CAPÍTULO 1 / TEMA 1

EL UNIVERSO DE LOS NÚMEROS

La vida sería más complicada si no existieran los números. Tareas como contar o sumar cosas no serían posibles y eso traería muchos problemas. A lo largo de la historia el ser humano ha inventado diferentes sistemas de numeración, porque si hay algo que no ha cambiado es nuestra necesidad de contar. 

Lectura y representación de números naturales

El sistema de numeración usado en la actualidad presenta dos características principales: es decimal, porque emplea diez dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) y es posicional, porque el valor de cada cifra obedece al lugar que ocupa dentro de un número. Como ya sabemos, a los números los agrupamos de diez en diez, de menor a mayor.

10 U = 1 D

10 D = 1 C

10 C = 1 UM

Donde:

U: unidad

D: decena

C: centena

UM: unidad de mil

¡Y así sucesivamente hasta el infinito!

En el número 3.145 la cifra 1 ocupa la posición de las centenas, como puede verse en el siguiente esquema:

¿Sabías qué?
La palabra “dígito” proviene del latín dígitus, que significa dedo, y surge al comparar el número de dedos de las manos con el número de dígitos.

En números de 6 cifras el esquema sería el siguiente:

Donde:

DM: decena de mil

CM: centena de mil

Para leer un número de seis cifras se comienza leer la cantidad del orden de los miles y luego se lee el resto de la cantidad.

Por ejemplo el número 254.873 se lee de la siguiente forma: doscientos cincuenta y cuatro mil ochocientos setenta y tres.

¡A practicar!

¿Cómo se leen estos números?

  • 145.254
Solución
Ciento cuarenta y cinco mil doscientos cincuenta y cuatro.
  • 927.630
Solución
Novecientos veintisiete mil seiscientos treinta.
  • 501.588
Solución
Quinientos un mil quinientos ochenta y ocho.
  • 470.625
Solución
Cuatrocientos setenta mil seiscientos veinticinco.
Con solo diez dígitos en el sistema decimal se pueden formar infinitos números al combinarlos. Estos símbolos son: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. En la actualidad se considera el sistema más usado para expresar cantidades y magnitudes, pero existen otros sistemas menos conocidos como el binario y el octal, que son aplicados en áreas específicas.

Sistema de numeración romana

Hace muchos años, se desarrolló en la Antigua Roma un sistema de numeración basado en letras, dicho sistema fue implementado en todo el Imperio romano. La extensión de este era tal que ocupaba gran parte de los países europeos actuales y de algunos países de África y Asia, esto permitió que su influencia se mantuviera por mucho tiempo después de la caída del imperio.

A pesar de que se encuentran en desuso, todavía existen ciertas aplicaciones de los números romanos. Tanto en capítulos de libros como incluso en relojes están presentes los números romanos.

El Imperio romano fue, sin duda, uno de los imperios más influyentes de toda la historia. Se destacan sus aportes en la arquitectura, la escultura, la pintura y el derecho, además de novedosos inventos como el acueducto y el hormigón. También en el área de los números desarrollaron el sistema de numeración romano que surgió entre el 900 y el 800 a. C.

Características de los números romanos

– Es un sistema predominantemente aditivo, es decir; los valores de cada signo se suman (aunque hay ocasiones en los que se restan).

– Emplea letras del abecedario para representar a los números, por eso, podría catalogarse como un sistema alfanumérico.

– Los romanos, para ese momento, no conocían el número cero (que fue introducido más adelante a Europa con la numeración arábiga) y por ello no lo representaban.

– Las letras en este sistema siempre deben escribirse en mayúscula.

A pesar de su popularidad en el pasado, la numeración romana no era perfecta y presentaba ciertas limitaciones tales como la ausencia del número cero y la imposibilidad de representar fracciones o números decimales. Luego, con la llegada de la numeración arábiga (sistema decimal) los números romanos resultaban poco prácticos y entraron en desuso.

Reglas para escribir números romanos

Lo primero que se debe tener en cuenta es que este sistema emplea 7 letras del abecedario que se suman o restan entre ellas de acuerdo a ciertos criterios.

