La adición y la sustracción de fracciones se realiza con diferentes métodos. El método elegido va a depender del tipo de fracción que se vaya a sumar o a restar. Si las fracciones son homogéneas, se coloca el mismo denominador y se suman o restan sus numeradores. Cuando las fracciones son heterogéneas se pueden emplear diferentes procedimientos como la multiplicación cruzada, la aplicación del mínimo común múltiplo (mcm) a los denominadores de las fracciones o el uso de fracciones equivalentes.
MULTIPLICACIÓN Y DIVISIÓN DE FRACCIONES
La multiplicación de fracciones se realiza mediante la multiplicación lineal de sus factores, numerador por numerador y denominador por denominador. Por otra parte, la división de fracciones tiene tres formas de resolverse. Una de ellas es de forma cruzada, a través de la multiplicación del numerador de la primera fracción por el denominador de la segunda y el resultado se coloca como numerador de la fracción resultante. Luego se multiplica el denominador de la primera fracción por el numerador de la segunda y el resultado se coloca en el denominador resultante. Otra manera es intercambiar el numerador y el denominador de la segunda fracción para resolverlo de manera lineal como la multiplicación. Y por último, otra opción consiste en el método de la doble c, en el cual la segunda fracción se coloca por debajo de la primera y se multiplican los términos exteriores para obtener el numerador resultante y los interiores para obtener el denominador resultante.
FRACCIONES Y DECIMALES
Las fracciones y los números decimales se encuentran muy relacionados, ya que las fracciones se pueden representar de forma decimal y algunos decimales se pueden expresar de forma fraccionaria. Las fracciones se encuentran formadas por el numerador y el denominador separados por una línea horizontal. Los decimales tienen una parte entera y una parte decimal divididas por una coma. Al dividir el numerador entre el denominador de una fracción se obtiene un número decimal (o entero cuando se trata de una fracción aparente). Por otra parte, los decimales se pueden convertir en fracciones por diferentes procedimientos, según el número decimal sea exacto, periódicopuro o periódico mixto. Existen números decimales que no pueden ser convertidos en fracciones como el número pi y son denominados números irracionales.
EL PORCENTAJE
El porcentaje se representa con el símbolo “%”. Es una forma de expresar una fracción dividida entre 100. Por esta razón, los números fraccionarios, los decimales y los porcentajes se encuentran muy relacionados. Los porcentajes se pueden transforman en números decimales al dividirlos entre el 100 %. Para calcular el porcentaje de una cifra se puede realizar mediante dos procedimientos. El primero es convertir el porcentaje en una fracción decimal y multiplicarlo por la cantidad total. Y el segundo método consiste en la regla de tres simple, en la cual el valor total es equivalente al 100 % y el porcentaje buscado corresponde al valor de la incógnita que queremos conocer.
En nuestra vida diaria es frecuente escuchar expresiones relacionadas con porcentajes como “la población creció un 20 %” o “hay un 50 % de descuento en ropa”. El porcentaje se utiliza para representar una porción de algo y se encuentra muy relacionado con los números decimales y los fraccionarios.
RELACIÓN DEL PORCENTAJE CON LAS FRACCIONES Y LOS DECIMALES
Para poder realizar el cálculo del porcentaje primero hay que saber que este representa a una fracción decimal cuyo denominador es 100, equivalente al 100 % del número entero, y el numerador es una porción de este. Analicemos el siguiente ejemplo: según la Organización Mundial de la Salud (OMS), el 80 % de las personas que se contagian con el SARS-CoV-2 y desarrollan COVID‑19 se recuperan de la enfermedad sin necesidad de tratamiento hospitalario.
El porcentaje quiere decir que de cada 100 personas que contraen coronavirus, 80 personas se recuperan sin tener que ser hospitalizadas. Por lo tanto, el numerador de la fracción representa la porción de la población que se recupera y el denominador será la población total del estudio. En esta relación de porcentajes y fracciones también es posible aplicar el método de simplificación.
Con el resultado anterior concluimos que 8 de cada 10 personas contagiadas se recuperan sin necesidad de ser hospitalizadas.
