CAPÍTULO 3 / TEMA 6 (REVISIÓN)

Fracciones | ¿qué aprendimos?

noción de fracción

Las fracciones son una forma de representar las partes de un todo. Tienen dos elementos: un numerador y un denominador, ambos separados por una raya fraccionaria. El denominador indica en cuántas partes dividimos el todo y el numerador es igual a las partes que se toman del mismo. Las fracciones las podemos clasificar, de acuerdo a la relación entre el numerador y el denominador, en propias, impropias o aparentes.

Cada vez que cortamos frutas y nos comemos una parte de ellas podemos utilizar una fracción, por ejemplo, “me comí media naranja”.

adición y sustracción de fracciones

Para sumar o restar fracciones homogéneas (aquellas con igual denominador) lo único que debemos hacer es sumar o restar los numeradores y mantener el denominador. En cambio, las fracciones heterogéneas (aquellas con denominadores diferentes) se suman o restan por distintos métodos. Uno consiste en calcular el mcm, otro en hallar una fracción equivalente y otro en multiplicar de forma cruzada.

Las fracciones, como parte de un todo, pueden ordenarse de mayor a menor, compararse, sumarse, restarse, multiplicarse y dividirse.

Multiplicación y división de fracciones

Las multiplicaciones de fracciones son relativamente sencillas. Solo tenemos que multiplicar todos los numeradores de forma lineal y luego multiplicar de la misma manera todos los denominadores, y si es posible simplificamos. La división, en cambio, puede ser resuelta por dos métodos. El primero se trata de invertir la segunda fracción y multiplicarla por la primera, y el segundo es el de la doble c.

Las multiplicaciones y las divisiones son muy utilizadas en los problemas de reparto y porcentaje.

Fracciones y otros números

Muchas situaciones de nuestra vida cotidiana involucran no solo a los números naturales (\mathbb{N}), sino también a los enteros (\mathbb{Z}), los racionales (\mathbb{Q}) y los decimales. Todos ellos, con excepción de algunos decimales, pueden ser representados como una fracción, por ejemplo, el número 25 puede ser representado como 25/1 y el número decimal 0,25 puede representarse como 2/8.

Cuando vamos a comprar podemos pedir medio kilo de pan. Eso lo podemos expresar como fracción 1/2 kg o como número decimal 0,5 kg.

Fracciones y porcentajes

Otra forma de representar fracciones son los porcentajes. Estos son iguales a una fracción con denominador igual a 100. Por ejemplo, 20 % es igual a 20/100. Asimismo, estas expresiones se pueden mostrar como un número decimal, por lo tanto, 20/100 = 0,2. Los porcentajes son muy usados en economía, estadística y tecnología, pues ayudan a simplificar relaciones de una parte de un todo de manera clara.

Los porcentajes suelen estar presentes en los comercios para promocionar un descuento.

CAPÍTULO 3 / TEMA 5

fracciones y porcentajes

¿Sabías qué el 70 % de la superficie de nuestro planeta está cubierto por agua? ¡Sí! Pero ¿qué significa 70 %? Los porcentajes son expresiones que, al igual que las fracciones, representan una parte de un todo. También los vemos a menudo en las rebajas en las tiendas del centro comercial o en los impuestos de los productos que compramos. 

relación de las fracciones y el porcentaje

El porcentaje es una parte de un todo igual a 100, es decir, es una razón con denominador 100. Su símbolo es “%” y se puede expresar como una fracción o como un decimal. Por ejemplo, 70 % es igual a escribir 70/100 que a su vez es igual a 0,7.

Puedes ver la relación entre el porcentaje, las fracciones y los número decimales en esta tabla:

Porcentaje Fracción Decimal
Cantidad en relación a 100 Porcentaje/100 0,…

– Ejemplo:

Porcentaje Fracción Decimal
70\: % \frac{70}{100} 0,7
45\: % \frac{45}{100} 0,45

La relación no siempre es lineal, también podemos partir de una fracción y convertirla en porcentaje. Para esto, solo dividimos el numerador entre el denominador, y luego multiplicamos el cociente obtenido por 100.

Fracción Decimal Porcentaje
\frac{1}{2} 1\div 2=0,5 0,5\times 100=50\: %
\frac{5}{6} 5\div 6=0,833 0,833\times 100=83,3\: %

¿Sabías qué?
En los porcentajes se lee “por ciento”. Por ejemplo, el “15 % de los alumnos juegan al fútbol” se lee “el quince por ciento de los alumnos juegan al fútbol”.
Los porcentajes ya eran usados en la Antigüedad y hay registros sobre su aplicación en el Imperio romano. Aunque el símbolo original no era el que conocemos en la actualidad, este hacía alusión a los ceros del 100. De hecho, el símbolo “%” es una representación estética de los ceros de las centenas, pues un porcentaje se lee “por ciento”.

