CAPÍTULO 6 / TEMA 5

unidades de medida

sistema internacional de unidades

Desde la Antigüedad, los seres humanos han tenido la necesidad de medir diferentes magnitudes físicas como la masa o la longitud. A lo largo de la historia han existido diferentes unidades que en muchas ocasiones se confundían y ocasionaban que los procesos de medición no fueran precisos. Por esta razón, se estableció el Sistema Internacional de Unidades (SI) con el propósito de unificar las unidades de medidas. Este sistema está compuesto por unidades básicas y por unidades derivadas, estás últimas se denominan así porque pueden expresarse en productos y potencias de unidades básicas. Aunque la mayoría de los países del mundo han adoptado a este sistema, países como Estados Unidos, Liberia o Birmania no lo han hecho.

Las unidades básicas del SI son el metro, el kilogramo, el segundo, el amperio, el kelvin, el mol y la candela.

la longitud

La longitud es una magnitud física que sirve para medir la distancia que existen entre dos puntos. En el Sistema Internacional la unidad de longitud es el metro (m). Sin embargo, en la práctica se usan múltiplos y submúltiplos del metro, como el kilómetro o el centímetro, que al estar relacionados con la unidad base pueden realizarse conversiones entre ellas de manera simple. Por otro lado, existen otras unidades para medir longitudes, como las empleadas por el Sistema Inglés, del cual podemos mencionar la pulgada, el pie y la yarda como algunas de ellas. Estas unidades tienen cada una su equivalencia en metros que también permite la comparación y transformación entre ellas.

El metro es la longitud del trayecto que recorre la luz en el vacío durante un tiempo de 1/299.792.458 de segundo

el área

El área tiene el propósito de medir la extensión de una superficie, normalmente se expresa en unidades de longitud al cuadrado, como el metro cuadrado, el kilómetro cuadrado, la pulgada cuadrada, etc. En el caso de las figuras geométricas, para cada una existe una fórmula de área que facilita su cálculo en función de sus medidas. Una de las maneras de realizar conversiones entre unidades de área es a través de factores de conversión que establece una relación entre la unidad deseada y la unidad que se quiere obtener, por lo tanto, al multiplicar la cantidad que se desea transformar por el factor de conversión replica watches uk correspondiente se obtiene el equivalente a esa cantidad en las unidades requeridas.

Algunas disciplinas, como la agronomía y la arquitectura, emplean el área para medir las extensiones de los terrenos.

El volumen

El volumen es el espacio que ocupa un cuerpo, la unidad usada para medirlo en el Sistema Internacional de Unidades es el metro cúbico (m3) pero también se usan normalmente sus múltiplos y submúltiplos como el centímetro cúbico y el milímetro cúbico, entre otros. Como sucede con otras unidades de medición, se pueden transformar a través de factores de conversión. La cantidad de volumen que puede contener un recipiente se denomina capacidad, y una de las unidades de capacidad es el litro. Aunque no se encuentra incluido dentro de las unidades del SI, el litro se encuentra aceptado por este sistema, y también presenta múltiplos y submúltiplos.

El litro es una unidad de capacidad que equivale a un decímetro cúbico (dm3).

CAPÍTULO 6 / TEMA 3

EL ÁREA

El área es una unidad de medida que sirve para calcular la superficie. Es muy usada, además de en geometría, en otras áreas como arquitectura, topografía y agricultura. La unidad de área aceptada por el Sistema Internacional de Unidades es el metro cuadrado (m2), pero también se usan otras unidades como la hectárea o el acre.

UNIDADES DE ÁREA

El área es una medida de una extensión de una superficie. Las unidades correspondientes a estas son generalmente unidades de longitud elevadas al cuadrado como el metro cuadrado, kilómetro cuadrado, milla cuadrada, pulgada cuadrada, etc. Sin embargo, existen otras unidades de área, como la hectárea o el acre.

Cálculo de áreas en figuras geométricas

En el caso de figuras geométricas convencionales como el triángulo, cuadrado, pentágono y círculo, entre otros; el cálculo de área es sencillo porque viene determinado a través de fórmulas para cada figura. Por ejemplo, la fórmula de área para un triángulo es (base × altura) / 2. Al reemplazar en la fórmula las unidades de longitud siempre se obtienen unidades cuadradas.

VER INFOGRAFÍA

CONVERSIÓN DE UNIDADES DE ÁREA

Cuando se conocen valores de área expresados en un determinado sistema de unidades, se puede lograr la conversión a partir de las relaciones conocidas entre las  unidades.

Obtención de relación de unidades

Para obtener la conversión de unidades derivadas, se utilizan las conversiones conocidas de las unidades básicas y luego se elevan al cuadrado ambos resultados.