Veamos otro ejemplo. La OMS dice que aproximadamente 1 de cada 5 personas que contraen la COVID‑19 presentan un cuadro grave y experimenta dificultades para respirar. Esto quiere decir:
Entonces, quiere decir que aproximadamente el 20 % de la población que se contagia con la enfermedad presenta un cuadro grave.
Asimismo, los porcentajes pueden ser convertidos en forma de números decimales al dividirse entre el 100 %, que representa al total. Y por el contrario, para convertir un número decimal a porcentaje basta con multiplicarlo por 100 %. En este sentido, los dos ejemplos anteriores se pueden expresar en forma decimal de la siguiente manera:
Porcentaje
Fracción
Número decimal
Fracción
Número decimal
Porcentaje
CÁLCULO DE PORCENTAJE
Existen ocasiones en nuestro día a día en los que se requiere calcular el porcentaje de un total o viceversa. También hay veces que queremos conocer qué cantidad del total representa el porcentaje. En ese caso, se emplea el siguiente método:
Covertir un porcentaje a la porción que representa
Tomemos el siguiente ejemplo: un jugador de baloncesto durante toda la temporada realizó 120 lanzamientos y falló el 25 % de sus tiros. Se quiere saber cuántos lanzamientos falló durante la temporada.
Para conocer la cantidad que representa un porcentaje respecto a un total, lo primero que debemos hacer es convertir el porcentaje a una fracción decimal y luego se multiplica por el total que, en este caso, son los 120 lanzamientos que realizó el jugador.
Al transformar el porcentaje en una fracción decimal se obtiene el siguiente resultado:
Luego multiplicamos esa fracción por la cantidad de lanzamientos que realizó el jugador.
Esto quiere decir que, de los 120 lanzamientos que realizó el jugador, falló en 30 de sus lanzamientos, es decir, el 25 %.
Uso de la regla de tres
Cuando se trabaja con porcentajes, las cantidades son directamente proporcionales, por lo tanto, estos pueden ser calculados mediante el uso de la regla de tres simple. En estos casos, si una cantidad aumenta, la otra también, y en el caso de que una disminuya, la otra también lo hace. Por lo tanto, es una regla de tres directa.
Para emplear este método veamos el siguiente ejemplo: en un salón de clases hay 40 alumnos. El 30 % de ellos aprobó el examen con A, el 50 % aprobó con B y el resto obtuvo una C. ¿Cuántos alumnos obtuvieron A, B y C?
Si en el salón hay 40 alumnos, entonces ellos representan el 100 %. Entonces planteamos las reglas de la siguiente manera:
El 30 % de lo alumno obtuvieron A:
El 50 % de los alumnos obtuvieron B:
El 20 % de los alumnos obtuvieron C:
Entonces, se concluye que los 12 alumnos con A representan el 30 %, los 20 alumnos con B equivalen al 50 % y 8 de ellos obtuvieron C, el equivalente al 20 %.
¿Sabías qué?
Se tienen registros que señalan que el porcentaje se ha usado desde el siglo XV.
APLICACIÓN DEL PORCENTAJE EN EL COMERCIO
El porcentaje es muy utilizado de diferentes formas en el comercio, por ejemplo, para realizar descuentos o recargos a las compras.
Descuentos
Cuando se habla de descuento, quiere decir que a la cantidad total que se va a pagar hay que restarle el porcentaje. Por lo tanto, la cantidad que se obtiene como resultado es menor que la cantidad dada. Por ejemplo:
Una tienda de bicicletas eléctricas vende uno de sus modelos en 2.500 $ con un descuento de 30 % si se paga con tarjeta de crédito. ¿Cuánto será el costo de la bicicleta si se paga con tarjeta de crédito?
Para realizar este ejercicio utilizaremos el primer método visto anteriormente.
Se convierte el porcentaje en fracción.
Se multiplica por el costo de la bicicleta.
Se resta el porcentaje de descuento (750 $) al total del costo de la bicicleta.
El costo de la bicicleta con descuento, por el pago con tarjeta de crédito, será de 1.750 $. Observa que, como era de esperarse, la cantidad con el descuento es menor que el precio inicial.