¡Es tu turno!

Convierte estas fracciones a porcentajes:

  • \frac{1}{4}
Solución

\frac{1}{4}=1\div 4=0,25

0,25\times 100=\boldsymbol{25\: %}

  • \frac{2}{25}
Solución

\frac{2}{25}=2\div 25=0,08

0,08\times 100=\boldsymbol{8\: %}

Cálculo de porcentajes

Para calcular el porcentaje de una cantidad, por ejemplo, el 15 % de 80, podemos optar por tres métodos diferentes:

1. Convierte el porcentaje a fracción. Luego multiplica.

15\: % = \frac{15}{100}

\frac{15}{100}\times 80 = \boldsymbol{12}

2. Convierte el porcentaje a decimal. Luego multiplica.

15\: %=\frac{15}{100}=0,15

0,15\times 80=\boldsymbol{12}

3. Usa la regla de tres.

100\: %\rightarrow 80

\: \: 15\: %\rightarrow x

x=\frac{15\: %\times 80}{100\: %}=\boldsymbol{12}

Nota que con cualquiera de los tres métodos el resultado será el mismo: 12.

¿Qué es el IVA?

El IVA o impuesto al valor agregado es un impuesto directo que pagan los consumidores al Estado por utilizar algún bien o servicio. Cada país tiene un porcentaje de IVA diferente, por ejemplo, en Argentina es de 21 %, en Colombia es de 19 %, en Costa Rica es de 13 % y en Venezuela es de 16 %.

¡Resolvamos algunos problemas!

1. En un curso hay 30 chicos y el 10 % de ellos juega al rugby, el 30 % juega al fútbol y el resto no hace ningún deporte. Responde:

a) ¿Cuántos de ellos juegan al rugby?

b) ¿Cuántos juegan al fútbol?

c) ¿Cuántos no hacen ningún deporte?

  • Datos

Cantidad de chicos: 30

Chicos que juegan al rugby: 10 %

Chicos que juegan al fútbol: 30 %

Chicos que no hacen ningún deporte: ?

  • Reflexión

a. Para saber la cantidad de chicos que juegan al rugby tenemos que multiplicar la cantidad total de chicos (30) por la fracción equivalente al porcentaje, en este caso, 10 % = 10/100.

b. La cantidad de jugadores de fútbol la sabremos si multiplicamos la cantidad total de chicos por la fracción equivalente al porcentaje, en este caso, 30 % = 30/100.

c. Cuando sepamos la cantidad de chicos que juegan al rugby y al fútbol, solo tendremos que restarle esa cantidad al total, es decir, los chicos que no hacen deporte = 30 − (a + b)

  • Cálculo

a. 30\times \frac{10}{100}=\boldsymbol{3}

b. 30\times \frac{30}{100}= \boldsymbol{9}

c. 30-(3+9)=30-12=\boldsymbol{18}

  • Respuestas

a. 3 chicos juegan al rugby.

b. 9 chicos juegan al fútbol.

c. 18 chicos no hacen deporte.


2. A José le hicieron un descuento del 5 % en su compra. Si gastó en ese lugar $ 3.200, ¿qué monto debe pagar?

  • Datos

Cuenta total: $ 3.200

Descuento: 5 %

  • Reflexión

a. Lo primero que tenemos que hacer es calcular el 5 % de 3.200. Para esto solo multiplicamos la cantidad de dinero por la fracción equivalente al porcentaje, que sería 5 % = 5/100.

b. Como se trata de un descuento, tenemos que “quitar” la cantidad que represente ese porcentaje al monto total, por lo tanto, tenemos que restarlo.

  • Cálculo

a. 3.200\times \frac{5}{100}=\boldsymbol{160}

b. 3.200-160=\boldsymbol{3.040}

  • Respuesta

José debe pagar $ 3.040.


3. Un equipo de baloncesto participó en 50 partidos este año y ganó el 30 % de ellos. ¿Cuántos partidos ganó este año?

  • Datos

Partidos jugados: 50

Partidos ganados: 30 %

  • Reflexión

Al tratarse del porcentaje de una cantidad total, basta con multiplicar la cantidad de partidos (50) por la fracción equivalente al porcentaje, es decir, 30 % = 30/100.