Por ejemplo, imaginemos que queremos obtener la relación que existe entre pies cuadrados y metros cuadrados. Para ello se deben seguir los siguientes pasos.

  • Paso 1. Se establece la relación entre unidades básicas.

La relación que existe entre las unidades básicas, en este caso metro y pie, es de:

1 m = 3,28 pie

  • Paso 2. Se relacionan las unidades derivadas.

La relación mencionada anteriormente es equivalente, eso significa que mientras ambos se afecten de igual manera se mantendrá dicha relación. Por esta razón, se pueden elevar ambos términos al cuadrado sin afectar el resultado

(1 m)= (3,28 pie)2

Al resolver los cuadrados se obtiene la relación de unidades de área solicitadas en el principio.

1 m2 = 10,76 pie2

De esta manera, un 1 m2 equivale a 10,76 pie2.

¿Sabías qué?
El acre es una unidad extranjera usada para medir el área y donde 1 acre equivale a 4.046,86 m2.

Tabla de conversión de unidades de área

Las relaciones que existen entre las diferentes unidades se pueden tabular en tablas para obtener de manera rápida un factor de conversión que al multiplicarse con la cantidad que se desea convertir se obtiene el resultado de manera más rápida.

m2 milla2 pie2 plg2 km2 Hectárea
m2 1 3,8 · 10−7 10,76 1.550 1 · 10−6 1 · 10−4
milla2 2,59 · 106 1 2,78 · 107 4,01 · 109 2,59 259
pie2 0,093 3,6 · 10−8 1 144 9,3 · 10−8 9,3 · 10−6
plg2 6,45 · 10−4 2,5 · 10−10 6,94 · 10−3 1 6,45 · 10−10 6,45 · 10−8
km2 1 · 106 0,386 1,08 · 107 1,55 · 109 1 100
Hectárea 1 · 104 3,86 · 10−3 107.639 1,55 · 107 0,01 1

Si se observa con atención, se notará que en la primera fila se encuentra la relación de 1 m= 10,76 pie2 obtenida recientemente.

Ejemplo:

– ¿Cuántas millas cuadradas equivale el área de un barrio de 2,3 km2?

En primer lugar se debe encontrar la relación entre las unidades a convertir o, lo que es lo mismo, el factor de conversión. Para lograrlo se ubica primero la columna correspondiente a la unidad que se tiene que convertir y luego se lee la celda que se intersecta con la fila que corresponde a la unidad deseada.

m2 milla2 pie2 plg2 km2 Hectárea
m2 1 3,8 · 10−7 10,76 1.550 1 · 10−6 1 · 10−4
milla2 2,59 · 106 1 2,78 · 107 4,01 · 109 2,59 259
pie2 0,093 3,6 · 10−8 1 144 9,3 · 10−8 9,3 · 10−6
plg2 6,45 · 10−4 2,5 · 10−10 6,94 · 10−3 1 6,45 · 10−10 6,45 · 10−8
km2 1 · 106 0,386 1,08 · 107 1,55 · 109 1 100
Hectárea 1 · 104 3,86 · 10−3 107.639 1,55 · 107 0,01 1

En este caso observemos que el factor de conversión es 0,386.

Por lo tanto, al tener la relación entre las unidades ya se puede realizar la conversión: para ello multiplicamos directamente la cantidad dada por su respectivo factor de conversión de la unidad deseada:

2,3 × 0,386 = 0,8878 millas cuadradas.

El área es una magnitud muy importante que tiene muchas aplicaciones. En la arquitectura, por ejemplo; se emplea en los diseños arquitectónicos para realizar diseños que se adecuen al terreno disponible, en la agricultura se usa para saber cuántas semillas se deben plantar en un campo y en las inmobiliarias la usan para calcular costos de las viviendas.

¿QUÉ ES UN FACTOR DE CONVERSIÓN?

Un factor de conversión (F) es la relación establecida entre la unidad deseada y la unidad obtenida. Este factor se utiliza para realizar la conversión a las unidades deseadas; y además, puede ser aplicado a unidades derivadas.

F = \frac{unidad \: deseada}{unidad \: conocida}

En la tabla de conversión anterior, todos los valores que allí se mostraban eran factores de conversión entre unidades de área. Estos factores son muy útiles porque pueden utilizarse en otras magnitudes físicas para realizar conversiones, lo importante es que siempre las unidades que se relacionen correspondan a una misma magnitud.

¡A practicar!

