CAPÍTULO 4 / TEMA 6 (REVISIÓN)

ORDEN Y RELACIONES | ¿QUÉ APRENDIMOS?

RECTA NUMÉRICA

La recta numérica es un gráfico en el que podemos representar cualquier número que pertenezca al conjunto de los números reales (\mathbb{R}). Tiene intervalos que señalan las unidades y siempre tienen la misma distancia entre un número y su consecutivo. Por otra parte, los distintos tipos de relaciones que existen entre los números se pueden mostrar por medio de los símbolos “<” y “>” que significan “menor que” y “mayor que” respectivamente.

Una regla graduada es muy parecida a una recta numérica.

ORDEN DE NÚMEROS NATURALES Y DECIMALES

Para ubicar los números naturales en la recta numérica ubicamos el 0 en una posición arbitraria y luego colocamos el resto de los números naturales en intervalos regulares. Si deseamos comparar números naturales usamos los símbolos < y > o la recta numérica, pues todo número que esté más a la derecha en la recta siempre será el mayor. Para ubicar números decimales en la recta numérica, debemos agregar subdivisiones entre los números enteros. Cuando queremos compararlos, primero tomamos en cuenta la parte entera y luego comparamos las cifras decimales de izquierda a derecha.

Sí bien algunos expertos afirman que el número cero (0) no pertenece al conjunto de los números naturales, otros aseguran que sí forma parte.

ORDEN DE FRACCIONES

Las fracciones también tiene un lugar en la recta numérica, para esto tenemos que considerar si la fracción es propia o impropia. De ser propia dividimos a la unidad en tantos segmentos como indique el denominador y contamos tantos segmentos como indique el numerador, luego marcamos la fracción. Si la fracción es impropia, tenemos que convertirla primero en un número mixto, en este caso, seguimos el procedimiento anterior pero a partir de la parte entera que tenga el número mixto.

Si comparamos fracciones con igual numerador y diferente denominador, será mayor aquella que tenga menor denominador.

PROPORCIONALIDAD

La proporcionalidad es una relación que existe entre dos magnitudes que podemos medir, y puede ser directa o inversa. Dos cantidades son directamente proporcionales si cuando una aumenta la otra aumenta o si cuando una disminuye la otra también lo hace. Por otro lado, al convertir medidas lo hacemos por medio de una regla de tres, un método muy útil para saber un valor desconocido entre 2 relaciones.

Siempre que vamos a un kiosco, sabemos que mientras más compremos, más tendremos que pagar; eso es porque la “cantidad que compramos” y la “cantidad que debemos pagar” tienen una relación directamente proporcional.

RELACIONES DE TIEMPO

El tiempo es quizás la magnitud más usada y medida diariamente. Sus unidades son variadas y van desde las menores a un día, como los segundos, los minutos y las horas; hasta las que sobrepasan al día como los meses, años y décadas. Si usamos una regla de tres podemos convertir una unidad a otra sin dificultad. También podemos hacer cálculos de suma y resta con el tiempo, esto nos ayuda a saber cuando empezó un partido de fútbol o qué hora salió un tren, por ejemplo.

Los calendarios o agendas son útiles para planificar las actividades a realizar a lo largo del día.

CAPÍTULO 1 / TEMA 6 (REVISIÓN)

SISTEMAS NUMÉRICOS ¿QUÉ APRENDIMOS?

¿QUÉ SON LOS NÚMEROS?

LOS NÚMEROS SON EXPRESIONES GRÁFICAS DE UNA CANTIDAD. GRACIAS A ELLOS CONTAMOS JUGUETES, HORAS O EDADES. A LO LARGO DE LA HISTORIA LOS SERES HUMANOS HAN UTILIZADO DIFERENTES RECURSOS COMO PALOS Y PIEDRAS PARA CONTAR, HASTA LLEGAR A UTILIZAR LOS SÍMBOLOS DE LOS NÚMEROS TAL COMO LOS CONOCEMOS HOY: 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9.

LOS NÚMEROS SON NECESARIOS PARA EL HOMBRE PORQUE NOS PERMITEN LLEVAR A CABO UNA TAREA DIARIA: CONTAR.

