CAPÍTULO 5 / TEMA 5 (REVISIÓN)

ESTADÍSTICA Y PROBABILIDAD | ¿QUÉ APRENDIMOS?

LOS PICTOGRAMAS

EL SER HUMANO SIEMPRE HA INTENTADO COMUNICARSE A TRAVÉS DE PINTURAS EN CAVERNAS O CON TALLADOS EN METALES Y MADERA. HOY DÍA TAMBIÉN LO HACEMOS Y EXPRESAMOS NUESTROS SENTIMIENTOS O DESEOS POR MEDIO DE IMÁGENES, COSA QUE LLAMAMOS “PICTOGRAMAS“. ESTOS PICTOGRAMAS SON USADOS EN SEÑALES DE TRÁNSITO, CARTELES PUBLICITARIOS, HISTORIETAS, AVISOS Y GRÁFICOS DE DE INFORMACIÓN QUE PUEDEN SER ENTENDIDOS POR TODAS LAS PERSONAS DEL MUNDO DE FORMA CLARA.

LOS PICTOGRAMAS SON UTILIZADOS EN LAS SEÑALES DE TRÁNSITO COMO ESTE.

TABLAS

LOS DATOS RECOLECTADOS TRAS UNA ENCUESTA PUEDEN ORGANIZARSE EN UNA TABLA. UNA TABLA ES UN CUADRO FORMADO POR FILAS, COLUMNAS Y CELDAS. LAS COLUMNAS SON LAS HILERAS VERTICALES, LAS FILAS SON LAS HILERAS HORIZONTALES Y LAS CELDAS RESULTAN DE LA UNIÓN ENTRE UNA FILA Y UNA COLUMNA. PUEDEN HACERSE CON NÚMEROS, CON PICTOGRAMAS Y CON MÁS DE DOS DATOS.

LAS TABLAS SON DE GRAN AYUDA PARA CONTROLAR EL DINERO QUE TENEMOS Y EL QUE GASTAMOS.

GRÁFICO DE BARRAS

LOS GRÁFICOS DE BARRAS MUESTRAN CON RECTÁNGULOS UNA INFORMACIÓN. ESTOS GRÁFICOS EXPRESAN A TRAVÉS DE BARRAS EL VALOR DE UNA CATEGORÍA Y SON MUY ÚTILES PARA VER DE FORMA RÁPIDA CUÁL TIENE UN MAYOR VALOR O UN MENOR VALOR. PARA REALIZARLO EN NECESARIO QUE PRIMERO ORGANICEMOS LOS DATOS EN UNA TABLA.

LOS GRÁFICOS DE BARRAS PUEDEN SER VERTICALES, HORIZONTALES O APILADOS.

PROBABILIDAD

LA PROBABILIDAD ESTUDIA LA POSIBILIDAD DE QUE UN EVENTO OCURRA O NO. POR EJEMPLO, SI LANZAMOS UN PAR DE DADOS NO SABEMOS CON SEGURIDAD QUÉ NÚMERO SALDRÁ, PERO SÍ SABEMOS QUE SALDRÁ EN CADA UNO UN NÚMERO MENOR A 7. ESTOS SON SUCESOS ALEATORIOS EN LOS QUE INTERVIENE EL AZAR, ES DECIR, QUE NO PODEMOS PREDECIR.

LOS JUEGOS DE CARTAS Y DADOS SON JUEGOS DE AZAR. HAY PROBABILIDAD DE QUE SALGA CUALQUIER CARTA DEL MAZO, ASÍ COMO CUALQUIER NÚMERO MENOR A 7 EN CADA DADO.

CAPÍTULO 5 / TEMA 4

PROBABILIDAD

¿ALGUNA VEZ HAS LANZADO UN DADO? ¿SIEMPRE SABES QUE NÚMERO SALDRÁ? ¡NO! ¿VERDAD? AUNQUE SABES QUE PUEDE SALIR UN NÚMERO DEL 1 AL 6 NO TIENES SEGURIDAD DE CUÁL DE ESOS NÚMEROS SERÁ. GRACIAS A LA PROBABILIDAD PODEMOS CALCULAR LA CANTIDAD DE VECES QUE UN EVENTO ALEATORIO COMO ESTE PUEDE OCURRIR O NO.

evento ALEATORIO

UN EVENTO ALEATORIO ES AQUEL QUE PUEDE OCURRIR O NO PUEDE OCURRIR Y EN EL QUE INTERVIENE EL AZAR. ES DECIR, QUE SI REPETIMOS EL MISMO EL EVENTO PODEMOS TENER SIEMPRE DISTINTOS RESULTADOS.

