CAPÍTULO 5 / TEMA 2

TRIÁNGULOS

El triángulo es una de las figuras geométricas más estudiadas en la geometría y, a pesar de su simplicidad, es muy usado en muchos cálculos para resolver diversos problemas. Este polígono de tres lados puede clasificarse en diferentes tipos según el criterio que se considere.

clasificación

Los triángulos son clasificados con respecto a sus lados en: equiláteros, isósceles y escalenos. Por otro lado, si se considera la medida de sus ángulos, pueden clasificarse en: acutángulos, rectángulos y obtusángulos.

Clasificación con respecto a los lados

  • Triángulo equilátero: tiene sus tres lados iguales.

  • Triángulo isósceles: tiene dos lados iguales.

  • Triángulo escaleno: tiene sus tres lados diferentes.

Clasificación con respecto a los ángulos

  • Triángulo acutángulo: tiene los tres ángulos agudos, es decir, menores a 90°.

  • Triángulo rectángulo: uno de sus ángulos es recto, es decir, mide 90°.

  • Triángulo obtusángulo: uno de sus ángulos es obtuso.

ángulos internos de un triángulo

Como vimos anteriormente, los ángulos internos tienen mucha importancia con respecto a la clasificación de los triángulos. Pero, además, existe una gran relación entre ellos: la suma de todos los ángulos internos de un triángulo es igual a 180º.

Suma de ángulos internos

Cada ángulo interno esta formado por dos lados que comparten un extremo en común, el vértice. La suma de estos ángulos internos de un triángulo siempre dará como resultado 180º, independientemente de qué tipo de triángulo sea.

¿Sabías qué?
El ángulo interno y externo de un triángulo son suplementarios; es decir, la suma de ellos es de 180º.

triángulos congruentes

Dos triángulos son congruentes si son isométricos entre sí. Esto quiere decir que tienen las mismas dimensiones, aunque no necesariamente la misma orientación.

  • Ejemplo de triángulos congruentes:

En la imagen anterior se observan dos triángulos con diferente posición y orientación. Sin embargo, son congruente porque sus dimensiones son las mismas y por lo tanto, son isométricos entre sí.

Los triángulos son unas de las figuras geométricas más estudiadas porque pueden formar otras más complejas. Los polígonos regulares, por ejemplo, pueden dividirse en tantos triángulos iguales como lados tengan. El hexágono es el único polígono regular en el que todos los triángulos que lo forman son equiláteros (tres lados iguales), el resto de polígonos regulares están formados por triángulos isósceles (dos lados iguales).

construcción de triángulos

Para la construcción de triángulos, la herramienta fundamental es el compás (aunque en algunos casos también puede usarse el transportador). Al conocer las distancias entre los puntos que conforman al triángulo se puede realizar su construcción.

¿Cómo construimos un triángulo?

Para construir un triángulo equilátero debemos seguir los siguientes pasos:

Paso 1.Dibujamos un segmento con la longitud deseada para cada uno de los lados del triángulo equilatero.

Paso 2. Con el compás apoyado en uno de los extremos, realizamos un arco con un radio igual al segmento \inline \overline{AB}.

Paso 3. Realizamos un arco de la misma longitud pero del lado opuesto para generar un punto de intersección.

Paso 4. Unimos con dos segmentos el extremo A y el punto de unión, y el extremo B y el mismo punto.

Paso 5. Borramos las lineas auxiliares realizadas por el compás y finalmente obtenemos el triángulo equilátero.

Todo triángulo tiene tres lados y tres ángulos. Para su construcción necesitamos conocer al menos tres de esos datos, con la salvedad de que uno de ellos sea un lado. De esta manera, se puede construir un triángulo si se conocen: tres lados; dos lados y el ángulo entre ellos; o un lado y sus dos ángulos contiguos.

¡A practicar!

1. Determina qué tipos de triángulo son los siguientes según sus lados.

a) 

RESPUESTAS
Es un triángulo equilátero porque todos sus lados tienen la misma longitud.

b) 

RESPUESTAS
Es un triángulo isósceles porque dos de sus lados son iguales.

c)

RESPUESTAS
Es un triángulo escaleno porque todos sus lados son diferentes.

2. ¿Cómo se denominan los triángulos que poseen un ángulo igual a 90°?

RESPUESTAS
Triángulos rectángulos.

3. ¿Qué tipo de triángulo posee todos sus ángulos menores a 90°?

RESPUESTAS
Los triángulos acutángulos.