TIPOS DE NÚMEROS

POR LO GENERAL UTILIZAMOS DOS TIPOS DE NÚMEROS: LOS CARDINALES, QUE NOS SIRVEN PARA INDICAR UNA CANTIDAD DE ELEMENTOS, Y LOS ORDINALES, QUE USAMOS PARA EXPRESAR EL ORDEN O LA POSICIÓN DE UN ELEMENTO DENTRO DE UN GRUPO. LOS NÚMEROS ROMANOS FUERON INVENTADOS MUCHO ANTES DE LOS NÚMEROS QUE USAMOS HOY DÍA, SIN EMBARGO, SU USO HA PERDURADO EN LA HISTORIA Y ES POSIBLE VERLOS EN LOS NOMBRES DE PAPAS, LA NUMERACIÓN DE LAS OLIMPÍADAS DEPORTIVAS O ALGUNOS RELOJES ANTIGUOS.

LOS NÚMEROS ROMANOS SE REPRESENTAN CON SÍMBOLOS PARECIDOS A ALGUNAS DE NUESTRAS LETRAS MAYÚSCULAS.

SERIES Y RELACIONES

UNA SERIE ES UNA SUCESIÓN DE NÚMEROS QUE SIGUEN UN PATRÓN O REGLA. ESTAS SERIES PUEDEN SER DE OBJETOS, FIGURAS O NÚMEROS Y PUEDEN SER ASCENDENTES O DESCENDENTES. LAS SERIES ASCENDENTES SON LAS QUE VAN DE MENOR A MAYOR, POR EJEMPLO, CUANDO CONTAMOS LA CANTIDAD DE LÁPICES QUE TENEMOS: 1, 2, 3, …POR OTRO LADO, LAS SERIES DESCENDENTES SON LAS QUE VAN DE MAYOR A MENOR, COMO CUANDO CONTAMOS LOS SEGUNDOS PARA EL AÑOS NUEVO: 5, 4, 3, 2, 1.

CUANDO CONTAMOS DE 1 EN 1 CREAMOS UNA SERIE NUMÉRICA ASCENDENTE PORQUE CADA NÚMERO TIENE UNA UNIDAD MÁS QUE EL ANTERIOR.

NÚMEROS NATURALES

LOS NÚMEROS NATURALES SON AQUELLOS QUE NOS PERMITEN CONTAR LOS ELEMENTOS DE UN CONJUNTO. CUANDO TIENEN MÁS DE UN DÍGITO, EL VALOR DE CADA UNO DEPENDE DE LA UBICACIÓN DENTRO DEL NÚMERO: SEGÚN SU POSICIÓN PODRÁ OCUPAR EL LUGAR DE LAS UNIDADES, LAS DECENAS O LAS CENTENAS. LOS NÚMEROS NATURALES SE PUEDEN EXPRESAR SIEMPRE COMO EL RESULTADO DE UNA SUMA POR MEDIO DE SU DESCOMPOSICIÓN ADITIVA.

LOS NÚMEROS NATURALES FUERON LOS PRIMEROS NÚMEROS QUE USÓ EL HOMBRE PARA CONTAR.

CONJUNTOS

UN CONJUNTO ES UNA COLECCIÓN DE OBJETOS A LOS QUE LLAMAMOS ELEMENTOS. PARA PODER SER ELEMENTOS DE UN MISMO CONJUNTO, TODOS DEBEN TENER ALGUNA CARACTERÍSTICA EN COMÚN QUE NOS PERMITA AGRUPARLOS, POR EJEMPLO, EL CONJUNTO DE LAS FIGURAS GEOMÉTRICAS ESTARÍA CONFORMADO POR CÍRCULOS, TRIÁNGULOS, CUADRADOS Y RECTÁNGULOS. SI UN ELEMENTO POSEE ESA CARACTERÍSTICA COMÚN CON LOS OTROS OBJETOS SE DICE QUE PERTENECE AL CONJUNTO, SI NO POSEE ESA CARACTERÍSTICA EN COMÚN SE DICE QUE NO PERTENECE AL CONJUNTO.

AUNQUE EN LA IMAGEN VEMOS ELEMENTOS DISTINTOS, COMO ANIMALES, ALIMENTOS Y FIGURAS, TODOS TIENEN ALGO EN COMÚN: SON DE COLOR VERDE, POR LO TANTO, FORMAN UN CONJUNTO.