Recargos
Otro de los usos que se le puede dar al porcentaje es para realizar recargos. Esto se ve mucho cuando se quiere realizar compras de artículos y no se tiene el monto total del mismo. El monto es divido en varias cuotas mas pequeñas, pero al final el costo total aumenta.
Imaginemos que se desea comprar un auto de 350.000 $ y el concesionario permite pagarlo en 12 cuotas con un recargo del 8 % sobre su costo. ¿Cuánto será el costo real del auto?
Para este ejercicio aplicaremos el segundo método visto: la regla de tres simple. Así que el 8 % de aumento por las 12 cuotas se plantea de la siguiente forma:
Luego, al tener el 8 % de aumento, se le suma al costo del auto 28.000 $ de aumento. Eso da un total de 378.000 $. Este es el costo del auto si se paga en 12 cuotas. Como era de esperarse, el costo del auto con recargo es mayor que el costo inicial.
¡A practicar!
1. ¿Cuánto es el 38 % de 12.583?
RESPUESTAS
El 38 % de 12.583 es 4.781,54.
2. El costo de unos zapatos para jugar al fútbol tienen un valor de 130 $. Si se pagan en efectivo se realiza un descuento del 23 %. ¿Cuánto se ahorra si se pagan en efectivo?
RESPUESTAS
Se ahorrarían 29,90 $.
3. Si se realiza un viaje en auto con un motor usado se consumen 56 litros de gasolina. Si con un motor nuevo se ahorra 26 % de gasolina, ¿cuántos litros de gasolina ahorra el motor nuevo?
RESPUESTAS
El motor nuevo ahorra 14,56 litros de gasolina.
4. Desde el 2010 hasta el 2018, 7.954 personas han intentado subir al Monte Everest. Durante esa travesía, 72 personas no pudieron completar el viaje. ¿Cuánto fue el porcentaje de personas que no pudieron completar el viaje?
RESPUESTAS
El porcentaje de personas que no pudieron completar el viaje fue del 0,9 %.
RECURSOS PARA DOCENTES
Artículo “Porcentajes”
Este artículo permite analizar diferentes ejercicios en los que se aplican los porcentajes.
Algunos números decimales pueden ser representados a través de fracciones, por esta razón se dice que los números decimales y las fracciones se encuentran relacionados. Los números decimales que se pueden representar a través de fracciones se denominan racionales y de acuerdo a su tipo se realiza la conversión.
LOS NÚMEROS DECIMALES
Los números decimales son aquellos que están formados por una parte entera y una parte decimal. Estos están separados por una coma o un punto. Estos números son otra forma de escribir el resultado de las fracciones. Ambas expresiones representan cualquier número no entero (aunque las fracciones pueden representar cantidades enteras en el caso de las fracciones aparentes).
En este sentido, las fracciones se pueden expresar en forma de números decimales, para lo cual se debe realizar la división de la fracción, es decir, numerador entre denominador. Por ejemplo, al dividir el numerador entre el denominador de la fracción 5/4 se obtiene 1,25, que corresponde a la misma cantidad.
Convertir una fracción a número decimal
Solo existe un método para convertir una fracción a número decimal y se realiza a través de la división. Si divides el numerador entre el denominador por lo general obtienes un número decimal. Siempre y cuando no sea una fracción aparente, en la que el resultado es un número entero (como en el caso de 4/2 = 2).
Algunos ejemplos de conversión de fracciones a decimales son los siguientes:
Convertir un número decimal a fracción
Existen diferentes procedimientos para convertir números decimales a fracciones. Estos pasos dependen del tipo de número que se va a transformar.
Tipos de números decimales
Los números decimales pueden ser racionales o irracionales. Los racionales pueden representarse en forma de fracción y los irracionales no. Los números racionales se clasifican en decimales exactos y decimales periódicos.
Decimales exactos: son aquellos números que tiene una parte limitada o finita de cifras decimales. Los decimales finitos representan a las fracciones decimales. Por ejemplo: 2,38; 4,681; 68,98135; 9647,3543.