– EJEMPLOS:

  • LANZAR UNA MONEDA.
  • LANZAR UN DADO.
  • ELEGIR UNA CARTA DE UN MAZO.
  • SACAR UN CARAMELO ROJO DE UNA BOLSA CON CARAMELOS DE MÚLTIPLES COLORES.

COMO VES, NO PODEMOS PREDECIR EL RESULTADO DE ESTOS EVENTOS.

LOS DADOS SON OBJETOS CON FORMA DE CUBO Y TIENEN SEIS CARAS. CADA CARA REPRESENTA UN NÚMERO DEL 1 AL 6. ES NORMAL QUE LOS VEAS EN JUEGOS DE MESA COMO EL LUDO, EL MONOPOLIO Y EL PASE INGLÉS. CUANDO LANZAMOS UN DADO ESTAMOS SEGUROS QUE SALDRÁ UNO DE ESOS NÚMEROS, PERO NO SABEMOS CON SEGURIDAD CUÁL, ES DECIR, NO PODEMOS PREDECIR EL RESULTADO. ESO ES LO QUE CONOCEMOS COMO AZAR.

sucesos posibles

OBSERVA ESTAS BOLSAS CON BOLAS DE COLORES. SI SACAMOS UNA BOLA CON LOS OJOS CERRADOS NO SABRÍAMOS DE QUÉ COLOR SALDRÍA LA BOLA. SIN EMBARGO, PODEMOS PREDECIR QUÉ TAN PROBABLE ES QUE SAQUEMOS UN COLOR U OTRO.

– EJEMPLO:

NOTA QUE:

  • HAY 2 BOLAS ROJAS.
  • HAY 10 BOLAS AMARILLAS.

HAY MÁS BOLAS DE COLOR AMARILLO, ASÍ QUE:

 

ES MÁS PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO.

 

NOTA QUE:

  • HAY 6 BOLAS ROJAS.
  • HAY 6 BOLAS AMARILLAS.

HAY IGUAL CANTIDAD DE BOLAS DE COLOR ROJO Y AMARILLO, ASÍ QUE:

 

ES IGUAL DE PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO O DE COLOR ROJO.

 


NOTA QUE:

  • HAY 10 BOLAS ROJAS.
  • HAY 2 BOLAS AMARILLAS.

HAY MENOS BOLAS DE COLOR AMARILLO, ASÍ QUE:

 

ES MENOS PROBABLE QUE SAQUEMOS UNA BOLA DE COLOR AMARILLO.

SEGURO, PROBABLE O IMPOSIBLE

LOS SUCESOS SON CADA UNO DE LOS RESULTADOS POSIBLES DE UN EVENTO ALEATORIO. ESTOS PUEDEN SER SEGUROS, PROBABLES O IMPOSIBLES.

  • LOS SUCESOS SEGUROS OCURREN SIEMPRE.
  • LOS SUCESOS PROBABLES OCURREN A VECES.
  • LOS SUCESOS IMPOSIBLES NO OCURREN NUNCA.

– EJEMPLO:

 ES SEGURO SACAR UNA BOLA AMARILLA.

 ES PROBABLE SACAR UNA BOLA VERDE.

 ES IMPOSIBLE SACAR UNA BOLA AZUL.

¿SABÍAS QUÉ?
LOS SUCESOS QUE OCURREN CON SEGURIDAD SE LLAMAN “SUCESOS DETERMINISTAS”, POR EJEMPLO, LA HORA EN LA QUE ABRE UN BANCO SIEMPRE ES LA MISMA. 
ALFONSO TIENE BLOQUES DE COLOR AMARILLO, AZUL, ROJO, VERDE, BLANCO Y NEGRO PARA JUGAR. SI ESTÁN TODOS EN UNA CAJA Y SACA DE A UNO SIN VER ES SEGURO QUE ALFONSO ELEGIRÁ UN BLOQUE DE CUALQUIERA DE ESOS COLORES, ES PROBABLE QUE ELIJA UN BLOQUE AMARILLO, PERO ES IMPOSIBLE QUE ELIJA UN BLOQUE DE COLOR ANARANJADO O GRIS.

RECOPILACIÓN DE DATOS

TODOS LOS DATOS PUEDEN ORGANIZARSE EN UNA TABLA, EN UNA TABLA DE PICTOGRAMAS O EN UN GRÁFICO DE BARRAS. POR EJEMPLO, SI QUEREMOS ORGANIZAR LOS BLOQUES PARA JUGAR POR COLOR TENEMOS QUE CONTAR UNO POR UNO Y HACER GRUPOS DE COLORES. LUEGO LOS REPRESENTAMOS. POR EJEMPLO:

  • TABLA
COLOR DEL BLOQUE CANTIDAD DE BLOQUES
AMARILLO 16
AZUL 28
ROJO 32
VERDE 20

 

  • TABLA DE PICTOGRAMA
COLOR DEL BLOQUE CANTIDAD DE BLOQUES
AMARILLO
AZUL
ROJO
VERDE
CLAVE

= 4 BLOQUES

 

  • GRÁFICO DE BARRAS

NOTA QUE TANTO LA TABLA, COMO LA TABLA DE PICTOGRAMAS Y EL GRÁFICO DE BARRAS REPRESENTAN LOS MISMOS DATOS.