CAPÍTULO 1 / TEMA 3

SERIES Y RELACIONES

UNA SERIE ES UNA SUCESIÓN DE ELEMENTOS O NÚMEROS QUE SIGUEN UNA REGLA O PATRÓN. CREAMOS SERIES CADA VEZ QUE ORGANIZAMOS NUESTROS CRAYONES POR COLOR, HACEMOS FILA EN LA ESCUELA POR ESTATURA, O CONTAMOS CON NUESTROS DEDOS. COMO VES, LAS SERIES ESTÁN EN CADA ASPECTO DE NUESTRO DÍA A DÍA.

SERIES Y PATRONES

OBSERVA ESTA IMAGEN, ¿QUÉ FIGURAS VES?, ¿TIENEN UN ORDEN PARTICULAR?

HAY CÍRCULOS Y TRIÁNGULOS. SÍ TIENEN UN ORDEN: HAY UN CÍRCULO AZUL Y LUEGO UN TRIÁNGULO AMARILLO, DESPUÉS VIENE OTRO CÍRCULO AZUL Y OTRO TRIÁNGULO AMARILLO. ESTE ES UN EJEMPLO DE SERIE.

UNA SERIE ES UNA SECUENCIA DE ELEMENTOS QUE SIGUEN UNA REGLA QUE LLAMAMOS PATRÓN.

 

– EJEMPLO:

OBSERVA ESTA SERIE, ¿CUÁL ES EL PATRÓN?

PARA IDENTIFICAR EL PATRÓN VEMOS FIGURA POR FIGURA:

  • PRIMERO: SOL
  • SEGUNDO: CÍRCULO
  • TERCERO: TRIÁNGULO

DESPUÉS SE REPITEN LAS MISMAS FIGURAS, ASÍ QUE EL PATRÓN ES SOL-CÍRCULO-TRIÁNGULO.

 

– OTRO EJEMPLO:

OBSERVA ESTA IMAGEN, ¿CUÁL ES EL PATRÓN?

EL PATRÓN ES CUADRADO-TRIÁNGULO-CÍRCULO.

SERIES NUMÉRICAS

LAS SERIES NO SOLO SE PUEDEN HACER CON OBJETOS Y FIGURAS, TAMBIÉN LAS PODEMOS CREAR CON NÚMEROS. DE HECHO, CADA VEZ QUE CONTAMOS DE 1 EN 1 HACEMOS UNA SERIE NUMÉRICA CON UN PATRÓN IGUAL A +1, PUES CADA NÚMERO ES UNA UNIDAD MAYOR AL ANTERIOR.

SERIES ASCENDENTES Y DESCENDENTES

LAS SERIES PUEDEN IR DE MAYOR A MENOR O DE MENOR A MAYOR.

SERIES ASCENDENTES

CUANDO EN LA SERIE UBICAMOS ELEMENTOS CON PATRONES QUE VAN DE MENOR A MAYOR, DECIMOS LA QUE LA SERIE ES ASCENDENTE. POR EJEMPLO:

ESTA ES UNA SERIE DE FIGURAS GEOMÉTRICAS. LA PRIMERA TIENE 3 LADOS, LA SEGUNDA TIENE 4 LADOS, LAS TERCERA TIENE 5 LADOS Y LA CUARTA FIGURA TIENE 6 LADOS. ASÍ QUE EL PATRÓN ES + 1 LADO.

 

TAMBIÉN SUCEDE CON LOS NÚMEROS, POR EJEMPLO:

1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

ESTA ES UNA SERIE NUMÉRICA ASCENDENTE PORQUE CADA NÚMERO ES MAYOR AL ANTERIOR Y EL PATRÓN ES + 1.

SERIE DESCENDENTE

CUANDO EN LA SERIE UBICAMOS ELEMENTOS CON PATRONES QUE VAN DE MAYOR A MENOR, DECIMOS LA QUE LA SERIE ES DESCENDENTE. POR EJEMPLO:

ESTA ES UNA SERIE DE RECTÁNGULOS EN LOS QUE CADA UNO ES MÁS PEQUEÑO EN TAMAÑO QUE EL ANTERIOR. EL SEGUNDO DE IZQUIERDA A DERECHA ES MÁS PEQUEÑO QUE EL ANTERIOR, EL TERCERO MÁS PEQUEÑO QUE LOS ANTERIORES, Y ASÍ SUCESIVAMENTE.