1. Transforma las siguientes unidades.

a) 1.400 pie2 a m2

RESPUESTAS
a) 130,02 m2

b) 7 m2 a plg2

RESPUESTAS
b) 10.850 plg2

c) 2.000 hectáreas a km2

RESPUESTAS
c) 20 km2

d) 85.354 plg2 a m2

RESPUESTAS
d) 55,05 m2

e) 74 milla2 a km2

RESPUESTAS
e) 28,56 km2

RECURSOS PARA DOCENTES

Artículo “Conversión de unidades: área y volumen”

El siguiente artículo explica cómo realizar conversiones de unidades de área a través de otra metodología. También muestra una serie de ejercicios resueltos para entender el tema de forma más clara.

VER

CAPÍTULO 6 / TEMA 1

sISTEMA INTERNACIONAL DE UNIDADES

Desde el peso de una pelota hasta el tamaño de una estrella, los seres humanos han necesitado medir a través de unidades aplicables en magnitudes específicas como la longitud, el área o el volumen. En la actualidad, se emplea el Sistema Internacional de Unidades, que busca la uniformidad en las mediciones y que es adoptado en casi todos los países.

¿POR QUÉ MEDIMOS LAS COSAS?

Desde tiempos antiguos, el ser humano necesitó medir las raciones que tenía, el tamaño de un terreno o el peso de un animal. Esa realidad aún existe, solo que actualmente el ser humano emplea unidades de medida usadas para medir muchas más magnitudes como el tamaño de una bacteria o la velocidad del sonido.

Hoy en día el Sistema Internacional de Unidades cuenta con siete unidades básicas: el metro para medir la longitud, el kilogramo para medir la masa, el segundo para medir el tiempo, el amperio para medir la intensidad de la corriente eléctrica, el kelvin para medir la temperatura, el mol para medir la cantidad de sustancia, y la candela para medir la intensidad luminosa.

Cuando se quiere comparar y dimensionar objetos o cantidades, se debe recurrir a un equipo de medición. Un equipo de medición es una herramienta que nos brinda la información de una determinada magnitud. Sin embargo, para lograr la consistencia de los resultados se debe prestar especial atención a las unidades utilizadas. Algunos ejemplos de equipos de medición son:

Magnitud Equipo de medición usado
Tiempo Cronómetro
Longitud Regla graduada
Masa Balanza
Temperatura Termómetro
Ángulo Transportador

VER INFOGRAFÍA

Aplicación correcta de unidades

Para poder comparar dos valores pertenecientes a una misma magnitud física, ambos deben encontrarse en el mismo sistema de medición, es decir, poseer las mismas unidades de medición. Aunque numéricamente pueden ser iguales, cada unidad representa una proporción diferente de la magnitud que representa. Es por ello que, al momento de resolver un ejercicio con diferentes unidades de medida, se sugiere comenzar con la transformación de todas las unidades en una sola.

¿Qué unidad usar?

Imaginemos que se necesita calcular el volumen del siguiente cubo, cuyas longitudes de sus lados se encuentran expresadas en metros y en centímetros.

Si el ejercicio no lo especifica, el volumen se puede expresar en cualquiera de las dos medidas. Lo importante es aplicar las fórmulas usando una sola unidad:

V = L^{3} = \left (0,5\, m \right )^{3}=0,125\, m^{3}

V = L^{3} = \left (50\, cm \right )^{3}=125.000\, cm^{3}

Observa que 0,125 m3 representa el mismo volumen que 125.000 cm3.

Es por ello que el empleo de las unidades es importante porque nos permite entender la proporción de la cantidad medida. Imaginemos que un comentarista de fórmula 1 dice “la velocidad del auto es de 100”. Es una oración ambigua porque no especifica la unidad de medición. Pueden ser kilómetros por hora, metros por segundo, etc.

En el Sistema Internacional de Unidades también existen unidades derivadas que se usan para medir magnitudes físicas que dependen de las unidades básicas de medición, es decir, se pueden expresar matemáticamente en términos de magnitudes físicas básicas. Por ejemplo, el área es una unidad derivada porque se expresa en m2. La velocidad es otra unidad derivada y se expresa como m/s.

UNIDADES DE MEDICIÓN

Una unidad de medida es una cantidad o proporción estandarizada de una magnitud física que se ha definido y adoptado a través de una ley o por convención. En el pasado se usaban incontables unidades de medición que en la mayoría de los casos no contaban con coherencia. Por esta razón, apareció el Sistema Internacional de Unidades que busca una mayor homogeneidad en los procesos de medición. Las unidades de medición básicas de este sistema son:

Magnitud física Símbolo Nombre
Masa kg Kilogramo
Longitud m Metro
Tiempo s Segundo
Temperatura K Kelvin
Corriente eléctrica A Amperio
Cantidad de sustancia mol Mol
Intensidad luminosa cd Candela

El Sistema Internacional de Unidades nos ofrece las unidades básicas y la combinación de estas en unidades derivadas para lograr mediciones de variables más complejas.