I = 1

V = 5

X = 10

L = 50

C = 100

D = 500

M = 1.000

Con los símbolos anteriores y a veces con algún símbolo auxiliar se pueden construir el resto de los números de acuerdo a los siguientes criterios:

Valores que se suman

– Las letras que se escriben a la derecha de otra de igual o mayor valor se suman:

VI = 5 + 1 = 6

XX = 10 + 10 = 20

CLI = 100 + 50 + 1 = 151

MMDCLII = 1.000 + 1.000 + 500 + 100 + 50 + 1 + 1 = 2.652

 

– Los símbolos I, X, C y M son los únicos que pueden repetirse dos o tres veces consecutivas:

III = 1 + 1 + 1 = 3

XXX = 10 + 10 + 10 = 30

CC = 100 + 100 = 200

MMM = 1.000 + 1.000 + 1.000 = 3.000

 

Los símbolos V, L y D pueden escribirse solo una vez en cada número y por ende no pueden repetirse nunca a diferencia del resto de los símbolos. A pesar de que hoy en día los usos de este sistema de numeración son muy limitados, pueden observarse en ciertos contextos como: siglos, nombres, capítulos de libros y monumentos o placas conmemorativas.

Valores que se restan

– Solo los símbolos I, X y C pueden restarse al símbolo siguiente. Esto sucede cuando el símbolo siguiente es mayor.

IV = 5 − 1 = 4

IX = 10 − 1 = 9

XL = 50 − 10 = 40

XC = 100 − 10 = 90

CD = 500 − 100 = 400

CM = 1.000 − 100 = 900

VER INFOGRAFÍA

¿Qué hacer con cantidades más grandes?

Números mayores a 3.999 (MMMCMXCIX) necesitan símbolos auxiliares, en estos caso se emplea una raya horizontal arriba de la letra para multiplicar su valor por 1.000.

\overline{IV} = 4 \times 1.000 = 4.000

\overline{XL} = 40 \times 1.000 = 40.000

\overline{CXX} = 120 \times 1.000 = 120.000

¿Sabías qué?
Si se colocan dos rayas horizontales sobre un número romano su valor se multiplica por 1 millón.

Ejercicios

1. Escribe con letra los siguientes números

  1. 45.987
    Solución
    Cuarenta y cinco mil novecientos ochenta y siete.
  2. 120.501
    Solución
    Ciento veinte mil quinientos uno.
  3. 197.234
    Solución
    Ciento noventa y siete mil doscientos treinta y cuatro.
  4. 100.985
    Solución
    Cien mil novecientos ochenta y cinco.

2. Escribe en número:

  1. Doscientos mil.
    Solución
    200.000
  2. Setenta y nueve mil ochocientos treinta y dos.
    Solución
    79.832
  3. Ciento veinticuatro mil quinientos sesenta y nueve.
    Solución
    124.569
  4. Cuarenta mil trescientos uno.
    Solución
    40.301

3. Escribe el valor de cada número:

  1. XXIV
    Solución
    24
  2. CLX
    Solución
    160
  3. MMMCLIX
    Solución
    3.159
  4. MMCMLXIV
    Solución
    2.964
  5. CLVIII
    Solución
    158

4. Escribe los siguientes números en número romanos:

  1. 2.157
    Solución
    MMCLVII
  2. 739
    Solución
    DCCXXXIX
  3. 1.199
    Solución
    MCXCIX
  4. 3.578
    Solución
    MMMDLXXVIII
  5. 5.000
    Solución
     
RECURSOS PARA DOCENTES

Artículo destacado “Sistema de numeración”

El siguiente artículo destacado te permitirá conocer más sobre los sistemas de numeración, desde los más antiguos hasta los más actuales.

VER

Infografía “Números romanos”

Con este recurso podrás saber más sobre la historia de los números romanos, sus características y aplicaciones.

VER

CAPÍTULO 4 / TEMA 1

los números en la recta numérica

Una recta numérica, también llamada recta real, representa de forma gráfica el orden y la sucesión de un conjunto de números. Sin embargo, estos conjuntos no siempre son iguales y, como verás a continuación, se clasifican de acuerdo a sus características.

Cada día, el ser humano maneja números de diferentes conjuntos sin darse cuenta; por ejemplo, al contar los días de la semana, cortar un pastel en varias porciones o sumar los céntimos que forman parte del dinero. Todos estos números tienen una representación gráfica en un espacio coordenado unidimensional. Es decir, todos ellos se pueden mostrar en una recta numérica.