 

TAMBIÉN HAY SERIES NUMÉRICAS DESCENDENTES, POR EJEMPLO:

15   14   13   12   11   10   9   8   7   6   5   4   3   2   1

ESTA ES UNA SERIE NUMÉRICA DESCENDENTE PORQUE CADA NÚMERO ES MENOR AL ANTERIOR Y EL PATRÓN ES − 1.

¡ES TU TURNO!

OBSERVA ESTAS SERIES, ¿CUÁL ES EL PATRÓN?

SOLUCIÓN
PATRÓN: CÍRCULO AZUL-CÍRCULO ROJO

 

SOLUCIÓN
PATRÓN: TRIÁNGULO-SOL-CUADRADO
TODOS LOS NÚMEROS TIENEN UN ORDEN, Y EN SU FUNCIÓN DE REPRESENTAR CANTIDADES, HAY UNOS QUE SON MAYORES QUE OTROS. SI TENEMOS QUE AGRUPAR FIGURAS, NOS DAMOS CUENTA QUE 4 ES MAYOR QUE 2; 5 ES MAYOR QUE 2; 3 ES MENOR QUE 4; O 3 ES MENOR QUE 5. ESTAS RELACIONES LAS MOSTRAMOS CON SIGNOS DE RELACIÓN COMO MENOR QUE “<” O MAYOR QUE “>”.

RELACIONES DE MENOR Y MAYOR QUE

OBSERVA ESTA IMAGEN, ¿CUÁL ÁRBOL TIENE MAYOR ALTURA?

EL ÁRBOL DE LA DERECHA TIENE UNA ALTURA MAYOR QUE EL DE LA IZQUIERDA.

LO MISMO SUCEDE CON LOS NÚMEROS Y PARA ESO USAMOS LOS SIGNOS DE RELACIÓN < Y >.

MENOR QUE “< “

CON ESTE SÍMBOLO < INDICAMOS QUE EL NÚMERO DE LA IZQUIERDA ES MENOR QUE EL DE LA DERECHA. POR EJEMPLO:

  • 3 < 5 SE LEE “TRES ES MENOR QUE CINCO”.
  • 8 < 10 SE LEE “OCHO ES MENOR QUE DIEZ”.
  • 1 < 9 SE LEE “UNO ES MENOR QUE NUEVE”.

MAYOR “>”

CON ESTE SÍMBOLO < INDICAMOS QUE EL NÚMERO DE LA IZQUIERDA ES MAYOR QUE EL DE LA DERECHA. POR EJEMPLO:

  • 7 > 1 SE LEE “SIETE ES MAYOR QUE UNO”.
  • 10 > 8 SE LEE “DIEZ ES MAYOR QUE OCHO”.
  • 5 > 4 SE LEE “CINCO ES MAYOR QUE CUATRO”.

USO DE ORDINALES PARA LA UBICACIÓN DE OBJETOS

LOS NÚMEROS ORDINALES SIRVEN PARA SABER LA POSICIÓN Y ORDEN DE LOS ELEMENTOS EN UN CONJUNTO. PUEDEN SER FEMENINOS Y MASCULINOS Y SE REPRESENTAN CON UN SÍMBOLO DEL LADO DERECHO. OBSERVA LA SIGUIENTE TABLA CON LOS PRIMEROS DIEZ NÚMERO ORDINALES:

MASCULINO FEMENINO
1.º PRIMERO 1.ª PRIMERA
2.º SEGUNDO 2.ª SEGUNDA
3.º TERCERO 3.ª TERCERA
4.º CUARTO 4.ª CUARTA
5.º QUINTO 5.ª QUINTA
6.º SEXTO 6.ª SEXTA
7.º SÉPTIMO 7.ª SÉPTIMA
8.º OCTAVO 8.ª OCTAVA
9.º NOVENO 9.ª NOVENA
10.º DÉCIMO 10.ª DÉCIMA

– EJEMPLO:

ESTOS NIÑOS ESTÁN ORGANIZADOS SEGÚN SU ESTATURA, ¿REPRESENTAN UNA SERIE?

SÍ, ES UNA SERIE DESCENDENTE PORQUE VAN DE MAYOR A MENOR. JUAN ES EL PRIMERO Y EL MÁS ALTO; DIEGO ES EL DÉCIMO Y EL MÁS BAJO.