¿Sabías qué?
El Newton (N) es una unidad derivada usada para medir la fuerza donde 1 N = 1 kg.m/s2

tipos de unidades

El Sistema Internacional de Unidades define las unidades básicas necesarias para medir cualquier objeto y en otros casos emplea potencias, productos y cocientes de unidades básicas para expresar otras magnitudes conocidas como unidades derivadas. En la siguiente tabla podrás encontrar las unidades derivadas más conocidas:

Medida Unidad Denominación
Velocidad m/s “metro por segundo”
Aceleración m/s2 “metro por segundo cuadrado”
Fuerza N = kg ·m/s2 Newton
Área m2 “metros cuadrados”
Volumen m3 “metros cúbicos”

¡A practicar!

1. Determinar si las siguientes mediciones pertenecen al Sistema Internacional de Unidades.

a) Una velocidad de 110 km/h.

RESPUESTAS
No pertenece al Sistema Internacional de Unidades porque la velocidad debería estar expresada en m/s para que fuera considerada dentro del Sistema Internacional de unidades.

b) La temperatura de 30 °C.

RESPUESTAS
No pertenece porque la unidad de medida del Sistema Internacional de Unidades es el kelvin (K).

c) Un volumen de 100 m3.

RESPUESTAS
Sí pertenece porque su unidad es una potencia del metro que es una unidad básica.

RECURSOS PARA DOCENTES

Artículo “Sistema Internacional de Unidades”

El artículo explica cómo y por qué se formó el Sistema Internacional de Unidades. También explica sus unidades básicas y el uso de este sistema a nivel mundial

VER

CAPÍTULO 5 / TEMA 4

LOS TRIÁNGULOS

En la vida cotidiana es común observar triángulos. Los vemos en las porciones de pizza, en las señales de tránsito, en la vela de un velero, en las pirámides e incluso cuando estudiamos matemáticas. Los triángulos son figuras geométricas de tres lados y, aunque son los polígonos más simples, presentan ciertas particulares que los diferencian del resto. 

 

Los triángulos forman parte de nuestro día a día y los vemos en múltiples objetos. Al triángulo también se lo conoce como trígono; en ambos casos su nombre indica la presencia de tres ángulos. La disciplina encargada de estudiar las relaciones y las características de estos polígonos regulares de tres lados es la trigonometría.

El triángulo y sus ELEMENTOS

Los triángulos son figuras geométricas que cuentan con tres lados, tres ángulos y tres vértices.

  • Vértice: es el punto de unión de dos lados de un polígono o un ángulo.
  • Lado: es cada uno de los segmentos que une un vértice con el siguiente.
  • Ángulo: es el formado por la unión de dos rectas con un vértice en común. Pueden ser interno o externos.
    • La suma de los ángulos interiores de un triángulo es igual a 180°.
    • Un ángulo interior y exterior de un triángulo son suplementarios, por lo tanto, suman 180°.

Ángulos

Todos los triángulos tienen tres ángulos, estos pueden ser:

  • Agudos, cuando son menores a 90°.
  • Rectos, cuando son iguales a iguales a 90°.
  • Obtusos, cuando son mayores a 90°.

¿Cómo nombrar un triángulo?

Los vértices de los triángulos se designan con letras mayúsculas, mientras que los lados se denominan por la misma letra que el vértice opuesto, pero en minúscula. Por ejemplo:

  • El lado a es el segmento que une los vértices B y C.
  • El lado b es el segmento que une los vértices A y C.
  • El lado c es el segmento que une los vértices A y B.

[/su_note]

CLASIFICACIÓN de los triángulos

Son varios los criterios de clasificación que permiten agrupar a los triángulos de acuerdo a ciertas particularidades, los más utilizados son la medida de sus lados y la medida de sus ángulos.

Triángulos según sus lados

  • Triángulo equilátero: tiene 3 lados con la misma longitud.
  • Triángulo isósceles: tiene 2 lados con la misma longitud.
  • Triángulo escaleno: tiene todos sus lados desiguales.

Triángulos según sus ángulos

  • Triángulo rectángulo: tiene un ángulo recto, es decir, que mide 90°.
  • Triángulo acutángulo: tiene todos sus ángulos agudos, es decir, ángulos menores que 90°.
  • Triángulo obtusángulo: tiene un ángulo obtuso, es decir, un ángulo mayor a 90°.

Los triángulos pueden cumplir con ambos criterios de clasificación. Así, un triángulo isósceles también puede ser un triángulo rectángulo.

¡A practicar!