Decimales periódicos: son aquellos en los que toda la parte decimal o una porción de esta sigue un patrón infinito de números denominado período y se denota en forma de arco en la parte superior del mismo.
Se pueden distinguir dos tipos de decimales periódicos:
Números decimales periódicos puros
Estos números decimales tienen la parte decimal periódica inmediatamente después de la coma. La parte periódica se suele señalar usualmente con una línea horizontal o arco en la parte superior del mismo. Por ejemplo: 2,3333… = .
Números decimales periódicos mixtos
Estos números decimales poseen dos partes decimales: una parte no periódica, denominada anteperíodo, y la otra parte es la periódica, que se denota con el arco superior. Por ejemplo: 2,147151515… = .
¿Sabías qué?
Al dividir la longitud de una circunferencia entre su diámetro se obtiene un número irracional denominado número pi.
Convertir un número decimal exacto a fracción
Para transformar un número decimal exacto a una fracción decimal se debe escribir el decimal dividido por 1. Luego hay que multiplicar tanto el numerador como el denominador por una potencia de base diez (10, 100, 1.000, etc.) que tenga tantos ceros como cifras decimales tenga el número. Si la fracción que se obtiene no es irreducible, entonces se debe simplificar para obtener el resultado
Por ejemplo:
Otro ejemplo sería:
Convertir un decimal periódico puro a fracción
Para convertir un decimal periódico puro a fracción es necesario aplicar los siguientes pasos:
1. Se coloca en el numerador una resta entre el número formado por la parte entera y la parte periódica sin la coma, y la parte entera. Observemos el siguiente ejemplo en el que se desea convertir en fracción el número .
2. Se coloca en el denominador un número formado por tantos 9 según la cantidad de cifras en el período, es decir, si hay un número bajo la línea periódica se coloca un solo 9, si hay dos números bajo el período se coloca 99 y así sucesivamente.
3. Se realizan las operaciones matemáticas necesarias para conseguir la fracción. Se simplifica si es necesario.
Veamos otro ejemplo en el cual se aplicaron los mismos pasos:
Convertir un decimal periódico mixto a fracción.
Para llevar un número decimal mixto a fracción, seguimos los siguientes pasos:
1. Se coloca en el numerador una resta formada por el número completo sin la coma menos la parte entera y el anteperíodo. Observemos el siguiente ejemplo: .
2. Se coloca el denominador de la fracción que será un número formado por tantos 9 como cifras tenga el período y tantos 0 como cifras tenga el anteperíodo.
Por último, se realizan los cálculos necesarios para conseguir la fracción y se simplifica si la misma lo requiere.
Veamos otro ejemplo con el mismo procedimiento:
Los números irracionales
Este tipo de números decimales no pueden ser convertidos en fracciones, debido a que tienen cifras decimales infinitas que no pueden ser definidas como un patrón. Por lo tanto, crear una fracción de estos números sería infinita. Podemos mencionar como ejemplos de estos números al número pi = 3,1416… o al resultado de
Los números decimales y las fracciones se pueden sumar, restar, dividir, y multiplicar, entre otras operaciones, siempre y cuando se apliquen los métodos anteriormente vistos, como convertir un número decimal a fracción o una fracción a número decimal. Es importante tener presente que para resolver estos ejercicios debemos convertir todos los números a decimales o todos los números a fracciones.
– Primer método: convertir la fracción en un número decimal. Esto se realiza al dividir el numerador entre el denominador.
Ejemplo:
– Segundo método: convertir el número decimal en una fracción. En este caso, se utiliza la conversión del número decimal a fracción. En el ejemplo anterior, se puede notar que el número decimal es exacto, por lo tanto, se utiliza la conversión de número decimal exacto a fracción.
En ambos casos se obtuvo el mismo resultado expresado de una forma diferente
Estos pasos previos se utilizan para realizar los otros cálculos matemáticos como la división, la multiplicación, las potencias, las raíces y las operaciones combinadas.
¡A practicar!