¡A PRACTICAR!

  1. COMPLETA CON “SEGURO”, “PROBABLE” O “IMPOSIBLE” LAS SIGUIENTES ORACIONES.
  • ES ____ LANZAR UN DADO Y QUE SALGA EL NÚMERO 7.
SOLUCIÓN
IMPOSIBLE
  • ES ____ LANZAR UNA MONEDA Y QUE SALGA CARA.
SOLUCIÓN
PROBABLE
  • ES ____ LANZAR UN DADO Y QUE SALGA UN NÚMERO MENOR A 7.
SOLUCIÓN
SEGURO

 

2. OBSERVA ESTA RULETA. LUEGO RESPONDE LAS PREGUNTAS.

  • ¿CUÁNTAS ZONAS ROJAS HAY?
    SOLUCIÓN
    3
  • ¿CUÁNTAS ZONAS VERDES HAY?
    SOLUCIÓN
    2
  • ¿CUÁNTAS ZONAS MORADAS HAY?
    SOLUCIÓN
    2
  • ¿CUÁNTAS ZONAS AMARILLAS HAY?
    SOLUCIÓN
    1
  • ¿CUÁL COLOR ES MÁS PROBABLE QUE SALGA LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL ROJO.
  • ¿CUÁL COLOR ES MENOS PROBABLE QUE SALGA LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL AMARILLO.
  • ¿CUÁLES COLORES TIENEN IGUAL PROBABILIDAD DE SALIR LUEGO DE GIRAR LA RULETA?
    SOLUCIÓN
    EL VERDE Y EL MORADO.
RECURSOS PARA DOCENTES

Artículo “Probabilidad”

Este artículo servirá de ayuda para profundizar sobre los conceptos básicos de la probabilidad.

VER

CAPÍTULO 5 / TEMA 3

GRÁFICO DE BARRAS

EXISTEN MUCHAS FORMAS DE REPRESENTAR UNA INFORMACIÓN, YA SEA POR TABLAS, PICTOGRAMAS O GRÁFICOS DE BARRAS. ¿SABES QUÉ SON LOS GRÁFICOS DE BARRAS? ESTOS GRÁFICOS SE UTILIZAN PARA EXPRESAR DATOS DE FORMA RÁPIDA POR MEDIO DE BARRAS VERTICALES U HORIZONTALES. ¡APRENDAMOS PARA QUÉ SIRVEN Y CUÁLES SON SUS ELEMENTOS!

¿QUÉ ES UN GRÁFICO DE BARRAS?

EL GRÁFICO DE BARRAS ES UNA MANERA DE MOSTRAR UNA INFORMACIÓN CLARA Y ORDENADA. CONSISTE EN UN CONJUNTOS DE BARRAS DONDE CADA UNA REPRESENTA UNA CATEGORÍA. LAS ALTURAS DE LAS BARRAS NOS AYUDAN A COMPARAR DATOS.

EL GRÁFICO DE BARRAS ES TAMBIÉN CONOCIDO COMO DIAGRAMA DE BARRAS. LAS BARRAS PUEDEN SER VERTICALES, COMO LAS DE LA IMAGEN; PERO TAMBIÉN PUEDEN SER HORIZONTALES. EL COLOR Y LA ALTURA DE CADA BARRA NOS PERMITE HACER COMPARACIONES. POR EJEMPLO, LA BARRA VERDE ES MÁS ALTA QUE LA ROJA, ASÍ QUE REPRESENTA UN VALOR MAYOR.

TIPOS DE GRÁFICOS DE BARRAS

LOS GRÁFICOS DE BARRAS PUEDEN SER VERTICALES, HORIZONTALES Y APILADOS.

FUNCIÓN DEL GRÁFICO DE BARRAS

LOS GRÁFICOS DE BARRAS FUNCIONAN PARA COMPARAR DATOS DE FORMA RÁPIDA.

– EJEMPLO:

SE LE PREGUNTARON A LOS ALUMNOS DE 2º GRADO CUÁL ES SU DEPORTE FAVORITO. LAS RESPUESTAS SE REPRESENTAN EN ESTE GRÁFICO DE BARRAS:

AL OBSERVAR EL GRÁFICO VEMOS QUE:

  • EL FÚTBOL FUE ELEGIDO POR 6 ALUMNOS.
  • EL BALONCESTO FUE ELEGIDO POR 2 ALUMNOS.
  • EL BÉISBOL FUE ELEGIDO POR 5 ALUMNOS.
  • EL TENIS FUE ELEGIDO POR 8 ALUMNOS.