¡ES TU TURNO!

OBSERVA LA IMAGEN Y ESCRIBE EL ORDEN DE LAS PERSONAS.

SOLUCIÓN
  • EL LUGAR DE JUAN ES EL PRIMERO
  • EL LUGAR DE LOLO ES EL SEGUNDO.
  • EL LUGAR DE ANA ES EL TERCERO.
  • EL LUGAR DE SOFÍA ES EL CUARTO.
  • EL LUGAR DE NICO ES EL QUINTO.
  • EL LUGAR DE MAXI ES EL SEXTO.
  • EL LUGAR DE REINA ES EL SÉPTIMO.
  • EL LUGAR DE PABLO ES EL OCTAVO.
  • EL LUGAR DE LUNA ES EL NOVENO.
  • EL LUGAR DE DIEGO ES EL DÉCIMO.

 

¡A PRACTICAR!

1. COMPLETA LOS PATRONES.

SOLUCIÓN

 

2. COMPLETA LA SERIE NUMÉRICA. ¿CUÁL ES EL PATRÓN?

SOLUCIÓN

EL PATRÓN ES + 1.

 

3. COLOCA EL SIGNO > O < SEGÚN CORRESPONDA.

  • 10 ____ 5
SOLUCIÓN
10 > 5
  • 14 ____ 6
SOLUCIÓN
14 > 6
  • 16 ____ 11
SOLUCIÓN
16 > 11
  • 7 ____ 10
SOLUCIÓN
7 < 10 
  • 7 ____ 20
SOLUCIÓN
7 < 20
  • 11 ____ 10
SOLUCIÓN
11 > 10
  • 4 ____ 2
SOLUCIÓN
4 > 2
  • 11 ____ 9
SOLUCIÓN
11 > 9
RECURSOS PARA DOCENTES

Artículo “Comparar y ordenar números”

Este artículo detalla cómo comprar y ordenar números por medio de los símbolos de relación.

VER

CAPÍTULO 1 / TEMA 5

SERIES NUMÉRICAS

CADA VEZ QUE ORGANIZAMOS OBJETOS LO HACEMOS SEGÚN UN CRITERIO. PUEDE SER POR TAMAÑO, COLOR O FORMA. ESTO SE CONOCE COMO SERIE Y TAMBIÉN APLICA A LOS NÚMEROS, YA QUE CUANDO HACEMOS CUENTAS DE DOS EN DOS O DE TRES EN TRES, SEGUIMOS UN PATRÓN NUMÉRICO. TAMBIÉN PODEMOS CREAR NUESTROS PROPIOS PATRONES Y HACER UNA GRAN VARIEDAD DE SERIES.

¿QUÉ ES UNA SERIE NUMÉRICA?

UNA SERIE NUMÉRICA ES UNA CONJUNTO DE NÚMEROS ORDENADOS QUE SIGUEN UN PATRÓN O UNA REGLA DETERMINADA.

POR EJEMPLO, ESTOS NÚMEROS FORMAN UNA SERIE Y CADA UNO ES TRES UNIDADES MAYOR AL ANTERIOR.

 

EL PATRÓN ES: +3. POR LO TANTO, ESTA SERIE NUMÉRICA VA DE 3 EN 3.

LAS SERIES NO SOLO PUEDEN TENER NÚMEROS, TAMBIÉN EXISTEN SERIES DE OBJETOS O ELEMENTOS. TODAS TIENEN ALGO EN COMÚN Y ES QUE SIGUEN UN PATRÓN. POR EJEMPLO, EN ESTA IMAGEN VEMOS UNA SERIE DE ENVASES CON PINTURA QUE SIGUEN UN PATRÓN POR COLORES: UN ENVASE CON PINTURA AMARILLA, UN ENVASE CON PINTURA ROJA Y UN ENVASE CON PINTURA AZUL.

CARACTERÍSTICAS DE LAS SERIES NUMÉRICAS

LAS SERIES NUMÉRICAS PUEDEN SER PROGRESIVAS O REGRESIVAS. EN LAS SERIES PROGRESIVAS LOS NÚMEROS VAN DE MENOR A MAYOR, MIENTRAS QUE EN LAS SERIES REGRESIVAS LOS NÚMEROS VAN DE MAYOR A MENOR.

