Seguramente habrás notado a tu alrededor múltiples objetos con cuatro lados: una mesa, una caja o un teléfono móvil. Todos ellos tienen forma de cuadriláteros. Este tipo de figura tiene diversas clasificaciones según la longitud de sus lados y amplitud de sus ángulos. Con este artículos podrás diferenciar cada tipo de cuadrilátero y sabrás cómo calcular su perímetro.
¿qué es un cuadrilátero?
El término “cuadrilátero” proviene del latín quattuor que significa “cuatro” y latus que significa “lado”. Así que los cuadriláteros son aquellos polígonos que tienen cuatro lados. Estos lados pueden dibujarse de diversas formas: todos del mismo tamaño, de distintas medidas o con diferentes inclinaciones; pero lo fundamental es que estén unidos de forma tal que constituyan el contorno de una figura.
La suma de los ángulos interiores de un cuadrilátero es 360°.
La suma de los ángulos exteriores de un cuadrilátero es igual a 360°.
En el ejemplo anterior:
α + β + γ + δ = 360°
α’ + β’ + γ’ + δ’ = 360°
Clasificación de los cuadriláteros
Los cuadriláteros se clasifican en paralelogramos, trapecios y trapezoides.
Paralelogramos
Son figuras con lados paralelos dos a dos cuyas diagonales se cortan entre sí en segmentos iguales. Se clasifican en:
Figura
Característica
Cuadrado
4 lados iguales.
4 ángulos rectos (90°).
Rectángulo
Lados iguales dos a dos.
4 ángulos rectos (90°).
Rombo
4 lados iguales.
Ángulos iguales dos a dos.
Romboide
Lados iguales dos a dos.
Ángulos iguales dos a dos.
Eje de simetría de los paralelogramos
Todos los paralelogramos tienen un eje de simetría. El eje de simetría es el segmento que divide a la figura en dos partes iguales. El punto de intersección de las diagonales es el centro de simetría del paralelogramo.
Para diferenciar un rombo de un cuadrado invertido debes prestar atención a los ángulos, solo el cuadrado tiene cuatro ángulos rectos.
Trapecio
Son figuras con 2 lados paralelos denominados bases. Se clasifican en:
Figura
Característica
Trapecio rectángulo
2 ángulos rectos (90°), uno agudo (menor a 90°) y uno obtuso (mayor a 90°).
Un lado es perpendicular a sus bases (paralelas).
Trapecio isósceles
Sus lados no paralelos son de igual longitud.
2 ángulos internos agudos (menores a 90°) y 2 ángulos obtusos (mayores a 90°) iguales entre sí.
Sus ángulos opuestos son suplementarios.
Trapecio escaleno
Todos sus lados y ángulos son diferentes.
Trapezoide
Son figuras sin lados paralelos.
Figura
Características
Lados opuestos no paralelos.
CÁLCULO DEL PERÍMETRO DE PARALELOGRAMOS
El perímetro es la suma de las longitudes de los lados de cualquier figura geométrica, con excepción del círculo; sin embargo, con el fin de agilizar su cálculo puedes aplicar las siguientes fórmulas:
Figura
Fórmula de perímetro
Cuadrado
P = 4 × l
Rectángulo
P = 2 × l + 2 × b
Romboide
P = 2 × l1 + 2 × l2
Rombo
P = 4 × l
– Ejemplo:
Calcula el perímetro de este rectángulo:
P = 2 × b + 2 × a
P = 2 × 10 cm + 2 × 6 cm
P = 20 cm + 12 cm
P = 32 cm
El perímetro del rectángulo es de 32 cm.
– Otro ejemplo:
Calcula el área de este rombo:
P = 4 × l
P = 4 × 5 cm
P = 20 cm
El perímetro del rombo es de 20 cm.
Figuras geométricas en la publicidad
Las figuras geométricas son entendidas como símbolo de sencillez y perfección. Incluso, cada una de ellas, tiene un significado propio. Esto quiere decir que las figuras transmiten un concepto y las geométricas nos hablan de perfección. Las empresas no eligen al azar su logotipo sino que se dedican a estudiar su público e invierten mucho dinero para su elaboración. Un gran número de compañías optan por figuras geométricas porque está comprobado que tienen impacto seguro, profundo y duradero.
¡A practicar!
1. Clasifica las siguientes figuras como: paralelogramos, trapecio o trapezoide.
Solución
A. Paralelogramo
B. Paralelogramo
C. Trapecio
D. Trapecio
E. Paralelogramo
F. Trapezoide
G. Trapecio
H. Paralelogramo
I. Trapezoide
2. Calcula el perímetro de las siguientes figuras:
Solución
P = 2 × 12 cm + 2 × 9 cm
P = 24 cm + 18 cm
P = 42 cm
Solución
P = 4 × 7 cm
P = 28 cm
Solución
P = 2 × 12 cm + 2 × 6 cm
P = 24 cm + 12 cm
P = 36 cm
RECURSOS PARA DOCENTES
Enciclopedia “Matemática tomo 6”
En el tomo 6 de la enciclopedia de matemática encontrarás información detallada, ejemplos y ejercicios sobre una diversidad de temas vinculados a la geometría para el nivel primario.
