CAPÍTULO 5 / TEMA 7 (REVISIÓN)

GEOMETRÍA | ¿QUÉ APRENDIMOS?

CUADRÍCULA

Desde la elaboración de planos y dibujos a escalas en hojas cuadriculadas, hasta la localización de estrellas en la galaxia, la unión de rectas perpendiculares nos ayuda a distinguir la posición de cualquier objeto. Una cuadrícula es un sistema de coordenadas compuesto por líneas perpendiculares verticales y horizontales, que funciona como sistema de referencias y permite ubicar elementos en un espacio definido. El conjunto de líneas horizontales y verticales, también llamadas ejes, suelen nombrarse con números y letras. 

Un claro ejemplo de cuadrícula es un tablero de ajedrez. En este cada cuadro representa una posición que puede ser ocupada por alguna pieza del juego.

TIPOS DE LÍNEAS

Las líneas son un conjunto de puntos ubicados uno junto al otro que generan un trazo continuo. Si los puntos están orientados en una misma dirección, entonces, forman una línea recta. Las líneas rectas son continuas e infinitas, no tienen ni principio ni final y se pueden clasificar según la forma en que interaccionan entre ellas en rectas paralelas (aquellas que nunca se cortan), rectas secantes perpendiculares (aquellas que se cortan formando ángulos rectos) y rectas secantes oblicuas (aquellas que se cortan sin formar ángulos rectos).

Un ejemplo de líneas rectas paralelas son las vías de un ferrocarril. Cuando se cortan con otras forman líneas secantes.

LOS ÁNGULOS Y SUS TIPOS

Un ángulo es una porción del plano delimitado por dos semirrectas. Cada semirrecta es uno de los lados del ángulo y coinciden en un punto de origen al que se denomina vértice. A la distancia entre lado y lado del ángulo se la denomina amplitud, y esta se mide en grados (°). Si queremos medir o trazar un ángulo es indispensable el uso del transportador. Según su amplitud, un ángulo puede ser convexo, cóncavo, nulo, completo, llano, agudo, recto u obtuso.

Las escuadras nos permiten estimar ángulos, pues tienen un ángulo de 90° y dos ángulos de 45°.

LOS TRIÁNGULOS

Los triángulos son polígonos regulares cerrados de tres lados, tres ángulos y tres vértices. Los ángulos interiores de un triángulo siempre suman 180° y los ángulos exteriores suman 360°. Son varios los criterios de clasificación que permiten agrupar a los triángulos de acuerdo a ciertas particularidades, los más utilizados son: la medida de sus lados y la medida de sus ángulos. Según la medida de sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos; mientras que, según la medida de sus ángulos se clasifican en acutángulo, obtusángulo y rectángulo.

Un mismo triángulo puede ser clasificado por más de un criterio, por ejemplo: todos los triángulos equiláteros son, a su vez, triángulos acutángulos, ya que sus tres ángulos iguales miden 60°.

CUADRILÁTEROS

Los cuadriláteros tienen cuatro lados, cuatro ángulos internos, cuatro ángulos externos, cuatro vértices y dos diagonales. Estos se clasifican en paralelogramos, trapecios y trapezoides. Los paralelogramos son aquellos cuadriláteros que poseen dos pares de lados opuestos paralelos y que comparten algunas propiedades específicas; los trapecios, por su parte, son figuras que presentan un par de lados opuestos paralelos a los que se suele denominar base; y los trapezoides son aquellos cuyos lados no son paralelos.

En primer lugar, los cuadriláteros pueden clasificarse en dos grandes grupos: paralelogramos y no paralelogramos. Las pantallas de nuestros móviles y tabletas son ejemplos de un paralelogramo.