4. Determina en cada caso si los triángulos son congruentes.

a)

RESPUESTAS
No son triángulos congruentes.

b)

RESPUESTAS
Son triángulos congruentes.

RECURSOS PARA DOCENTES

Artículo “Triángulo”

En el siguiente artículo se profundiza el concepto de triángulo, se explica cómo denotarlos y se comentan sus propiedades principales.

VER

Artículo “Determinación de rectas y puntos notables de los triángulos”

Este artículo, además de explicar las diferentes clasificaciones de los triángulos, hace hincapié en los diferentes puntos notables que tienen estas figuras y las características geométricas de los mismos.

VER

CAPÍTULO 5 / TEMA 4

LOS TRIÁNGULOS

En la vida cotidiana es común observar triángulos. Los vemos en las porciones de pizza, en las señales de tránsito, en la vela de un velero, en las pirámides e incluso cuando estudiamos matemáticas. Los triángulos son figuras geométricas de tres lados y, aunque son los polígonos más simples, presentan ciertas particulares que los diferencian del resto. 

 

Los triángulos forman parte de nuestro día a día y los vemos en múltiples objetos. Al triángulo también se lo conoce como trígono; en ambos casos su nombre indica la presencia de tres ángulos. La disciplina encargada de estudiar las relaciones y las características de estos polígonos regulares de tres lados es la trigonometría.

El triángulo y sus ELEMENTOS

Los triángulos son figuras geométricas que cuentan con tres lados, tres ángulos y tres vértices.

  • Vértice: es el punto de unión de dos lados de un polígono o un ángulo.
  • Lado: es cada uno de los segmentos que une un vértice con el siguiente.
  • Ángulo: es el formado por la unión de dos rectas con un vértice en común. Pueden ser interno o externos.
    • La suma de los ángulos interiores de un triángulo es igual a 180°.
    • Un ángulo interior y exterior de un triángulo son suplementarios, por lo tanto, suman 180°.

Ángulos

Todos los triángulos tienen tres ángulos, estos pueden ser:

  • Agudos, cuando son menores a 90°.
  • Rectos, cuando son iguales a iguales a 90°.
  • Obtusos, cuando son mayores a 90°.

¿Cómo nombrar un triángulo?

Los vértices de los triángulos se designan con letras mayúsculas, mientras que los lados se denominan por la misma letra que el vértice opuesto, pero en minúscula. Por ejemplo:

  • El lado a es el segmento que une los vértices B y C.
  • El lado b es el segmento que une los vértices A y C.
  • El lado c es el segmento que une los vértices A y B.

[/su_note]

CLASIFICACIÓN de los triángulos

Son varios los criterios de clasificación que permiten agrupar a los triángulos de acuerdo a ciertas particularidades, los más utilizados son la medida de sus lados y la medida de sus ángulos.

Triángulos según sus lados

  • Triángulo equilátero: tiene 3 lados con la misma longitud.
  • Triángulo isósceles: tiene 2 lados con la misma longitud.
  • Triángulo escaleno: tiene todos sus lados desiguales.

Triángulos según sus ángulos

  • Triángulo rectángulo: tiene un ángulo recto, es decir, que mide 90°.
  • Triángulo acutángulo: tiene todos sus ángulos agudos, es decir, ángulos menores que 90°.
  • Triángulo obtusángulo: tiene un ángulo obtuso, es decir, un ángulo mayor a 90°.

Los triángulos pueden cumplir con ambos criterios de clasificación. Así, un triángulo isósceles también puede ser un triángulo rectángulo.

¡A practicar!

Observa los siguientes triángulos y clasifícalos según sus lados:

Solución

A) Escaleno

B) Equilátero

C) Isósceles

Observa los siguientes triángulos y clasifícalos según sus ángulos:

Solución

A) Rectángulo

B) Obtusángulo

C) Rectángulo

El Triángulo de las Bermudas es un área ubicada en el océano Atlántico, se forma al trazar una línea imaginaría entre el estado de la Florida (EE. UU.), la isla de Puerto Rico y las Bermudas. Es conocido como un triángulo equilátero, ya que, las distancias geográficas entre cada uno de los puntos que lo conforman son iguales.

Perímetro de un triángulo

El perímetro es la medida del contorno de una figura. Lo calculamos al sumar la longitud de todos sus lados.

P = l_{1}+l_{2}+l_{3}

Donde:

P = perímetro

l = lados

 

– Ejemplo:

El perímetro de este triángulo isósceles es igual a la suma de la longitud de sus lados.

P=3\: cm+3\: cm+5\: cm

 

P=\boldsymbol{11\: cm}

 

 

Este triángulo tiene un perímetro de 11 cm.