  • Cálculo

50\times \frac{30}{100}=\boldsymbol{15}

  • Respuesta

El equipo de baloncesto ganó 15 partidos de 50 jugados este año.

importancia del porcentaje

En la vida cotidiana, el porcentaje tiene distintos usos. Por ejemplo, a la hora de calcular la tasa de interés, al solicitar un crédito, al realizar una encuesta, en los descuentos y recargos en el pago de una cuenta, o cuando esperamos que una aplicación móvil se cargue y vemos una barra que muestra el porcentaje de descarga.

Los porcentajes son útiles cuando comparamos grandes partes de un todo. Por ejemplo, si de un instituto de 800 estudiantes, 360 estudiantes van a la feria de ciencias, y de otro van 360 de 600 estudiantes, es más práctico y claro decir que el 45 % de los estudiantes del primer instituto va a la feria de ciencias y que el 60 % del segundo va a la feria de ciencias.

Los gráficos circulares, también conocidos como gráficos de torta o pastel, se usan para comparar porcentajes con respecto a un total de datos. Para hallar los porcentajes parciales se dividen los 360° del círculo de acuerdo a los valores dados. Para dibujarlas en papel necesitarás un compás y un transportador para saber los grados a marcar por cada porcentaje.

¡A practicar!

1. Calcular los siguientes porcentajes:

  • 12 % de 1.700
Solución
204
  • 3 % de 4.400
Solución
132
  • 15 % de 2.500
Solución
375
  • 50 % de 45.000
Solución
22.500
  • 78 % de 50.000
Solución
39.000

2. Resuelve:

a. Marta tiene 120 figuritas repetidas y le regaló el 20 % a su amiga. ¿Cuántas figuritas le quedan a Marta?

Solución

120\times \frac{20}{100}=\boldsymbol{24}

120-24=\boldsymbol{96}

A Marta le quedan 96 figuritas.

b. Gabriela viajó dos quintas partes de lo que debía viajar. ¿Qué porcentaje del viaje realizó?

Solución

\frac{2}{5}=2\div 5=0,4

0,4\times 100 = \boldsymbol{40 \: %}

Gabriela realizó el 40 % del viaje.

c. Se realizó una encuesta a 200 personas sobre los géneros de películas que más les gustan y representaron los resultados en este gráfico circular como porcentajes. Indica a cuántas personas les gusta cada género.

Solución

Comedia: 110 personas

Suspenso: 40 personas

Familiares: 24 personas

Terror: 10 personas

Drama: 16 personas

3. Escribe las siguientes fracciones como porcentajes:

  • \frac{3}{5}
Solución
60 %
  • \frac{12}{20}
Solución
60 %
  • \frac{7}{8}
Solución
87,5 %
RECURSOS PARA DOCENTES

Tarjeta Educativa “Porcentaje”

En esta tarjeta encontrará reglas prácticas para el cálculo de porcentajes, sus características y aplicaciones.

VER

Artículo “Porcentajes”

El artículo habla sobre la presencia de los porcentajes en la vida cotidiana y su uso.

VER

CAPÍTULO 3 / TEMA 5

PORCENTAJES

Los porcentajes son expresiones matemáticas que sirven para relacionar dos cantidades. Se emplean en diferentes situaciones como, por ejemplo, los descuentos. Están estrechamente relacionados con los números fraccionales, porque se emplean para representar una fracciones de denominador igual a 100. 

¿qUÉ ES UN PORCENTAJE?

Un porcentaje, al igual que una fracción, es una forma de indicar una parte de un todo. Los porcentajes se utilizan a diario, por ejemplo, en los siguientes casos:

  • El 30 % de los vuelos proviene de Europa.
  • El 40 % de las personas en la fiesta eran hombres y el 60 % eran mujeres.
  • El 60 % de la población mundial tiene acceso a Internet.

Esto quiere decir que:

  • De cada 100 vuelos, 30 proviene de Europa.
  • De cada 100 personas que había en la fiesta, 40 eran hombres y 60 eran mujeres.
  • De cada 100 personas, 60 tienen acceso a Internet.

Como vemos, el número 100 está presente en todos los casos como referencia. Esto sucede porque el porcentaje representa a una fracción decimal cuyo denominador es 100. Entonces, el número que utilizamos para indicar el porcentaje corresponde al numerador, y el denominador es siempre 100:

  • 20 % = 20/100
  • 60 % = 60/100
  • 33 % = 33/100
Un porcentaje, al igual que una fracción, es una forma de indicar una parte de un todo. Los porcentajes representan una fracción decimal cuyo denominador es 100. Se utiliza frecuentemente en la estadística para distinguir a ciertas porciones del total con respecto a otras. Por ejemplo, en esta imagen vemos un gráfico que divide al total en cuatro partes,  la porción más grande representa el 45 %, mientras que las otras representan el 20 %, el 10 % y el 25 % del total.