Observa los siguientes triángulos y clasifícalos según sus lados:

Solución

A) Escaleno

B) Equilátero

C) Isósceles

Observa los siguientes triángulos y clasifícalos según sus ángulos:

Solución

A) Rectángulo

B) Obtusángulo

C) Rectángulo

El Triángulo de las Bermudas es un área ubicada en el océano Atlántico, se forma al trazar una línea imaginaría entre el estado de la Florida (EE. UU.), la isla de Puerto Rico y las Bermudas. Es conocido como un triángulo equilátero, ya que, las distancias geográficas entre cada uno de los puntos que lo conforman son iguales.

Perímetro de un triángulo

El perímetro es la medida del contorno de una figura. Lo calculamos al sumar la longitud de todos sus lados.

P = l_{1}+l_{2}+l_{3}

Donde:

P = perímetro

l = lados

 

– Ejemplo:

El perímetro de este triángulo isósceles es igual a la suma de la longitud de sus lados.

P=3\: cm+3\: cm+5\: cm

 

P=\boldsymbol{11\: cm}

 

 

Este triángulo tiene un perímetro de 11 cm.

¿Sabías qué?
Para calcular el perímetro de un triángulo equilátero solo se debe multiplicar la longitud de un lado por 3. Esto se debe a que los tres lados miden lo mismo. Entonces, puedes utilizar la fórmula: P = 3 × l

área de un triángulo

El área es la medida de la superficie de la figura. La calculamos por medio de una expresión matemática que considera la longitud de la base y su altura:

A=\frac{b\cdot h}{2}

Donde:

A = área

b = base

h = altura

– Ejemplo:

La base de este triángulo mide 6 cm y la altura 4 cm, así que solo sustituimos los valores en la fórmula y resolvemos:

A = \frac{6\: cm\cdot 4\: cm}{2}

A=\frac{24\: cm^{2}}{2}

 

A=\boldsymbol{12\: cm^{2}}

 

 

Este triángulo tiene un área de 12 cm2.

Teorema de Pitágoras y el triángulo rectángulo

Pitágoras de Samos, un matemático griego del siglo VI a. C. descubrió que los triángulos rectángulos guardaban una relación respecto a sus lados. Él llegó a la conclusión de que el cuadrado del lado mayor de un triángulo rectángulo, es decir, la hipotenusa, siempre era igual a la suma del cuadrado de sus otros dos lados o catetos. A esta relación se la conoce como teorema de Pitágoras.

VER INFOGRAFÍA

¡A practicar!

Calcula el área y el perímetro del siguiente triángulo:

Solución

A=\frac{10\: cm\cdot 5\: cm}{2}=\frac{50\: cm^{2}}{2}=\boldsymbol{25\: cm^{2}}

P=10\: cm+12\: cm+\: 12\: cm=\boldsymbol{34\: cm}

TRAZADO DE un triángulo dado dos lados y una ángulo

Si queremos dibujar una triángulo que tiene un ángulo de 40° y lado de 12 cm y otro de 8 cm seguimos estos pasos:

1. Dibujamos el ángulo de 40° y al vértice lo llamamos A.

2. Con la ayuda de una regla graduada marcamos el segmento AB de 12 cm.

3. Luego marcamos el segmento AC de 8 cm.

4. Unimos los puntos B y C. Después coloreamos el triángulo.

Rectas notables de un triángulo

  • La altura es una recta perpendicular en cualquiera de los lados del triángulo que pasa por el vértice opuesto.
  • La mediana es aquella recta que une el vértice de un triángulo con el punto medio del lado opuesto.
  • La mediatriz es la perpendicular que pasa por el punto medio de un lado del triángulo.
  • Una bisectriz es una recta que pasa por el vértice de un triángulo y divide a su ángulo en dos partes iguales.

¡A practicar!

1. Traza los siguientes triángulos:

  • Triángulo con un ángulo de 90°, un lado de 4 cm y otro lado de 2 cm.
Solución

  • Triángulo con un ángulo de 80°, un lado de 4,5 cm y otro lado de 4 cm.
Solución

  • Triángulo con un ángulo de 110°, un lado de 4 cm y otro lado de 3 cm.
Solución

 

2. Clasifica cada triángulo según sus ángulos y lados:

Solución

A) Isósceles y rectángulo.

B) Isósceles y obtusángulo.

C) Escaleno y acutángulo.

D) Isósceles y acutángulo.

E) Equilátero y acutángulo.

F) Escaleno y obtusángulo.

G) Escaleno y rectángulo.

 

3. Calcula el área y el perímetro de estos triángulos:

Solución

A=\frac{9\: cm\cdot 5\: cm}{2}=\frac{45\: cm^{2}}{2}=\boldsymbol{22,5\: cm^{2}}

P= 4\: cm+8\: cm+9\: cm=\boldsymbol{21\: cm}

Solución

A=\frac{4\: cm\cdot 4\: cm}{2}=\frac{16\: cm^{2}}{2}=\boldsymbol{8\: cm^{2}}

P=4\: cm+4\: cm+6\: cm=\boldsymbol{14\: cm}

 

RECURSOS PARA DOCENTES

Artículo “Triángulos”

En este artículo encontrarás una síntesis de las características y clasificaciones de los triángulos.