¡ES TU TURNO!

OBSERVA LA TABLA ANTERIOR. RESPONDE:

  • ¿CUÁL FUE EL DEPORTE MÁS ELEGIDO POR LOS ALUMNOS?
    SOLUCIÓN
    EL TENIS.
  • ¿CUÁL FUE EL DEPORTE MENOS ELEGIDO POR LOS ALUMNOS?
    SOLUCIÓN
    EL BALONCESTO.

ELEMENTOS DEL GRÁFICO DE BARRAS

LOS ELEMENTOS DEL GRÁFICO DE BARRAS INDICAN LA FUNCIÓN DE CADA PARTE DEL MISMO. VEAMOS:

¿SABÍAS QUÉ?
TODAS LAS BARRAS DE ESTE GRÁFICO TIENEN EL MISMO ANCHO Y NO SE SUPERPONEN.

PROBLEMAS CON GRÁFICOS DE BARRAS

VEAMOS ALGUNOS PROBLEMAS PARA RESOLVER CON GRÁFICOS DE BARRAS. ¿TE ANIMAS?

EL SIGUIENTE GRÁFICO EXPRESA LA CANTIDAD DE LIBROS QUE HAN LEÍDO LOS NIÑOS AMIGOS DE TANIA.

¡ES TU TURNO!

DESPUÉS DE OBSERVAR EL GRÁFICO DE BARRAS PUEDES RESPONDER ESTAS PREGUNTAS:

  • ¿CUÁNTOS LIBROS LEYÓ JULIANA?
    SOLUCIÓN
    JULIANA LEYÓ 12 LIBROS.
  • ¿CUÁNTOS LIBROS LEYÓ CAMILA?
    SOLUCIÓN
    CAMILA LEYÓ 4 LIBROS.
  • ¿CUÁNTOS LIBROS LEYÓ LEONEL?
    SOLUCIÓN
    LEONEL LEYÓ 10 LIBROS.
  • ¿QUIÉN LEYÓ MÁS LIBROS?
    SOLUCIÓN
    JULIANA LEYÓ MÁS LIBROS.
  • ¿QUIÉN LEYÓ MENOS LIBROS?
    SOLUCIÓN
    CAMILA LEYÓ MENOS LIBROS.

 

2. EL KIOSCO DE MERCEDES VENDIÓ EN UN DÍA LOS SIGUIENTES PRODUCTOS:

¡ES TU TURNO!

DESPUÉS DE OBSERVAR EL GRÁFICO DE BARRAS PUEDES RESPONDER ESTAS PREGUNTAS:

  • ¿CUÁL PRODUCTO FUE EL MÁS VENDIDO?
    SOLUCIÓN
    LOS JUGOS.
  • ¿CUÁL PRODUCTO FUE EL MENOS VENDIDO?
    SOLUCIÓN
    LOS CHOCOLATES.
  • ¿CUÁNTOS JUGOS, CHOCOLATES Y FRUTAS SE VENDIERON?
    SOLUCIÓN
    MERCEDES VENDIÓ 4 CHOCOLATES, 10 JUGOS Y 8 FRUTAS.

 

3. EL SIGUIENTE GRÁFICO MUESTRA LA CANTIDAD DE TORNEOS DE AJEDREZ GANADOS DURANTE TRES AÑOS POR TOMÁS.

¡ES TU TURNO!

DESPUÉS DE OBSERVAR EL GRÁFICO DE BARRAS PUEDES RESPONDER ESTAS PREGUNTAS:

  • ¿EN QUÉ AÑO LE FUE MEJOR A TOMÁS? ¿CUÁNTOS TORNEOS GANÓ ESE AÑO?
    SOLUCIÓN
    A TOMÁS LE FUE MEJOR EN EL TERCER AÑO. GANÓ 8 TORNEOS.
  • ¿CUÁL FUE EL AÑO QUE NO LE FUE BIEN Y CUÁNTOS TORNEOS GANÓ ESE AÑO?
    SOLUCIÓN
    A TOMÁS NO LE FUE BIEN EL SEGUNDO AÑO. GANÓ 5 TORNEOS.
  • ¿CUÁNTOS TORNEOS GANÓ EN TOTAL DURANTE LOS TRES AÑOS?
    SOLUCIÓN
    DURANTE LOS TRES AÑOS TOMÁS GANÓ 19 TORNEOS.
RECURSOS PARA DOCENTES

Artículo “Gráficos estadísticos”

Con este recurso se podrá profundizar sobre los distintos tipos de gráficos estadísticos, incluyendo los gráficos de barras.

VER