 

SERIE PROGRESIVA

DE 2 EN 2:

PATRÓN: + 2

 

DE 5 EN 5:

PATRÓN: + 5

 

DE 10 EN 10:

PATRÓN: + 10

 

SERIE REGRESIVA

DE 2 EN 2:

PATRÓN: − 2

 

DE 5 EN 5:

PATRÓN: − 5

 

DE 10 EN 10:

PATRÓN: − 10

 

¿SABÍAS QUÉ?

LAS SERIES PROGRESIVAS TAMBIÉN SON LLAMADAS SERIES ASCENDENTES, Y LAS SERIES REGRESIVAS SON CONOCIDAS COMO SERIES DESCENDENTES.

IDENTIFICAR EL PATRÓN EN UNA SERIE NUMÉRICA

PARA PODER IDENTIFICAR EL PATRÓN DE LA SERIE NUMÉRICA ES NECESARIO:

  • OBSERVAR LA SERIE.
  • IDENTIFICAR LA RELACIÓN ENTRE LOS NÚMERO.

OBSERVA ESTA SERIE, ¿QUÉ TIPO DE SERIE ES?, ¿CUÁL ES EL PATRÓN?

ESTA SERIE ES PROGRESIVA PORQUE VA DE MENOR A MAYOR. VA DE 7 EN 7. EL PATRÓN ES: + 7.

 

– OTRO EJEMPLO:

 

LA SERIE ES REGRESIVA PORQUE VA DE MAYOR A MENOR. VA DE 12 EN 12. EL PATRÓN ES: − 12.

¡A PRACTICAR!

1. ¿CUAL ES EL PATRÓN DE LAS SIGUIENTES SERIES NUMÉRICAS?

  • 9, 18, 27, 36, 45, 54
SOLUCIÓN

LA SERIE ES ASCENDENTE DE 9 EN 9. EL PATRÓN ES: + 9.

  • 100, 75, 50, 25
SOLUCIÓN

LA SERIE ES DESCENDENTE DE 25 EN 25. EL PATRÓN ES: − 25.

  • 80, 60, 40, 20
SOLUCIÓN

LA SERIE ES DESCENDENTE DE 20 EN 20. EL PATRÓN ES: − 20.

  • 14, 21, 28, 35
SOLUCIÓN

LA SERIE ES ASCENDENTE DE 7 EN 7. EL PATRÓN ES: + 7.

CONSTRUCCIÓN DE SERIES

PARA PODER CONSTRUIR SERIES NUMÉRICAS ASCENDENTES PODEMOS UTILIZAR LAS TABLAS DE MULTIPLICAR, ESTAS SON UN RECURSO MUY ÚTIL QUE AYUDARÁ A ESTABLECER UNA RELACIÓN CON LOS TÉRMINOS DE LA SUCESIÓN. POR EJEMPLO, SI QUEREMOS EMPLEAR LAS TABLAS DEL 6, PODEMOS CONSTRUIR UNA SERIE ASCENDENTE DE 6 EN 6 Y LA MISMA SERÁ ASÍ: 6, 12, 18, 24, 30, 36, 42, 48, 54.

PARA CONSTRUIR SERIES ES NECESARIO ESTABLECER LO SIGUIENTE:

  • SI ES ASCENDENTE O DESCENDENTE.
  • EL PATRÓN.
  • UN INICIO Y UN FINAL.

– EJEMPLO:

CONSTRUYE UNA SERIE NUMÉRICA ASCENDENTE DE 15 EN 15, DESDE EL 15 HASTA EL 90.

ACTIVIDAD

1. ESCRIBIR UNA SERIE NUMÉRICA PARA CADA RELACIÓN:

  • ASCENDENTE DE 2 EN 2. DESDE 22 Y HASTA 32.
SOLUCIÓN
22, 24, 26, 28, 30, 32
  • DESCENDENTE DE 10 EN 10. DESDE 80 Y HASTA 20.
SOLUCIÓN
80, 70, 60, 50, 40, 30, 20
  • ASCENDENTE DE 5 EN 5. DESDE 5 HASTA 35.
RESPUESTAS
5, 10, 15, 20, 25, 30, 35
  • DESCENDENTE DE 2 EN 2. DESDE 20 HASTA 10.
SOLUCIÓN
20, 18, 16, 14, 12, 10