VER

Artículo “Perímetro de triángulos y cuadriláteros”

En este recurso encontrarás información detallada sobre el perímetro de figuras geométricas, como triángulos y cuadriláteros.

VER

Video “Tipos de triángulos según sus ángulos”

Este material audiovisual te ayudará a acompañar y complementar sus clases de manera ilustrativa.

VER

CAPÍTULO 4 / TEMA 2

FIGURAS PLANAS

SI OBSERVAMOS DETENIDAMENTE EL LUGAR EN DONDE ESTAMOS PODEMOS ENCONTRAR INFINIDAD DE FIGURAS. LA UNIÓN DE DIFERENTES LÍNEAS HA FORMADO LAS FIGURAS Y LAS HAY DE DIFERENTES TIPOS. ES IMPOSIBLE NO ENCONTRAR EN NUESTRO ENTORNO CUADRADOS, RECTÁNGULOS Y CÍRCULOS. TODOS SON PARTE DE LA FORMA QUE TIENEN LOS OBJETOS QUE UTILIZAMOS A DIARIO.

FIGURAS PLANAS Y SUS TIPOS

LAS FIGURAS PLANAS SON AQUELLAS QUE TIENEN DOS DIMENSIONES: ALTO Y ANCHO. ALGUNOS EJEMPLOS DE FIGURAS PLANAS SON LO CÍRCULOS, LOS TRIÁNGULOS Y LO CUADRILÁTEROS.

  • LA FIGURA VERDE ES UN CÍRCULO.
  • LA FIGURA AZUL ES UN TRIÁNGULO.
  • LA FIGURA ROJA ES UN CUADRILÁTERO.

¿QUÉ SON LOS TRIÁNGULOS?

SON LAS FIGURAS FORMADAS POR TRES SEGMENTOS.

ALGUNOS EJEMPLOS DE TRIÁNGULOS SON LOS SIGUIENTES:

¿QUÉ SON LOS CUADRILÁTEROS?

SON LAS FIGURAS FORMADAS POR CUATRO SEGMENTOS.

ALGUNOS EJEMPLOS DE CUADRILÁTEROS SON LOS SIGUIENTES:

¿QUÉ SON LOS CÍRCULOS?

SON FIGURAS CURVAS CON IGUAL DISTANCIA ENTRE UN PUNTO DE SU EXTREMO Y EL CENTRO.

ALGUNOS EJEMPLOS DE CÍRCULOS SON LOS SIGUIENTES:

LAS FIGURAS CIRCULARES ESTÁN FORMADAS POR UNA LÍNEA CURVA CERRADA Y TIENEN UNA CARACTERÍSTICA FUNDAMENTAL: TODOS LOS PUNTOS DE LA LÍNEA CURVA ESTÁN A LA MISMA DISTANCIA DEL CENTRO DE LA FIGURA. LA LÍNEA QUE BORDEA AL CÍRCULO SE LLAMA CIRCUNFERENCIA. EN LA IMAGEN VEMOS EL TRAZO DE UNA CIRCUNFERENCIA. PARA DIBUJAR CIRCUNFERENCIAS USAMOS UN COMPÁS.

ELEMENTOS DE Los triángulos y cuadriláteros

LADOS

CON CADA UNO DE LOS SEGMENTOS QUE FORMAN LA FIGURA.

TRIÁNGULOS CUADRILÁTEROS

LOS TRIÁNGULOS TIENEN 3 LADOS.

LOS CUADRILÁTEROS TIENEN 4 LADOS.

VÉRTICES

SON LOS PUNTOS DONDE SE UNEN DOS LADOS.

TRIÁNGULOS CUADRILÁTEROS

LOS TRIÁNGULOS TIENEN 3 VÉRTICES.

LOS CUADRILÁTEROS TIENEN 4 VÉRTICES.

ÁNGULOS

SON LAS ABERTURAS QUE SE FORMAN ENTRE DOS LADOS.

TRIÁNGULOS CUADRILÁTEROS

LOS TRIÁNGULOS TIENEN 3 ÁNGULOS.

LO CUADRILÁTEROS TIENEN 4 ÁNGULOS.

ELEMENTOS DEL CÍRCULO

CIRCUNFERENCIA

ES EL LÍNEA CURVA CERRADA.

CENTRO

ES EL PUNTO CENTRAL QUE TIENE LA MISMA DISTANCIA A CUALQUIER PUNTO DE LA CIRCUNFERENCIA.