NÚMEROS NATURALES

Los números naturales son aquellos que se utilizan para contar los elementos de un grupo dado; gracias a ellos puedes saber cuántos dedos tienen las manos o cuántos integrantes hay en tu familia. Estos son los números más utilizados y su conjunto es representado con la letra ℕ.

Debido a que se utilizan para contar objetos, el cero puede considerarse el número que corresponde a la ausencia de los mismos, por lo tanto, el conjunto de los números naturales se presenta de dos maneras:

\mathbb{N} = \left \{ 1,\, 2,\, 3,\, 4,... \right \}

\mathbb{N} = \left \{0,\, 1,\, 2,\, 3,\, 4,... \right \}

¿Sabías qué?
Los números naturales fueron los primeros en ser utilizados por los seres humanos para contar y determinar cantidades.

En una recta numérica, los números naturales se colocan de tal forma que a medida que avanzas hacia la derecha, encuentras los números más grandes.

¿Cómo elaborar una recta numérica con números naturales?

  1. Dibuja una semirrecta.
  2. Señala el origen que corresponde al cero.
  3. Coloca una flecha en la punta derecha de la recta. Esto indica que la recta se extiende hasta el infinito.
  4. Escribe los números naturales en intervalos regulares. El intervalo entre números consecutivos siempre será el mismo.

Los intervalos en una recta numérica no solo representan a las unidades, sino también a las decenas y las centenas.

¡A practicar!

Ubica en la recta numérica los siguientes números: 5, 20, 35 y 48.

SOLUCIÓN

NÚMEROS ENTEROS

Los números enteros son aquellos que comprenden tanto a los números naturales como a sus opuestos, es decir, a los números negativos, y al número 0. Este conjunto se representa con la letra ℤ, que por definición es:

\mathbb{Z}=\left \{ ...,-4,\, -3,\, -2,\, -1,\,0,\, +1,\, +2,\, +3,\, +4,... \right \}

¿Sabías qué?
Los negativos se utilizan en casos comunes de la vida como, por ejemplo, una deuda o las temperaturas bajo cero.

En una recta numérica, los números enteros se distribuyen a partir del cero: a su izquierda se ubican los negativos y a su derecha se ubican los positivos. 

Recuerda que …

1. Dados dos números enteros de signos distintos, +a y –a, con a > 0, el negativo es menor que el positivo: −a < +a.

−5 < +5

2. Dados dos números enteros con el mismo signo, el menor de los dos números es:

  • El de menor valor absoluto, si el signo común es “+“.

+8 < +10

  • El de mayor valor absoluto, si el signo común es “−”.

−10 < −8

3. El cero, 0, es menor que todos los positivos y mayor que todos los negativos.

−1 < 0 < +1 

 

¡A practicar!

Ubica en la recta numérica los siguientes números: 15, −15, −35 y −39.

SOLUCIÓN

NÚMEROS DECIMALES

Los números decimales están formados por dos partes: una entera y una decimal, ambas separadas por una coma. A la izquierda de la coma se ubica la parte entera, y a la derecha de la coma está la parte decimal.

Los números decimales son usados para mostrar aquellos valores que se necesitan conocer con exactitud y precisión, por lo que indicarlos solo con una unidad no es suficiente. Las medidas de altura, el peso de un bebé y el precio de los productos de un supermercado, son algunos ejemplos de cifras decimales.

En una recta numérica, los números decimales se ubican entre dos números enteros. Para esto, se divide en diez partes la distancia entre los números y se incorporan los decimales que hay entre ellos.

Para representar a los decimales ubicados entre el 1 y el 2, la recta numérica se presenta así:

También puedes identificar los decimales entre dos decimales menos precisos. Por ejemplo, al dividir el espacio entre los decimales 1,1 y 1,2 en otras 10 partes iguales, tendrás las posiciones de los números del 1,11 al 1,19.

¡A seguir con la práctica!

Ubica en la recta numérica los siguientes números decimales: 20,2; 20,5; 20,8 y 20,95.