¿Sabías qué?
Para calcular el perímetro de un triángulo equilátero solo se debe multiplicar la longitud de un lado por 3. Esto se debe a que los tres lados miden lo mismo. Entonces, puedes utilizar la fórmula: P = 3 × l

área de un triángulo

El área es la medida de la superficie de la figura. La calculamos por medio de una expresión matemática que considera la longitud de la base y su altura:

A=\frac{b\cdot h}{2}

Donde:

A = área

b = base

h = altura

– Ejemplo:

La base de este triángulo mide 6 cm y la altura 4 cm, así que solo sustituimos los valores en la fórmula y resolvemos:

A = \frac{6\: cm\cdot 4\: cm}{2}

A=\frac{24\: cm^{2}}{2}

 

A=\boldsymbol{12\: cm^{2}}

 

 

Este triángulo tiene un área de 12 cm2.

Teorema de Pitágoras y el triángulo rectángulo

Pitágoras de Samos, un matemático griego del siglo VI a. C. descubrió que los triángulos rectángulos guardaban una relación respecto a sus lados. Él llegó a la conclusión de que el cuadrado del lado mayor de un triángulo rectángulo, es decir, la hipotenusa, siempre era igual a la suma del cuadrado de sus otros dos lados o catetos. A esta relación se la conoce como teorema de Pitágoras.

VER INFOGRAFÍA

¡A practicar!

Calcula el área y el perímetro del siguiente triángulo:

Solución

A=\frac{10\: cm\cdot 5\: cm}{2}=\frac{50\: cm^{2}}{2}=\boldsymbol{25\: cm^{2}}

P=10\: cm+12\: cm+\: 12\: cm=\boldsymbol{34\: cm}

TRAZADO DE un triángulo dado dos lados y una ángulo

Si queremos dibujar una triángulo que tiene un ángulo de 40° y lado de 12 cm y otro de 8 cm seguimos estos pasos:

1. Dibujamos el ángulo de 40° y al vértice lo llamamos A.

2. Con la ayuda de una regla graduada marcamos el segmento AB de 12 cm.

3. Luego marcamos el segmento AC de 8 cm.

4. Unimos los puntos B y C. Después coloreamos el triángulo.

Rectas notables de un triángulo

  • La altura es una recta perpendicular en cualquiera de los lados del triángulo que pasa por el vértice opuesto.
  • La mediana es aquella recta que une el vértice de un triángulo con el punto medio del lado opuesto.
  • La mediatriz es la perpendicular que pasa por el punto medio de un lado del triángulo.
  • Una bisectriz es una recta que pasa por el vértice de un triángulo y divide a su ángulo en dos partes iguales.

¡A practicar!

1. Traza los siguientes triángulos:

  • Triángulo con un ángulo de 90°, un lado de 4 cm y otro lado de 2 cm.
Solución

  • Triángulo con un ángulo de 80°, un lado de 4,5 cm y otro lado de 4 cm.
Solución

  • Triángulo con un ángulo de 110°, un lado de 4 cm y otro lado de 3 cm.
Solución

 

2. Clasifica cada triángulo según sus ángulos y lados:

Solución

A) Isósceles y rectángulo.

B) Isósceles y obtusángulo.

C) Escaleno y acutángulo.

D) Isósceles y acutángulo.

E) Equilátero y acutángulo.

F) Escaleno y obtusángulo.

G) Escaleno y rectángulo.

 

3. Calcula el área y el perímetro de estos triángulos:

Solución

A=\frac{9\: cm\cdot 5\: cm}{2}=\frac{45\: cm^{2}}{2}=\boldsymbol{22,5\: cm^{2}}

P= 4\: cm+8\: cm+9\: cm=\boldsymbol{21\: cm}

Solución

A=\frac{4\: cm\cdot 4\: cm}{2}=\frac{16\: cm^{2}}{2}=\boldsymbol{8\: cm^{2}}

P=4\: cm+4\: cm+6\: cm=\boldsymbol{14\: cm}

 

RECURSOS PARA DOCENTES

Artículo “Triángulos”

En este artículo encontrarás una síntesis de las características y clasificaciones de los triángulos.

VER

Artículo “Perímetro de triángulos y cuadriláteros”

En este recurso encontrarás información detallada sobre el perímetro de figuras geométricas, como triángulos y cuadriláteros.

VER

Video “Tipos de triángulos según sus ángulos”

Este material audiovisual te ayudará a acompañar y complementar sus clases de manera ilustrativa.

VER