La adición y la sustracción de fracciones se realiza con diferentes métodos. El método elegido va a depender del tipo de fracción que se vaya a sumar o a restar. Si las fracciones son homogéneas, se coloca el mismo denominador y se suman o restan sus numeradores. Cuando las fracciones son heterogéneas se pueden emplear diferentes procedimientos como la multiplicación cruzada, la aplicación del mínimo común múltiplo (mcm) a los denominadores de las fracciones o el uso de fracciones equivalentes.
MULTIPLICACIÓN Y DIVISIÓN DE FRACCIONES
La multiplicación de fracciones se realiza mediante la multiplicación lineal de sus factores, numerador por numerador y denominador por denominador. Por otra parte, la división de fracciones tiene tres formas de resolverse. Una de ellas es de forma cruzada, a través de la multiplicación del numerador de la primera fracción por el denominador de la segunda y el resultado se coloca como numerador de la fracción resultante. Luego se multiplica el denominador de la primera fracción por el numerador de la segunda y el resultado se coloca en el denominador resultante. Otra manera es intercambiar el numerador y el denominador de la segunda fracción para resolverlo de manera lineal como la multiplicación. Y por último, otra opción consiste en el método de la doble c, en el cual la segunda fracción se coloca por debajo de la primera y se multiplican los términos exteriores para obtener el numerador resultante y los interiores para obtener el denominador resultante.
FRACCIONES Y DECIMALES
Las fracciones y los números decimales se encuentran muy relacionados, ya que las fracciones se pueden representar de forma decimal y algunos decimales se pueden expresar de forma fraccionaria. Las fracciones se encuentran formadas por el numerador y el denominador separados por una línea horizontal. Los decimales tienen una parte entera y una parte decimal divididas por una coma. Al dividir el numerador entre el denominador de una fracción se obtiene un número decimal (o entero cuando se trata de una fracción aparente). Por otra parte, los decimales se pueden convertir en fracciones por diferentes procedimientos, según el número decimal sea exacto, periódicopuro o periódico mixto. Existen números decimales que no pueden ser convertidos en fracciones como el número pi y son denominados números irracionales.
EL PORCENTAJE
El porcentaje se representa con el símbolo “%”. Es una forma de expresar una fracción dividida entre 100. Por esta razón, los números fraccionarios, los decimales y los porcentajes se encuentran muy relacionados. Los porcentajes se pueden transforman en números decimales al dividirlos entre el 100 %. Para calcular el porcentaje de una cifra se puede realizar mediante dos procedimientos. El primero es convertir el porcentaje en una fracción decimal y multiplicarlo por la cantidad total. Y el segundo método consiste en la regla de tres simple, en la cual el valor total es equivalente al 100 % y el porcentaje buscado corresponde al valor de la incógnita que queremos conocer.
¿Sabías qué el 70 % de la superficie de nuestro planeta está cubierto por agua? ¡Sí! Pero ¿qué significa 70 %? Los porcentajes son expresiones que, al igual que las fracciones, representan una parte de un todo. También los vemos a menudo en las rebajas en las tiendas del centro comercial o en los impuestos de los productos que compramos.
relación de las fracciones y el porcentaje
El porcentaje es una parte de un todo igual a 100, es decir, es una razón con denominador 100. Su símbolo es “%” y se puede expresar como una fracción o como un decimal. Por ejemplo, 70 % es igual a escribir 70/100 que a su vez es igual a 0,7.
Puedes ver la relación entre el porcentaje, las fracciones y los número decimales en esta tabla:
Porcentaje
Fracción
Decimal
Cantidad en relación a 100
Porcentaje/100
0,…
– Ejemplo:
Porcentaje
Fracción
Decimal
La relación no siempre es lineal, también podemos partir de una fracción y convertirla en porcentaje. Para esto, solo dividimos el numerador entre el denominador, y luego multiplicamos el cociente obtenido por 100.
Fracción
Decimal
Porcentaje
¿Sabías qué?
En los porcentajes se lee “por ciento”. Por ejemplo, el “15 % de los alumnos juegan al fútbol” se lee “el quince por ciento de los alumnos juegan al fútbol”.
¡Es tu turno!
Convierte estas fracciones a porcentajes:
Solución
Solución
Cálculo de porcentajes
Para calcular el porcentaje de una cantidad, por ejemplo, el 15 % de 80, podemos optar por tres métodos diferentes:
1. Convierte el porcentaje a fracción. Luego multiplica.
2. Convierte el porcentaje a decimal. Luego multiplica.
3. Usa la regla de tres.
Nota que con cualquiera de los tres métodos el resultado será el mismo: 12.
¿Qué es el IVA?