1. Convierte los siguientes números a decimales:
a)
RESPUESTAS
b)
RESPUESTAS
2. Convierte los siguientes números a fracciones:
a)
RESPUESTAS
b)
RESPUESTAS
c)
RESPUESTAS
3. Resuelve las siguientes operaciones:
a)
RESPUESTAS
b)
RESPUESTAS
c)
RESPUESTAS
d)
RESPUESTAS
RECURSOS PARA DOCENTES
Artículo “Resolución de cálculos combinados con paréntesis, corchetes y llaves”
Este artículo explica cómo resolver operaciones matemáticas con fracciones y decimales que incluyen paréntesis, corchetes y llaves.
Los números decimales son todos aquellos que tienen una parte entera y una parte decimal, es decir, una cantidad menor que la unidad y mayor que cero. Estos números los podemos encontrar en todas partes, como en los precios de los productos del supermercado.
CARACTERÍSTICAS DE LOS NÚMEROS DECIMALES
Los números decimales están formados por dos partes separadas con una coma de la siguiente manera:
Clasificación de números decimales
Números decimales exactos
Tienen un número limitado de cifras decimales. Por ejemplo:
Números decimales periódicos
Tienen una o más cifras decimales que se repiten de forma ilimitada o infinita. Podemos distinguir dos tipos de números decimales periódicos:
Números decimales periódicos puros: son aquellos números en los cuales la parte decimal periódica comienza inmediatamente después de la coma. La parte que se repite indefinidamente en estos números es señalada con una línea horizontal o arco en la parte superior. Por ejemplo:
Números decimales periódicos mixtos: son los que están formados por dos partes decimales: una cifra que no se repite que está justo después de la coma, denominada ante-período; y la parte periódica. Por ejemplo:
Números decimales no periódicos
No tienen cifras decimales con un patrón repetido indefinidamente. Un ejemplo de estos son los números irracionales, como el número pi.
¡A practicar!
Ya que conoces cómo están formados los números decimales, ¡consíguelos en este cuadro!
Solución
Número de Euler
Existen números decimales famosos y uno de ellos es el número de Euler, también denominado constante de Napier. Este número decimal fue utilizado por John Napier para introducir el concepto de logaritmo. No obstante, Leonhard Euler fue quien utilizó la letra e para representar dicha constante en el año 1727. El número es utilizado en cálculo, álgebra y números complejos.
LECTURA DE NÚMEROS DECIMALES
Podemos realizar la lectura de un número decimal de dos formas. Para ello, tomaremos como ejemplo el número 698,754980213, el cual podemos representarlo así de acuerdo a su valor posicional:
Primera forma de leer el número:
Lee la parte entera de izquierda a derecha seguida de la palabra “enteros”.
Lee toda la parte decimal como se lee la parte entera.
Menciona la posición en la que se encuentra la última cifra decimal.
Entonces, el número 698,754980213 se lee “seiscientos noventa y ocho enteros setecientos cincuenta y cuatro millones novecientos ochenta mil doscientos trece milmillonésimas“.
Segunda forma de leer el número:
Lee la parte entera de izquierda a derecha seguida de la palabra “coma”.
Lee toda la parte decimal como se lee la parte entera.
De este manera, el número 698,754980213 se lee “seiscientos noventa y ocho coma setecientos cincuenta y cuatro millones novecientos ochenta mil doscientos trece”.
¡Es tu turno!
Utiliza el primer método para leer estos números decimales:
456,268435
Solución
456,268435 = cuatrocientos cincuenta y seis enteros doscientos sesenta y ocho mil cuatrocientos treinta y cinco millonésimas.
35.413,9346103
Solución
35.413,9346103 = treinta y cinco mil cuatrocientos trece enteros nueve millones trescientos cuarenta y seis mil ciento tres diezmillonésimas.
58,79516428
Solución
58,79516428 = cincuenta y ocho enteros setenta y nueve millones quinientos dieciséis mil cuatrocientos veintiocho cienmillonésimas.
REDONDEO DE NÚMEROS DECIMALES
Todo número decimal puede ser redondeado. El redondeo se refiere a reducir la cantidad de cifras de un número para tener un valor similar. Las reglas son las siguientes:
Redondeo por defecto: si la última cifra del número que deseamos redondear es 1, 2, 3 o 4, la sustituimos por 0, y no variamos la penúltima cifra. Por ejemplo, el número 18,3.