 

2. COMPLETA LAS SIGUIENTES SERIES:

  • 44, ___, 56, 62, 68, 74, ___
SOLUCIÓN
44, 50, 56, 62, 68, 74, 80
  • 10, ___, 20, 25, 30, ___, ___
RESPUESTAS
10, 15, 20, 25, 30, 35, 40
  • 83, 80, ___, 74, ___. 68, ___
RESPUESTAS
83, 80, 77, 74, 71, 68, 65
RECURSOS PARA DOCENTES

Artículo “Sucesiones y series”

En el siguiente artículo encontraras un desarrollo de teoría más avanzado de las series numéricas y la sucesión de términos.

VER

 

CAPÍTULO 1 / TEMA 4

NÚMEROS ROMANOS

DESDE QUE EXISTE EL SER HUMANO, TAMBIÉN EXISTE LA NECESIDAD DE CONTAR. DISTINTAS CIVILIZACIONES CREARON SUS PROPIOS SISTEMAS DE NUMERACIÓN, ESTE ES EL CASO DE LA CIVILIZACIÓN ROMANA. LOS NÚMEROS ROMANOS SOLO CUENTAN CON SIETE SÍMBOLOS, PERO CON ELLOS PUEDES FORMAR INFINIDAD DE NÚMEROS.

HISTORIA DE LOS NÚMEROS ROMANOS

HACE MUCHOS AÑOS ATRÁS, LOS ROMANOS EMPLEARON UN SISTEMA DE NUMERACIÓN EN EL CUAL SUS SIGNOS ERAN LETRAS: LOS NÚMEROS ROMANOS. CADA LETRA DE ESTE SISTEMA TIENE UN VALOR PROPIO SEA CUAL SEA LA POSICIÓN DEL NÚMERO. EN LA ACTUALIDAD PODEMOS ENCONTRARLOS CAPÍTULOS DE LIBROS O EN ALGÚN RELOJ ANTIGUO.

 

EL SISTEMA DE NUMERACIÓN ROMANO TIENE SUS ORÍGENES EN LOS ETRUSCOS, UN ANTIGUO PUEBLO UBICADO EN LA ACTUAL ITALIA CENTRAL. LOS SÍMBOLOS DE ESTE SISTEMA SURGIERON EN LA ANTIGUA ROMA Y SE MANTUVIERON DURANTE TODO EL IMPERIO ROMANO.

SI BIEN SU USO DISMINUYÓ TRAS LA CAÍDA DEL IMPERIO, AÚN ERAN EMPLEADOS EN MUCHAS OCASIONES. CON EL TIEMPO, EL SISTEMA DE NUMERACIÓN ROMANO FUE SUSTITUIDO POR EL SISTEMA DECIMAL, EL CUAL USAMOS DÍA A DÍA Y CONSTA DE DIEZ CIFRAS: 1, 2, 3, 4, 5, 6, 7, 8, 9 Y 10.

¿QUÉ SON LOS NÚMEROS ROMANOS?

LOS NÚMEROS ROMANOS SON NÚMEROS EXPRESADOS EN LETRAS QUE INDICAN UNA CANTIDAD. ESTE SISTEMA DE NUMERACIÓN SOLO TIENE SIETE SÍMBOLOS:

NÚMERO ROMANO VALOR
I 1
V 5
X 10
L 50
C 100
D 500
M 1.000

¿SABÍAS QUÉ?

EN EL SISTEMA DE NUMERACIÓN ROMANO EL 1 SIEMPRE VALDRÁ UNO 1,  YA SEA QUE LO SUMEMOS O LO RESTEMOS. EN CAMBIO, EN NUESTRO SISTEMA DE NUMERACIÓN DECIMAL, EL UNO 1 PUEDE TENER VALORES DISTINTOS SEGÚN EL LUGAR QUE OCUPE EN EL NÚMERO, POR EJEMPLO, EN 21, EL 1 ES UNIDAD Y VALE 1, PERO EN 15, ESE 1 NO VALE 1, VALE 10.

ESCRITURA Y LECTURA DE LOS NÚMEROS ROMANOS

PARA LEER Y ESCRIBIR NÚMEROS ROMANOS DEBEMOS SEGUIR LAS SIGUIENTES REGLAS:

 

  • LOS SÍMBOLOS SE ESCRIBEN DE IZQUIERDA A DERECHA. SI UN NÚMERO UBICADO A LA DERECHA DE OTRO ES IGUAL O MENOR A ESTE, SE SUMAN.