Símbolo de porcentaje

El símbolo que utilizamos para indicar un porcentaje es “%” y se lee “por ciento“. Podemos observar algunos ejemplos a continuación:

  • 100 % = “cien por ciento”.
  • 80 % = “ochenta por ciento”.
  • 44 % = “cuarenta y cuatro por ciento”.
  • 30 % = “treinta por ciento”.
El símbolo que utilizamos para indicar un porcentaje es %. Cuando un número está acompañado de dicho símbolo se trata de una expresión de este tipo. Por ejemplo, 100 % se lee “cien por ciento”. Los porcentajes también se utilizan en la economía para indicar los aumentos de precios, el crecimiento de las acciones de una empresa y la inflación de un país.

¿Sabías qué?
El agua constituye el 98 % de un melón, el 80 % de un pez y el 70 % de un ser humano.

Cálculo de porcentaje

Para calcular el porcentaje de una cantidad dada se deben seguir los siguientes pasos:

  1. Multiplicar el porcentaje por la cantidad conocida.
  2. Dividir el resultado obtenido entre cien.
  3. Escribir el resultado final.

Por ejemplo:

1. Calcular el 30 % de  60.

Para calcula cuánto es el 30 % de 60 se deben multiplicar ambos números y luego dividir el resultado entre cien de la siguiente forma:

\frac{30\times 60}{100}=\frac{1.800}{100}=18

En este caso el 30 % de 60 es 18.

2. ¿Cuánto es el 20 % de $ 150?

\frac{20\times 150}{100}=\frac{3.000}{100}=30

El 20 % de $ 150 son $ 30.

¿Cómo determinar qué porcentaje se aplicó?

Hay ocasiones en las que necesitamos calcular cuál es el porcentaje aplicado. Esto es muy útil cuando se va a realizar una compra. Por ejemplo, si un pantalón tiene un precio de $ 120 y el descuento es de $ 12, ¿Cuál es el porcentaje de descuento que se le aplicó?

En este caso se debe multiplicar el descuento por 100 y luego dividir el resultado entre el precio del pantalón que es $ 120:

\frac{12\times 100}{120}=\frac{1.200}{120} = 10\, %

El porcentaje de descuento en este caso fue del 10 %, es decir,  $ 12 representa el 10 % de $ 120.

Relación de porcentaje y fracción

Tanto los porcentajes como las fracciones son formas de representar una parte de un todo. Entonces, podemos convertir un porcentaje en una fracción y viceversa.

Convertir fracción a porcentaje

Para convertir cualquier fracción a porcentaje, debemos dividir el numerador con el denominador, y luego multiplicar dicho resultado por cien. Al número obtenido le agregamos siempre el símbolo de porcentaje (%) para indicar que nos referimos a un porcentaje. Por ejemplo, si convertimos 3/5 en porcentaje tenemos que:

Convertir porcentaje a fracción

En este caso, debemos colocar el porcentaje en el numerador de la fracción y agregar 100 como denominador. Luego, simplificamos hasta obtener una fracción irreducible. Por ejemplo, para convertir 20 % a fracción:

La fracción 20/100 se puede simplificar a 1/5 al dividir tanto al numerador como al denominador entre 5.

Los porcentajes y las fracciones son formas de representar una parte de un total. Entonces, podemos convertir tanto los porcentaje a fracciones como las fracciones a porcentajes. Los porcentajes son muy utilizados en las ofertas, para indicar el descuento sobre el total. Mientras mayor sea el porcentaje, mayor será el descuento.

¡A practicar!

1. ¿Cuánto es el 15 % de 300?

a) 150
b) 45
c) 100
d) 30

SOLUCIÓN
b) \frac{15\times 300}{100}=\frac{4.500}{100}=45

2. Convierte los siguientes porcentajes en fracciones.

a) 25 %
b) 35 %
c) 40 %
d) 90 %

SOLUCIÓN

a) \frac{1}{4}

b) \frac{7}{20}

c) \frac{2}{5}

d) \frac{9}{10}

3. Convierte las siguientes fracciones a porcentaje.

a) \frac{4}{5}

b) \frac{1}{2}

c) \frac{7}{50}

d) \frac{1}{4}

RESPUESTAS

a) 80 %
b) 50 %
c) 14 %
d) 25 %

RECURSOS PARA DOCENTES

Artículo “Porcentajes”

En este artículo se explican las características de los porcentajes y los diferentes métodos para calcularlos, como la regla de tres simple.

VER

Artículo “Porcentaje y proporcionalidad. Descuentos y recargos”

En este artículo se explican algunas aplicaciones de los porcentajes, como los descuentos y las recargas.

VER