Redondeo por exceso: si la última cifra es 5, 6, 7, 8 o 9, también sustituimos por 0, pero en este caso aumentamos la penúltima cifra en 1. Por ejemplo, el número 45,8.
El símbolo (≈) significa aproximado.
Redondeo por aproximación
Podemos aproximar los números decimales a la unidad más cercana, es decir, acercarlo a un número de la recta numérica que tenga menos decimales que este por medio de las mismas reglas. También los podemos aproximar a las décimas, centésimas, milésimas, etc., más cercanas. Por ejemplo, observa los siguientes números y redondéalos: 18,82653 y 45,73286.
El primer número lo aproximamos mediante la regla de redondeo por defecto, ya que la última cifra está entre 0 y 4. Aquí la cifra se aproximó a la diezmilésima más cercana.
Y para el segundo número seguimos la regla de exceso, ya que la última cifra está entre 5 y 9. Aquí la cifra se aproximó a la a la diezmilésima más cercana.
¡A practicar!
Convierte los siguientes números decimales a enteros por redondeo:
465,568
Solución
466
84,91
Solución
85
14,3
Solución
14
9.214,12
Solución
9.214
Aproxima estos números a las décimas, centésimas o milésimas más cercanas:
326,3462
Solución
326,346
486,945
Solución
486,95
45,87
Solución
45,9
RECURSOS PARA DOCENTES
Artículo “Números decimales”
Este artículo ayuda a complementar la información sobre los números decimales.
Todas las sociedades, desde las prehistóricas hasta las modernas, han empleado técnicas para saber cantidades. Desde palos, piedras y marcas, hasta llegar a los símbolos actuales, todos los sistemas de numeración nos ayudan a una importarte y necesaria tarea diaria: contar.
Sistema decimal
Es un sistema de numeración posicional compuesto por diez símbolos o cifras llamados números arábigos: 1, 2, 3, 4, 5, 6, 7, 8, 9 y 0. Es el sistema que más se utiliza en la vida cotidiana.
Al ser posicional, cada cifra adquiere un valor relativo de acuerdo a la posición en que se encuentre: unidades, decenas y centenas. De este modo, cada dígito del número 333 tiene un valor distinto a pesar de ser el mismo.
Observa que 300 + 30 + 3 = 333
También puedes escribir el número 333 como 33310 por pertenecer a un sistema de base diez.
Orden y clase
El sistema de numeración decimal tiene órdenes y clases. La unidad, la decena y la centena son el primero, segundo y tercer orden, respectivamente. Cada orden superior equivale a 10 unidades del orden anterior, es decir, una decena equivale a diez unidades y una centena equivale a 10 decenas.
1 U = 1 U
1 D = 10 U
1 C = 10 D = 100 U
Donde:
U: unidad
D: decena
C: centena
Cada grupo de tres órdenes representa una clase. Así, el número 94.256.328.100.079 tienen dígitos en distintas clases. Observa la tabla:
Este número se lee: “noventa y cuatro billones doscientos cincuenta y seis mil trescientos veintiocho millones cien mil setenta y nueve”.
Equivalencias
1 unidad = 1 unidad
1 decena = 10 unidades
1 centena = 100 unidades
1 unidad de mil (millar) = 1.000 unidades
1 decena de mil (millar) = 10.000 unidades
1 centena de mil (millar) = 100.000 unidades
1 unidad de millón = 1.000.000 unidades
1 decena de millón = 10.000.000 unidades
1 centena de millón = 100.000.000 unidades
1 unidad de millar de millón = 1.000.000.000 unidades
1 decena de millar de millón = 10.000.000.000 unidades
1 centena de millar de millón = 100.000.000.000 unidades
1 unidad de billón = 1.000.000.000.000 unidades
1 decena de billón = 10.000.000.000.000 unidades
1 centena de billón = 100.000.000.000.000 unidades
¡A practicar!
¿Cuántas unidades equivalen a 15 centenas?