XVII = 10 + 5 + 1 + 1 = 17

VIII = 5 + 1 + 1 + 1 = 8

 

  • SI UN SÍMBOLO DE MENOR VALOR ESTÁ A LA IZQUIERDA DE UNO DE MAYOR VALOR, ENTONCES SE RESTAN.

IV = 5 − 1 = 4

IX = 10 − 1 = 9

¿SABÍAS QUÉ?

LOS SÍMBOLOS I (1) Y X (10) SÓLO PUEDEN RESTAR A SUS DOS SÍMBOLOS INMEDIATAMENTE SUPERIORES, ES DECIR:

I SÓLO PUEDE RESTAR A V Y X.

X SÓLO PUEDE RESTAR A L Y A C.

  • LOS SÍMBOLOS V (5) Y L (50) SIEMPRE SUMAN Y NUNCA PUEDEN ESTAR A LA IZQUIERDA PARA RESTAR A UN VALOR MAYOR:

XCV = 100 − 10 + 5 = 95

XLV = 50 − 10 + 5 = 45

  • LOS SÍMBOLOS PUEDEN REPETIRSE TRES VECES DE MANERA CONSECUTIVA COMO MÁXIMO. V Y L NO SE REPITEN.

III = 1 + 1 + 1 = 3

XXX = 10 + 10 + 10 = 30

 

  • UN SÍMBOLO QUE RESTA NO PUEDE REPETIRSE DE MANERA CONSECUTIVA.

 

¡A PRACTICAR!

EXPRESA LOS SIGUIENTES NÚMEROS ARÁBIGOS EN NÚMEROS ROMANOS:

  • 58
SOLUCIÓN
LVIII
  • 86
SOLUCIÓN
LXXXVI
  • 73
SOLUCIÓN
LXXIII
  • 61
SOLUCIÓN
LXI
  • 48
SOLUCIÓN
XLVIII
  • 36
SOLUCIÓN
XXXVI

APLICACIÓN DE LA NUMERACIÓN ROMANA

HOY DÍA AÚN USAMOS LOS NÚMEROS ROMANOS EN DIVERSAS CIRCUNSTANCIA. ESTOS SON ALGUNOS EJEMPLOS:

  • PARA DAR LA HORA EN ALGUNOS TIPOS RELOJES.
  • PARA NOMBRAR PAPAS, POR EJEMPLO, EL PAPA BENEDICTO XVI.
  • PARA NOMBRAR REYES, POR EJEMPLO, LA REINA ISABEL II.
  • PARA NOMBRAR SIGLOS, POR EJEMPLO, EL SIGLO XXI.
  • PARA NOMBRAR EVENTOS, POR EJEMPLO, LA V EDICIÓN DEL FESTIVAL DE MÚSICA.

 

A PESAR DE QUE NUESTRO SISTEMA DE NUMERACIÓN DECIMAL ES EL MÁS USADO EN TODO EL MUNDO, EL SISTEMA DE NUMERACIÓN ROMANO TODAVÍA SE APLICA. NOMBRES DE PAPAS, DE REYES, DE SIGLOS Y DE EVENTOS SON SOLO ALGUNOS EJEMPLOS. TAMBIÉN SE LOS PUEDE VER EN TALLADOS O PLACAS CONMEMORATIVAS.

ACTIVIDADES

1. ORDENA LOS SIGUIENTES NÚMEROS ROMANOS DE MENOR A MAYOR:

XIII – LXX – XXIV – IV – VIII – XXXI

SOLUCIÓN
IV (4)- VIII (8)- XIII (13)- XXIV (24)- XXXI (31) – LXX (70)

2. EXPRESAR LOS SIGUIENTES NÚMEROS ROMANOS EN NÚMEROS CARDINALES:

III – IX – XII – XXII – LXXIX – LXV – LIII

SOLUCIÓN
3 – 9 – 12 – 22 – 79 – 65 – 53
RECURSOS PARA DOCENTES

Artículos “Números romanos”

En el siguiente artículo hay más estrategias de enseñanza para ampliar los conocimientos acerca del sistema de numeración romana.

VER