que se compran y venden en la juguetería. Por ejemplo, una muñeca cuesta $ 850, es decir, ochocientos cincuenta pesos.
  • En el número que señala la balanza cuando nos pesamos. Por ejemplo, Juan se pesó en la balanza de la farmacia y su peso fue 65 kilogramos.
  • En el dinero entregado al vendedor cuando se paga el precio de un producto. Por ejemplo, la mamá de Pedro fue a la verdulería y gastó $ 420, entonces le dio al vendedor cuatro billetes de $ 100 y dos billetes de $ 10.
¿Sabías que...?

En el sistema de numeración egipcio se simbolizaban los múltiplos de 10 (1, 10, 100, 1.000, 10.000, 100.000 y 1.000.000) con dibujos denominados ideogramas que representaban conceptos o ideas.

Aproximación por redondeo

Consiste en reducir o aumentar la cantidad del número para acercarlo al número redondo más próximo en la recta númerica. Redondear números te ayudará a manejar mejor los cálculos mentales cuando no necesites una respuesta exacta.

Redondear números permite realizar las cuentas de manera más sencilla y estimar el resultado por medio de números más cercanos y redondos. En la vida cotidiana es muy común redondear cantidades cuando nos faltan monedas o queremos usar pocos billetes para pagar el precio exacto de los productos comprados en los comercios.

Pasos para aproximar un número a la decena más cercana

1. Identifica la cifra que está en la posición de las unidades.

2. Si la cifra que está en la posición de las unidades es menor que cinco (5), no cambies la decena y escribe un cero (0) en el lugar de las unidades.

3. Si la cifra que está ubicada en la posición de las unidades es igual o mayor que cinco (5), aumenta una unidad en la decena y escribe un cero (0) en el lugar de las unidades.

– Redondea el número 343 a su decena más cercana.

Primero identificamos la unidad:

343

Luego, como la unidad es menor que cinco (3 < 5), mantenemos la decena igual y escribimos un cero (0) en el lugar de la unidades:

343 ≈ 340

Por lo tanto, el número 343 es aproximadamente igual a 340.

¿Sabías qué?
El símbolo “≈” se lee “aproximadamente igual a”.

 

– Redondea el número 2.589 a su decena más cercana.

Primero identificamos la unidad.

2.589

Luego, como la unidad es mayor que cinco (9 > 5), aumentamos la decena una unidad y escribimos un cero en el lugar de las unidades.

2.589 ≈ 2.590

Por lo tanto, el número 2.589 es aproximadamente igual a 2.590.

 

Pasos para aproximar un número a la centena más cercana

1. Identifica la cifra que está en la posición de las decenas.

2. Si la cifra que está en la posición de las decenas es menor que cinco (5), no cambies la centena y escribe un cero (0) en el lugar de las decenas y de las unidades.

3. Si la cifra que está ubicada en la posición de las decenas es igual o mayor que cinco (5), aumenta una unidad en la centena y escribe un cero (0) en el lugar de las decenas y de las unidades.

– Redondea el número 9.411 a la centena más cercana

Primero identificamos la decena.

9.411

Luego, como la decena es menor que cinco (1 < 5), no cambiamos la centena y escribimos un cero (0) en el lugar de las decenas y de las unidades:

9.411 ≈ 9.400

Por lo tanto, el número 9.411 es aproximadamente igual a 9.400.

 

– Redondea el número 6.382 a la centena más cercana.

Primero identificamos la decena.

6.382

Luego, como la decena es mayor que cinco (8 > 5), aumentamos la centena una unidad y escribimos un cero en el lugar de las decenas y de las unidades.

6.382 ≈ 6.400

Por lo tanto, el número 6.382 es aproximadamente igual a 6.400.

¡A practicar!

Una familia se va de viaje y cuando llegan al kilómetro 485 hacen una parada para comer en una estación de servicio. Luego siguen su camino. En el kilómetro 495 se detiene el auto por falta de combustible y el padre tiene que salir a buscar gasolina. Él sabe que en el kilómetro 500 también hay una estación de servicio.