Solución
Si 1 centena = 100 unidades, entonces:
15 centenas equivalen a 1.500 unidades.
¿Cuántas unidades equivalen a 3 decenas de millón?
Solución
Si 1 decena de millón = 10.000.000 unidades, entonces:
También lo puedes representar así:
3 decenas de millón equivalen a 30.000.000 unidades.
Sistema binario
Es un sistema de numeración posicional que está constituido solo por dos dígitos: 1 y 0. Este sistema utiliza como base el número 2. Un ejemplo de número binario es:
1000100101002
¿Sabías qué?
El sistema de numeración binario se encuentra con frecuencia en los algoritmos usados en las computadoras y otros equipos electrónicos, pues resulta más sencillo operar solo con los dígitos 0 y 1.
¿Cómo convertir un número del sistema binario al sistema decimal?
Para transformar un número binario, como 1012, al sistema decimal debes seguir estos pasos:
1. Como el número tiene tres cifras, calcula las tres primeras potencias de 2. Inicia por 20 y escríbelas en orden decreciente.
22 = 4
21 = 2
20 = 1
2. Multiplica cada resultado por el dígito correspondiente al número binario. En este caso 1012.
4 x 1 = 4
2 x 0 = 0
1 x 1 = 1
3. Suma los productos. El resultado será el número en el sistema decimal.
4 + 0 + 1 = 5
Por lo tanto:
1012 = 510
¿Cómo convertir un número del sistema decimal al binario?
Para transformar un número del sistema decimal, como 2510, al sistema binario debes seguir estos pasos:
1. Divide el número sucesivamente entre 2 hasta que el cociente sea igual a 1.
2. Lee la cifra, de derecha a izquierda, de abajo hacia arriba. Ese es el número binario equivalente.
2510 = 110012
¡A practicar!
Transforma los siguiente números al sistema de numeración decimal o binario según sea el caso.
11001002
Solución
En el sistema decimal es 10010.
3610
Solución
En el sistema binario es 1001002.
1110102
Solución
En el sistema decimal es 5810.
Sistema sexagesimal
Es un sistema de numeración posicional conformado por los mismos símbolos del sistema decimal: 1, 2, 3, 4, 5, 6, 7, 8, 9 y 0, pero a diferencia de este último, 60 unidades de un orden forman una unidad de orden superior. Sirve para medir los ángulos y el tiempo.
En el sistema sexagesimal se divide un grado en 60 partes iguales. Cada una de estas partes se llama minuto, y este, a su vez, se divide en otras 60 partes iguales para obtener segundos. Observa la equivalencia:
1 grado = 60 minutos = 3.600 segundos
¿Cómo se miden los ángulos?
La unidad principal para medir los ángulos es el grado. Si queremos medirlos con mayor precisión utilizamos, además de los grados, los minutos y los segundos.
Un grado se escribe 1°.
Un minuto se escribe 1′.
Un segundo se escribe 1”.
De este modo, 35° 22′ 36” se lee: “35 grados, 22 minutos y 36 segundos”.
Equivalencias
1° = 60′
1′ = 60″
1° = 3.600″
Observa el esquema:
Por ejemplo, para convertir 17 grados a minutos solo debes multiplicar por 60.
17 x 60 = 1.020
17° = 1.020′
Entonces, 17 grados son iguales a 1.020 minutos.
Si quieres convertir esos 17 grados a segundos solo debes multiplicar por 3.600 (60 x 60).
17 x 3.600 = 61.200
17° = 61.200″
Así, 17 grados son iguales a 61.200 segundos.