DIÁMETRO

ES LA DISTANCIA DE UN PUNTO DE LA CIRCUNFERENCIA A OTRO QUE PASA POR EL CENTRO.

RADIO

ES LA DISTANCIA DESDE EL CENTRO DE LA FIGURA HASTA CUALQUIER PUNTO DE LA CIRCUNFERENCIA. EL RADIO ES IGUAL A LA MITAD DEL DIÁMETRO.

AVISOS Y GEOMETRÍA

LA MAYORÍA DE LOS AVISOS COMERCIALES Y DE TRÁNSITO SON FIGURAS PLANAS. POR EJEMPLO, ESTA SEÑAL NOS INDICA QUE PRONTO SE ACERCA UNA CURVA. LA SEÑAL TIENE FORMA DE CUADRILÁTERO PORQUE TIENE 4 LADOS, 4 VÉRTICES Y 4 ÁNGULOS.

TIPOS DE ÁNGULOS

EXISTEN VARIOS TIPOS DE ÁNGULOS Y SU CLASIFICACIÓN DEPENDE DE SU ABERTURA.

ÁNGULO ABERTURA REPRESENTACIÓN
RECTO 90°
AGUDO MENOS DE 90° Y MÁS DE 0°
OBTUSO MENOS DE 180° Y MÁS DE 90°
LLANO 180°

¿SABÍAS QUÉ?
LOS ÁNGULOS SE MIDEN EN GRADOS. EL SÍMBOLO DE LOS GRADOS ES °. 

EL ÁREA Y SUPERFICIE

SI QUEREMOS SABER LA MEDIDA DE LA PARTES EXTERNA DE UN OBJETOS O DE UN TERRENO, TENEMOS QUE CALCULAR SU ÁREA.

LA SUPERFICIE ES LA PARTE EXTERNA DE UN OBJETO Y EL ÁREA ES LA MEDIDA DE LA SUPERFICIE. LA UNIDAD DE MEDIDA ES EL CENTÍMETRO CUADRADO (cm2).

EN LOS RECTÁNGULOS SOLO TENEMOS QUE MULTIPLICAR LA MEDIDA DE LA ALTURA POR LA DEL ANCHO.

ÁREA DE RECTÁNGULO = ALTO × ANCHO

– EJEMPLO:

OBSERVA ESTE RECTÁNGULO. ESTÁ FORMADO POR CUADRADOS MÁS PEQUEÑOS. SI CADA CUADRADO MIDE 1 CENTÍMETRO DE ALTO Y 1 CENTÍMETRO DE ANCHO. RESPONDE:

  1. ¿CUÁNTOS CENTÍMETROS DE LARGO MIDE ESTE RECTÁNGULO?
  2. ¿CUÁNTOS CENTÍMETROS DE ANCHO MIDE ESTE RECTÁNGULO?
  3. ¿CUÁL ES EL ÁREA DEL RECTÁNGULO?

A. EL RECTÁNGULO TIENE 4 cm DE ALTO.

B. EL RECTÁNGULO TIENE 5 cm DE ANCHO.

C. EL ÁREA DEL RECTÁNGULO ES DE 20 cm2 PORQUE 4 cm × 5 cm = 20 cm2.


– EJEMPLO 2:

¿CUÁL ES EL ÁREA DE ESTE RECTÁNGULO?

EL RECTÁNGULO TIENE 3 cm DE ALTO Y 4 cm DE ANCHO. POR LO TANTO:

ÁREA = 3 cm × 4 cm = 12 cm2

EL RECTÁNGULO TIENE UN ÁREA DE 12 cm2.

¡A PRACTICAR!

1. COLOCAR EL TIPO DE ÁNGULO SEGÚN SU MEDIDA:

  • 160°
SOLUCIÓN
ÁNGULO OBTUSO.
  • 45°
SOLUCIÓN
ÁNGULO AGUDO.
  • 79°
SOLUCIÓN
ÁNGULO AGUDO.
  • 92°
SOLUCIÓN
ÁNGULO OBTUSO.
  • 180°
SOLUCIÓN
ÁNGULO LLANO.
  • 90°
SOLUCIÓN
ÁNGULO RECTO.

 

2. CALCULAR EL ÁREA DE LOS SIGUIENTES RECTÁNGULOS. CADA CUADRO MIDE 1 cm DE ALTO Y 1 cm DE ANCHO.

A. 

SOLUCIÓN

ÁREA = 9 cm x 5 cm

ÁREA = 45 cm2

B. 

SOLUCIÓN

ÁREA = 8 cm x 5 cm

ÁREA = 40 cm2

C. 

SOLUCIÓN

ÁREA = 5 cm × 2 cm

ÁREA = 10 cm2

RECURSOS PARA DOCENTES

Artículo “Área y perímetro de las figuras planas”

En el siguiente artículo se amplía la información sobre área con más tipos de figuras planas.