SOLUCIÓN

El número pi

El número pi es tal vez el número decimal más famoso. Este es un número con decimales infinitos, pero popularmente se simplifica como 3,1416. Solo estos dígitos permiten saber que pi se encuentra entre el 3 y el 4 en la recta numérica. 

VER INFOGRAFÍA

NúMEROS FRACCIONARIOS

También conocidos simplemente como fracciones, son aquellos que representan una división entre números. Un ejemplo de fracción lo puedes ver al pedir medio kilo de pan o al cortar una torta en partes iguales.

Toda fracción está formada por dos partes: un numerador y un denominador separados por una línea horizontal.

Al igual que los números decimales, los números fraccionarios se encuentran entre dos números enteros o dos números decimales en una recta numérica. Para hallar su ubicación se siguen dos métodos diferentes según el tipo de fracción: propia o impropia.

Fracciones propias

Las fracciones propias poseen un numerador menor a su denominador. La división entre estos dos dígitos dará como resultado un número decimal menor a 1. Para saber la posición en la recta numérica se debe segmentar el espacio entre 0 y 1 la cantidad de veces que indique el denominador, y la fracción se ubicará al final del segmento que indique el numerador.

Por ejemplo, para hallar en la recta numérica la fracción \frac{2}{3} debes seguir estos pasos:

  1. Dividir el espacio entre 0 y 1 en 3 segmentos iguales.
  2. Ubicar la fracción al final del segundo segmento.

Los números decimales y fraccionarios son diferentes a los números naturales y enteros, ya que, a diferencia de estos últimos, representan números “incompletos”. No obstante, todos ellos pertenecen al mismo conjunto numérico: el de los números racionales, un subconjunto de los números reales.

Fracciones impropias

Las fracciones impropias poseen un numerador mayor a su denominador. La división entre estos dos dígitos siempre dará como resultado un número mayor a 1. Para saber la posición de una fracción impropiar en la recta real se deben seguir dos pasos:

  1. Convertir la fracción impropia en un número mixto, es decir, la combinación entre un número entero y una fracción propia.
  2. Ubicar el número mixto en la recta numérica. El número entero indicará por dónde empezar a segmentar, mientras que el resto de la fracción se ubicará de la misma forma que una fracción propia: número de segmentos según el denominador y la ubicación de la fracción según el numerador.
¿Cómo convertir la fracción \frac{27}{4} en un número mixto?

1. Divide el numerador por el denominador. 

2. El resto de la división se convertirá en el nuevo numerador de la parte fraccionaria. El divisor será el denominador de la parte fraccionaria y el cociente será la parte entera del número mixto.

3. Construye el número mixto.

¡Pon en práctica lo aprendido!

¿Cómo conviertes la fracción \frac{8}{5} en número mixto?

Para ubicar la fracción \frac{8}{5} en la recta numérica, primero se dividen entre sí ambas cifras. Esta división tiene como cociente el número 1, como resto el número 3 y como divisor el número 5, por lo tanto el número mixto es:

Ahora solo debes dividir en 5 segmentos iguales (denominador de la parte fraccionaria) el espacio entre el número 1 y el número 2. Luego, marcar el final del tercer segmento (numerador de la parte fraccionaria). Allí está ubicada la fracción \frac{8}{5}.

 ¡A practicar!

Ubica en la recta numérica las fracciones propias 1/2 y 6/10.

SOLUCIÓN

Ubica en la recta numérica las fracciones impropias 3/2 y 9/8.

SOLUCIÓN

¡A practicar!

1. Responde las siguientes preguntas:

a. ¿A cuál conjunto numérico pertenecen las notas que obtienes de tus exámenes en clase?

b. ¿Entre cuáles números se ubica el −8 en la recta numérica?

c. ¿Qué tipo de número es el 3,33?

d. ¿Qué número mixto se construye con la fracción 9/5?

2. Ubica los siguientes números en la recta numérica que se muestra a continuación:

  1. 4
  2. −3
  3. 2,5
  4. 1/2
  5. 5/4

SOLUCIÓN

1a. Números naturales.

1b. Entre el −7 y el −9.

1c. Número decimal.

1d. 1\frac{4}{5}

2.

RECURSOS PARA DOCENTES

Artículo destacado “Recta numérica”

Con este recurso podrás complementar la información explicada y brindar ejercitación.

VER