Esta tabla muestra algunos ejemplos:
Grados (°)
Minutos (‘)
Segundos (“)
17
17 x 60 = 1.020
17 x 3.600 = 61.200
45
45 x 60 = 2.700
45 x 3.600 = 162.000
22
22 x 60 = 1.320
22 x 3.600 = 79.200
También puedes convertir todas las medidas de un ángulo si sumas sus partes. De esta manera, si quieres pasar a segundos la medida del ángulo 6° 9′ 52″, solo sigue estos pasos:
1. Convierte los grados a segundos. Para esto debes multiplicar por 3.600.
6° = 6 x 3.600 = 21.600″
2. Convierte los minutos a segundos. Para estos debes multiplicar por 60.
9′ = 9 x 60 = 540″
3. Como el resultado final debe ser en segundos, los segundos quedan iguales.
52″ = 52″
4. Suma todos los resultados, lo que es igual a:
6° 9′ 52″ = (6 x 3.600) + (9 x 60) + 52 = 22.192″
Pasa a segundos estas medidas de ángulos
4° 35′ 17″
Solución
4° 35′ 17″ = (4 x 3.600) + (35 x 60) + 17 = 16.517″
5° 8′ 45″
Solución
5° 8′ 45″ = (5 x 3.600) + (8 x 60) + 45 = 18.525″
¿Cómo se mide el tiempo?
Las unidades para medir el tiempo son diversas y van desde los milenios hasta los segundos. Para medir tiempos menores a un día usamos las horas, los minutos y los segundos.
1 hora se escribe 1 h.
1 minuto se escribe 1 min.
1 segundo se escribe 1 s.
Equivalencias
1 h = 60 min
1 min = 60 s
1 h = 3.600 s
Observa el esquema:
Por ejemplo, 3 horas, 20 minutos y 2 segundos se representan así: 3 h 20 min 2 s; y si deseas expresar todo en una sola unidad, como segundos, el procedimiento es similar al de los ángulos. Observa:
3 h = 3 x 3.600 = 10.800 s
20 min = 20 x 60 = 1.200 s
2 s = 2 s
Luego sumas todos los resultados, lo que es igual a:
3 h 20 min 2 s = (3 x 3.600) + (20 x 60) + 2 = 12.002 s
Pasa a segundos estas medidas de tiempo
2 h 31 min 23 s
Solución
2 h 31 min 23 s = (2 x 3.600) + (31 x 60) + 23 = 9.083 s
5 h 50 min 5 s
Solución
5 h 50 min 5 s = (5 x 3.600) + (50 x 60) + 5 = 21.005
Números romanos
Este sistema de numeración desarrollado en la Antigua Roma es no posicional y se caracteriza por usar siete letras mayúsculas del alfabeto latino.
Sin importar la posición que ocupe cada letra, esta siempre tendrá el mismo valor. No obstante, es de gran importancia seguir las reglas de escritura:
I, X, C y M no pueden escribirse más de tres veces consecutivas en un mismo número.
Un símbolo de menor valor ubicado a la derecha de otro de mayor valor, se suma.
Un símbolo de menor valor ubicado a la izquierda de otro de mayor valor, se resta.
V, L y D se permite escribirlos solamente una vez y no se pueden escribir a la izquierda de otro de mayor valor.
I solo puede colocarse a la izquierda de V o X.
X solo puede colocarse a la izquierda de L o C.
C únicamente se coloca a la izquierda de D o M.
Cuando el número supera el valor 3.999, se traza una línea horizontal sobre el número romano la cual multiplica su valor por mil.
Si se colocan dos rayas horizontales sobre un número romano, su valor se multiplica por un millón.
¿Cómo se convierte un número romano a número arábigo?
Para conocer qué cantidad corresponde a un número romano se deben aplicar las reglas antes mencionadas. Por ejemplo, si deseas saber el número arábigo correspondiente al número romano , sigue estos pasos:
1. Determina los valores de cada letra.
D = 500
C = 100
L = 50
X = 10
I = 1
2. Suma los valores de las letras a la derecha de otra de mayor valor.
DC = 500 + 100 = 600
LXX = 50 + 10 + 10 = 70
3. Resta los valores de las letras a la izquierda de otras de mayor valor.
IX = 10 − 1 = 9
4. Suma todos los resultados, y como el número tiene una barra, multiplica su valor por mil.
¿Existen estos números?
VL
Solución
No. V no puede estar delante de un número de valor mayor como L. Para escribir el número 45 lo correcto es XLV.
LXXXXV
Solución
No. X solo puede escribirse un máximo de tres veces consecutivas en un número. Para escribir el número 95 lo correcto es XCV.