El IVA o impuesto al valor agregado es un impuesto directo que pagan los consumidores al Estado por utilizar algún bien o servicio. Cada país tiene un porcentaje de IVA diferente, por ejemplo, en Argentina es de 21 %, en Colombia es de 19 %, en Costa Rica es de 13 % y en Venezuela es de 16 %.
¡Resolvamos algunos problemas!
1. En un curso hay 30 chicos y el 10 % de ellos juega al rugby, el 30 % juega al fútbol y el resto no hace ningún deporte. Responde:
a) ¿Cuántos de ellos juegan al rugby?
b) ¿Cuántos juegan al fútbol?
c) ¿Cuántos no hacen ningún deporte?
Datos
Cantidad de chicos: 30
Chicos que juegan al rugby: 10 %
Chicos que juegan al fútbol: 30 %
Chicos que no hacen ningún deporte: ?
Reflexión
a. Para saber la cantidad de chicos que juegan al rugby tenemos que multiplicar la cantidad total de chicos (30) por la fracción equivalente al porcentaje, en este caso, 10 % = 10/100.
b. La cantidad de jugadores de fútbol la sabremos si multiplicamos la cantidad total de chicos por la fracción equivalente al porcentaje, en este caso, 30 % = 30/100.
c. Cuando sepamos la cantidad de chicos que juegan al rugby y al fútbol, solo tendremos que restarle esa cantidad al total, es decir, los chicos que no hacen deporte = 30 − (a + b)
Cálculo
a.
b.
c.
Respuestas
a. 3 chicos juegan al rugby.
b. 9 chicos juegan al fútbol.
c. 18 chicos no hacen deporte.
2. A José le hicieron un descuento del 5 % en su compra. Si gastó en ese lugar $ 3.200, ¿qué monto debe pagar?
Datos
Cuenta total: $ 3.200
Descuento: 5 %
Reflexión
a. Lo primero que tenemos que hacer es calcular el 5 % de 3.200. Para esto solo multiplicamos la cantidad de dinero por la fracción equivalente al porcentaje, que sería 5 % = 5/100.
b. Como se trata de un descuento, tenemos que “quitar” la cantidad que represente ese porcentaje al monto total, por lo tanto, tenemos que restarlo.
Cálculo
a.
b.
Respuesta
José debe pagar $ 3.040.
3. Un equipo de baloncesto participó en 50 partidos este año y ganó el 30 % de ellos. ¿Cuántos partidos ganó este año?
Datos
Partidos jugados: 50
Partidos ganados: 30 %
Reflexión
Al tratarse del porcentaje de una cantidad total, basta con multiplicar la cantidad de partidos (50) por la fracción equivalente al porcentaje, es decir, 30 % = 30/100.
Cálculo
Respuesta
El equipo de baloncesto ganó 15 partidos de 50 jugados este año.
importancia del porcentaje
En la vida cotidiana, el porcentaje tiene distintos usos. Por ejemplo, a la hora de calcular la tasa de interés, al solicitar un crédito, al realizar una encuesta, en los descuentos y recargos en el pago de una cuenta, o cuando esperamos que una aplicación móvil se cargue y vemos una barra que muestra el porcentaje de descarga.
Los porcentajes son útiles cuando comparamos grandes partes de un todo. Por ejemplo, si de un instituto de 800 estudiantes, 360 estudiantes van a la feria de ciencias, y de otro van 360 de 600 estudiantes, es más práctico y claro decir que el 45 % de los estudiantes del primer instituto va a la feria de ciencias y que el 60 % del segundo va a la feria de ciencias.
¡A practicar!
1. Calcular los siguientes porcentajes:
12 % de 1.700
Solución
204
3 % de 4.400
Solución
132
15 % de 2.500
Solución
375
50 % de 45.000
Solución
22.500
78 % de 50.000
Solución
39.000
2. Resuelve:
a. Marta tiene 120 figuritas repetidas y le regaló el 20 % a su amiga. ¿Cuántas figuritas le quedan a Marta?
Solución
A Marta le quedan 96 figuritas.
b. Gabriela viajó dos quintas partes de lo que debía viajar. ¿Qué porcentaje del viaje realizó?
Solución
Gabriela realizó el 40 % del viaje.
c. Se realizó una encuesta a 200 personas sobre los géneros de películas que más les gustan y representaron los resultados en este gráfico circular como porcentajes. Indica a cuántas personas les gusta cada género.
Solución
Comedia: 110 personas
Suspenso: 40 personas
Familiares: 24 personas
Terror: 10 personas
Drama: 16 personas
3. Escribe las siguientes fracciones como porcentajes:
Solución
60 %
Solución
60 %
Solución
87,5 %
RECURSOS PARA DOCENTES
Tarjeta Educativa “Porcentaje”
En esta tarjeta encontrará reglas prácticas para el cálculo de porcentajes, sus características y aplicaciones.