POLIEDROS

Los poliedros son cuerpos geométricos tridimensionales con caras planas formados por polígonos. Cada una de las caras de un poliedro es un polígono (triángulo, cuadrado, rombo, etc.). Los poliedros pueden ser regulares cuando sus caras están compuestas por el mismo polígono regular; o irregulares si sus caras presentan diferentes formas. En estos poliedros el número de caras no presenta límites como ocurre con los poliedros regulares y se dividen en prismas (tienen dos bases) y pirámides (tienen una sola base).

Existen cinco poliedros regulares cuyas caras están conformados por polígonos regulares. Estos son conocidos como sólidos platónicos.

CAPÍTULO 5 / TEMA 3

GRÁFICO DE BARRAS

EXISTEN MUCHAS FORMAS DE REPRESENTAR UNA INFORMACIÓN, YA SEA POR TABLAS, PICTOGRAMAS O GRÁFICOS DE BARRAS. ¿SABES QUÉ SON LOS GRÁFICOS DE BARRAS? ESTOS GRÁFICOS SE UTILIZAN PARA EXPRESAR DATOS DE FORMA RÁPIDA POR MEDIO DE BARRAS VERTICALES U HORIZONTALES. ¡APRENDAMOS PARA QUÉ SIRVEN Y CUÁLES SON SUS ELEMENTOS!

¿QUÉ ES UN GRÁFICO DE BARRAS?

EL GRÁFICO DE BARRAS ES UNA MANERA DE MOSTRAR UNA INFORMACIÓN CLARA Y ORDENADA. CONSISTE EN UN CONJUNTOS DE BARRAS DONDE CADA UNA REPRESENTA UNA CATEGORÍA. LAS ALTURAS DE LAS BARRAS NOS AYUDAN A COMPARAR DATOS.

EL GRÁFICO DE BARRAS ES TAMBIÉN CONOCIDO COMO DIAGRAMA DE BARRAS. LAS BARRAS PUEDEN SER VERTICALES, COMO LAS DE LA IMAGEN; PERO TAMBIÉN PUEDEN SER HORIZONTALES. EL COLOR Y LA ALTURA DE CADA BARRA NOS PERMITE HACER COMPARACIONES. POR EJEMPLO, LA BARRA VERDE ES MÁS ALTA QUE LA ROJA, ASÍ QUE REPRESENTA UN VALOR MAYOR.

TIPOS DE GRÁFICOS DE BARRAS

LOS GRÁFICOS DE BARRAS PUEDEN SER VERTICALES, HORIZONTALES Y APILADOS.

FUNCIÓN DEL GRÁFICO DE BARRAS

LOS GRÁFICOS DE BARRAS FUNCIONAN PARA COMPARAR DATOS DE FORMA RÁPIDA.

– EJEMPLO:

SE LE PREGUNTARON A LOS ALUMNOS DE 2º GRADO CUÁL ES SU DEPORTE FAVORITO. LAS RESPUESTAS SE REPRESENTAN EN ESTE GRÁFICO DE BARRAS:

AL OBSERVAR EL GRÁFICO VEMOS QUE:

  • EL FÚTBOL FUE ELEGIDO POR 6 ALUMNOS.
  • EL BALONCESTO FUE ELEGIDO POR 2 ALUMNOS.
  • EL BÉISBOL FUE ELEGIDO POR 5 ALUMNOS.
  • EL TENIS FUE ELEGIDO POR 8 ALUMNOS.

¡ES TU TURNO!

OBSERVA LA TABLA ANTERIOR. RESPONDE:

  • ¿CUÁL FUE EL DEPORTE MÁS ELEGIDO POR LOS ALUMNOS?
    SOLUCIÓN
    EL TENIS.
  • ¿CUÁL FUE EL DEPORTE MENOS ELEGIDO POR LOS ALUMNOS?
    SOLUCIÓN
    EL BALONCESTO.

ELEMENTOS DEL GRÁFICO DE BARRAS

LOS ELEMENTOS DEL GRÁFICO DE BARRAS INDICAN LA FUNCIÓN DE CADA PARTE DEL MISMO. VEAMOS:

¿SABÍAS QUÉ?
TODAS LAS BARRAS DE ESTE GRÁFICO TIENEN EL MISMO ANCHO Y NO SE SUPERPONEN.