VER

CAPÍTULO 5 / TEMA 8 (REVISIÓN)

Geometría y mediciones | ¿Qué aprendimos?

Perímetro

El perímetro es el contorno de una figura geométrica. En el caso de los polígonos regulares, el perímetro lo calculamos al multiplicar la cantidad de sus lados por la longitud de uno de estos. Otra forma de calcular el perímetro es a través de la suma de cada uno de los lados de una figura. En cambio, el perímetro del círculo es igual a la multiplicación del número pi por el diámetro de la circunferencia. Existen también figuras compuestas que están formadas por dos o más figuras geométricas, para calcular su perímetro basta con sumar cada uno de los lados.

El perímetro tiene múltiples aplicaciones en disciplinas como la arquitectura y también se usa en el ámbito militar.

Ángulos

Uno de los elementos fundamentales para la geometría es el ángulo, el cual está formado por un par de semirrectas denominadas lados que tienen un origen común o vértice. Uno de los sistemas más usados para medir ángulos es el sistema sexagesimal, en el que medimos los ángulos en grados, minutos y segundos. De acuerdo a su tamaño, los ángulos pueden clasificarse en agudos, rectos, obtusos y llanos. Los agudos son mayores a 0° pero menores a 90°, los rectos miden 90°, los obtusos son mayores a 90° pero menores de 180° y los llanos miden siempre 180°.

El transportador es uno de los instrumentos más usados para medir ángulos.

Área

Para calcular superficies usamos el área, que es la extensión comprendida por una figura. Para cada figura plana existe una fórmula que permite determinar su área. En el Sistema Internacional de Unidades se emplea el metro cuadrado (m2) como unidad de medida de área, pero también podemos usar otras unidades derivadas, como el centímetro cuadrado (cm2) o el milímetro cuadrado (mm2). Podemos obtener el área de las figuras compuestas al descomponerlas en figuras geométricas más simples, para luego sumar las áreas de cada una.

El conocimiento del área puede ser aplicado para calcular cuántas baldosas son necesarias para cubrir una superficie.

Sistemas de referencia

Uno de los sistemas de referencias más usados es el sistema cartesiano, el cual está formado por dos ejes en el plano: uno horizontal denominado eje X o de las abscisas y otro vertical denominado eje Y o de las ordenadas. Para representar un punto en el plano cartesiano necesitamos sus coordenadas en el eje X y en el eje Y: la intersección de ambas coordenadas constituye su ubicación. Por otro lado, las figuras pueden experimentar transformaciones isométricas, es decir, cambios de posición y orientación que no afectan su forma. Estas transformaciones son: traslación, rotación y simetría.

Los sistemas de referencia son usados por el ser humano para medir las posiciones y las magnitudes de las cosas.

Cuadriláteros

Un cuadrilátero es un polígono de cuatro lados, y aunque se pueden clasificar en varios grupos, comparten elementos en común: tienen cuatro ángulos, la suma de estos es siempre igual 360° y tienen dos diagonales que dividen al cuadrado en triángulos. De manera general, los cuadriláteros son clasificados como paralelogramos, trapecios y trapezoides. Los paralelogramos tienen sus lados opuestos paralelos y pueden ser cuadrados, rombos y rectángulos. Los trapecios tienen dos de sus lados paralelos y los trapezoides no tienen ningún lado paralelo.

El campo de fútbol tiene forma de rectángulo que es un tipo de cuadrilátero.

Capacidad y volumen

El volumen es el espacio que ocupa un objeto mientras que la capacidad indica la cantidad que un objeto puede contener dentro de él. Todos los objetos tienen volumen pero no todos tienen capacidad. En el caso de los sólidos y los líquidos mientras mayor sea su volumen, mayor espacio van a ocupar. No es lo mismo el volumen de un grano de arroz que el de un edificio. Algunas unidades de volumen son el metro cúbico (m3), el centímetro cúbico (cm3) y milímetro cúbico (mm3), entre otras. El litro es una medida de capacidad que equivale a 1.000 cm3.

A pesar de estar muy relacionadas, no se deben confundir las medidas de volumen con las de capacidad.

La circunferencia

La circunferencia es una curva plana con todos sus puntos ubicados a la misma distancia del origen o centro. No debe ser confundida con el círculo que corresponde al área contenida dentro de ella, es decir, la circunferencia es el perímetro del círculo. Presenta ciertos elementos como el radio, el diámetro, la tangente, la cuerda, el arco y la semicircunferencia. Uno de los instrumentos usados para su trazado es el compás.

Los antiguos griegos empleaban la recta y la circunferencia como figuras básicas en sus cálculos.