¿Hacia dónde le conviene ir si quiere caminar la menor cantidad de kilómetros posible? ¿Hacia la estación de servicio del kilómetro 485 o a la del kilómetro 500?

Solución

Le conviene ir a la estación de servicio del kilómetro 500 porque está a menor distancia que la otra.

Números ordinales

Los números ordinales sirven para representar un orden y se escriben antes de un sustantivo, por ejemplo “tercer grado”, donde la primera palabra es el número ordinal y la segunda es el sustantivo al que se refiere. También se usan en las colecciones de libros, el que tiene el número 1 es el primero, el que tiene el número 2 es el segundo y así sucesivamente.

Los números ordinales nos indican la posición en la que se ubica un elemento en una sucesión o lista. Para representarlos usamos números naturales seguidos por una letra que indica el género (masculino-femenino) del sustantivo al que se refieren. Por ejemplo:

  • El 5.º auto, se lee “el quinto auto”.
  • La 6.ª mesa, se lee “la quinta mesa”.

Estos números sirven para designar los pisos que hay en un edificio e indicar la dirección de vivienda de una persona. Por ejemplo, departamento A del 2º piso:

Estos son los nombres de los números ordinales del 1 al 50:

Número arábigo Número ordinal
1.º/1.ª primero/primera
2.º/2.ª segundo/segunda
3.º/3.ª tercero/tercera
4.º/4.ª cuarto/cuarta
5.º/5.ª quinto/quinta
6.º/6.ª sexto/sexta
7.º/7.ª séptimo/séptima
8.º/8.ª octavo/octava
9.º/9.ª noveno/novena
10.º/10.ª décimo/décima
11.º/11.ª décimo primero/décimo primera
12.º/12.ª décimo segundo/décimo segunda
13.º/13.ª décimo tercero/décimo tercera
14.º/14.ª décimo cuarto/décimo cuarta
15.º/15.ª décimo quinto/décimo quinta
16.º/16.ª décimo sexto/décimo sexta
17.º/17.ª décimo séptimo/décimo séptima
18.º/18.ª décimo octavo/décimo octava
19.º/19.ª décimo noveno/décimo novena
20.º/20.ª vigésimo/vigésima
30.º/30.ª trigésimo/trigésima
40.º/40.ª cuadragésimo/cuadragésima
50.º/50.ª quincuagésimo/quincuagésima

Para escribir números ordinales mayores al 20 primero se escribe el número ordinal del primer valor relativo, luego se escribe el del segundo, por ejemplo:

  • 25.º es igual a “vigésimo quinto”.
  • 42.º es igual a “cuadragésimo segundo”.
¿Sabías qué?

El número ordinal correspondiente al once puede ser nombrado como “décimo primero” o “undécimo”. En el caso del número 12, se lo denomina “décimo segundo” o “duodécimo”.

Números romanos

El reloj de la imagen indica la hora en una circunferencia numerada según el sistema romano. Este sistema de numeración fue inventado en la Antigua Roma y se basaba en la suma y resta de valores representados por letras mayúsculas. A pesar de estar en desuso, se lo puede encontrar en libros, objetos y denominaciones en la actualidad.

Cuando hablamos de números romanos nos referimos a un sistema de numeración que usa letras mayúsculas para representar cantidades. Está compuesto por siete letras y cada una tiene un valor diferente.

¿Para qué se usan los números romanos en la actualidad?

  • Nombrar los siglos históricos: siglo I antes de Cristo o siglo XX.
  • Numerar tomos, capítulos, partes de una obra literaria, actos y escenas de una obra teatral: tomo III, capítulo IV o escena VIII.
  • Nombrar reyes, papas y emperadores: Felipe IV o Juan Pablo II.
  • Denominar congresos, campeonatos y festivales: IV Congreso de la infancia o XIII Muestra de cine independiente.