PROBLEMAS CON GRÁFICOS DE BARRAS

VEAMOS ALGUNOS PROBLEMAS PARA RESOLVER CON GRÁFICOS DE BARRAS. ¿TE ANIMAS?

EL SIGUIENTE GRÁFICO EXPRESA LA CANTIDAD DE LIBROS QUE HAN LEÍDO LOS NIÑOS AMIGOS DE TANIA.

¡ES TU TURNO!

DESPUÉS DE OBSERVAR EL GRÁFICO DE BARRAS PUEDES RESPONDER ESTAS PREGUNTAS:

  • ¿CUÁNTOS LIBROS LEYÓ JULIANA?
    SOLUCIÓN
    JULIANA LEYÓ 12 LIBROS.
  • ¿CUÁNTOS LIBROS LEYÓ CAMILA?
    SOLUCIÓN
    CAMILA LEYÓ 4 LIBROS.
  • ¿CUÁNTOS LIBROS LEYÓ LEONEL?
    SOLUCIÓN
    LEONEL LEYÓ 10 LIBROS.
  • ¿QUIÉN LEYÓ MÁS LIBROS?
    SOLUCIÓN
    JULIANA LEYÓ MÁS LIBROS.
  • ¿QUIÉN LEYÓ MENOS LIBROS?
    SOLUCIÓN
    CAMILA LEYÓ MENOS LIBROS.

 

2. EL KIOSCO DE MERCEDES VENDIÓ EN UN DÍA LOS SIGUIENTES PRODUCTOS:

¡ES TU TURNO!

DESPUÉS DE OBSERVAR EL GRÁFICO DE BARRAS PUEDES RESPONDER ESTAS PREGUNTAS:

  • ¿CUÁL PRODUCTO FUE EL MÁS VENDIDO?
    SOLUCIÓN
    LOS JUGOS.
  • ¿CUÁL PRODUCTO FUE EL MENOS VENDIDO?
    SOLUCIÓN
    LOS CHOCOLATES.
  • ¿CUÁNTOS JUGOS, CHOCOLATES Y FRUTAS SE VENDIERON?
    SOLUCIÓN
    MERCEDES VENDIÓ 4 CHOCOLATES, 10 JUGOS Y 8 FRUTAS.

 

3. EL SIGUIENTE GRÁFICO MUESTRA LA CANTIDAD DE TORNEOS DE AJEDREZ GANADOS DURANTE TRES AÑOS POR TOMÁS.

¡ES TU TURNO!

DESPUÉS DE OBSERVAR EL GRÁFICO DE BARRAS PUEDES RESPONDER ESTAS PREGUNTAS:

  • ¿EN QUÉ AÑO LE FUE MEJOR A TOMÁS? ¿CUÁNTOS TORNEOS GANÓ ESE AÑO?
    SOLUCIÓN
    A TOMÁS LE FUE MEJOR EN EL TERCER AÑO. GANÓ 8 TORNEOS.
  • ¿CUÁL FUE EL AÑO QUE NO LE FUE BIEN Y CUÁNTOS TORNEOS GANÓ ESE AÑO?
    SOLUCIÓN
    A TOMÁS NO LE FUE BIEN EL SEGUNDO AÑO. GANÓ 5 TORNEOS.
  • ¿CUÁNTOS TORNEOS GANÓ EN TOTAL DURANTE LOS TRES AÑOS?
    SOLUCIÓN
    DURANTE LOS TRES AÑOS TOMÁS GANÓ 19 TORNEOS.
RECURSOS PARA DOCENTES

Artículo “Gráficos estadísticos”

Con este recurso se podrá profundizar sobre los distintos tipos de gráficos estadísticos, incluyendo los gráficos de barras.

VER