Reglas para escribir números romanos

– Si a la derecha de una letra se escribe otra igual o de menor valor, sus valores se suman. Ejemplo:

VI = 5 + 1 = 6

XXI = 10 + 10 + 1= 21

LXVII = 50 + 10 + 5 + 1 + 1 = 67

 

– La letra I, colocada a la izquierda de V o X, les resta 1. Ejemplo:

IV = 5 − 1 = 4

IX = 10 − 1 = 9

 

– La letra X, colocada a la izquierda de L o C, les resta 10. Ejemplo:

XC = 100 − 10 = 90

XL = 50 − 10 = 40

 

– La letra C, colocada a la izquierda de D o M, les resta 100. Ejemplo:

CD = 500 − 100 = 400

CM = 1.000 − 100 = 900

 

– No se pueden repetir las letras I, X, C y M más de tres veces seguidas. Ejemplo:

XIII = 10 + 1 + 1 + 1 = 13

XXXIII = 10 + 10 + 10 + 1 + 1 + 1 = 33

MMM = 1.000 + 1.000 + 1.000 = 3.000

 

– Las letras V, L y D no pueden duplicarse, porque otras ya representan su valor. Ejemplo:

X = 10 (2 veces 5)

C = 100 (2 veces 50)

M = 1.000 (2 veces 500)

 

– Una raya encima de una letra o grupo de letras multiplica su valor por mil.

\overline{V} = 5.000

\overline{X} = 10.000

 

VER INFOGRAFÍA

 

Ejercicios

a) Escribe los números en cifras o en palabras, según corresponda.

  • Setecientos cincuenta y dos
Solución
Setecientos cincuenta y dos = 752
  • Mil cien
Solución
Mil cien = 1.100
  • 1.308
Solución
1.308 = mil trescientos ocho
  • 8.444
Solución
8.444 = ocho mil cuatrocientos cuarenta y cuatro
  • 10.000
Solución
10.000 = diez mil

b) Escribe los números ordinales en palabras:

  • 4.ª
Solución
4.ª = cuarta
  • 7.º
Solución
7.º = séptimo
  • 12.º
Solución
12.º = décimo segundo o duodécimo
  • 17.º
Solución
17.º = décimo séptimo
  • 20.ª
Solución
20.ª = vigésima
  • 23.º
Solución
23.º = vigésimo tercero
  • 34.ª
Solución
34.ª = trigésima cuarta
  • 40.º
Solución
40.º = cuadragésimo
  • 46.ª
Solución
46.ª = cuadragésima sexta

c) Descubre los números romanos que están mal representados y escríbelos correctamente.

Número en sistema decimal Número en sistema romano
4 IV
9 VIIII
15 VVV
40 XL
150 CL
1.000 CMC
Solución
  • VIIII no es la representación de 9, porque no se puede repetir la letra I más de tres veces. La escritura correcta es IX.
  • VVV no es la representación de 15, ya que no se puede repetir la letra V más de tres veces. La escritura correcta es XV.
  • CMC no es la representación de 1.000, porque hay un símbolo que tiene exactamente ese valor. La escritura correcta es M.

d) Aproxima por redondeo los siguientes números a la decena.

  • 46
Solución
46 ≈ 50
  • 493
Solución
493 ≈ 490
  • 2.456
Solución
2.456 ≈ 2.460

RECURSOS PARA DOCENTES

Artículo “Sistemas de numeración”

Es una lectura ampliatoria sobre la numeración a lo largo de la historia. Una síntesis que contextualiza y explica el funcionamiento de algunos sistemas de numeración que han sentado las bases de lo que hoy conocemos como aritmética: babilónico, egipcio, chino, griego, romano y decimal.

VER

Artículo “Números grandes”

Artículo que explica cómo leer números grandes sin dificultades, a partir de dos saberes básicos en cuanto a la numeración: leer números de tres cifras y reconocer el valor posicional de cada dígito en un número. Recomendado para enseñar lectura y escritura de números a niños de 3.° grado en adelante.

VER