UNA HOJA DE PAPEL O UNA REGLA GRADUADA SON OBJETOS PLANOS QUE SOLO TIENEN DOS DIMENSIONES: ALTO Y ANCHO. PERO TAMBIÉN HAY OBJETOS QUE TIENEN PROFUNDIDAD, COMO UNA CAJA DE ZAPATOS O UN VASO. ESTOS OBJETOS TIENEN UNA FORMA TRIDIMENSIONAL, ES DECIR, TIENEN TRES DIMENSIONES. SON MÁS COMUNES DE LOS QUE CREES Y PUEDES VERLOS EN MUCHOS OBJETOS.
¿QUÉ ES UNA FIGURA TRIDIMENSIONAL?
ES UNA FIGURA QUE TIENE TRES DIMENSIONES: ALTO, ANCHO Y LARGO.
¿SABÍAS QUÉ?
LAS FIGURAS TRIDIMENSIONALES TAMBIÉN SON CONOCIDAS COMO CUERPOS GEOMÉTRICOS.
HAY MUCHAS FIGURAS TRIDIMENSIONALES, LAS MÁS COMUNES SON:
ELEMENTOS DE LAS FIGURAS TRIDIMENSIONALES
LAS FIGURAS TRIDIMENSIONALES TIENEN CARAS, ARISTAS Y VÉRTICES.
CARAS: SON LOS LADOS PLANOS O CURVOS.
ARISTAS: SON LAS LÍNEAS RECTAS QUE UNEN LAS CARAS.
VÉRTICES: SON LOS PUNTOS QUE UNEN DOS O MÁS CARAS.
POR EJEMPLO, ESTE CUBO TIENE 6 CARAS, 12 ARISTAS Y 8 VÉRTICES.
EN ESTA TABLA MUESTRA LOS ELEMENTOS DE CADA FIGURA:
FIGURAS TRIDIMENSIONAL
ELEMENTOS
CUBO
6 CARAS
8 VÉRTICES
12 ARISTAS
ESFERA
1 CARA
CILINDRO
3 CARAS
2 ARISTAS
CONO
2 CARAS
1 ARISTAS
PRISMA RECTANGULAR
6 CARAS
8 VÉRTICES
12 ARISTAS
PIRÁMIDE
5 CARAS
5 VÉRTICES
8 ARISTAS
¿CÓMO CONSTRUIR UN PRISMA RECTANGULAR?
CON ESTA PLANTILLA PODRÁS CONSTRUIR UN PRISMA RECTANGULAR. COMO VES, LA FIGURA ESTÁ FORMADA POR 6 CARAS: 4 CARAS CON FORMA DE RECTÁNGULO Y 2 CARAS CON FORMA DE CUADRADO. CON AYUDA DE UN ADULTO, COPIA ESTE PLANTILLA EN UNA CARTULINA, RECÓRTALA, DOBLA LAS LÍNEAS Y LUEGO PÉGALAS. CON ESTOS PASOS TENDRÁS LA FIGURA TRIDIMENSIONAL EN TUS MANOS.
TIPOS DE FIGURAS TRIDIMENSIONALES
LAS FIGURAS TRIDIMENSIONALES PUEDEN SER DE DOS TIPOS: POLIEDROS O CUERPOS REDONDOS.
POLIEDROS
CUERPOS REDONDOS
SOLO TIENEN SUPERFICIES PLANAS Y NO PUEDEN RODAR.
TIENEN AL MENOS UN SUPERFICIE CURVA Y SÍ PUEDEN RODAR.
En la vida cotidiana es común observar triángulos. Los vemos en las porciones de pizza, en las señales de tránsito, en la vela de un velero, en las pirámides e incluso cuando estudiamos matemáticas. Los triángulos son figuras geométricas de tres lados y, aunque son los polígonos más simples, presentan ciertas particulares que los diferencian del resto.
El triángulo y sus ELEMENTOS
Los triángulos son figuras geométricas que cuentan con tres lados, tres ángulos y tres vértices.
Vértice: es el punto de unión de dos lados de un polígono o un ángulo.
Lado: es cada uno de los segmentos que une un vértice con el siguiente.
Ángulo: es el formado por la unión de dos rectas con un vértice en común. Pueden ser interno o externos.
La suma de los ángulos interiores de un triángulo es igual a 180°.
Un ángulo interior y exterior de un triángulo son suplementarios, por lo tanto, suman 180°.
Ángulos
Todos los triángulos tienen tres ángulos, estos pueden ser:
Agudos, cuando son menores a 90°.
Rectos, cuando son iguales a iguales a 90°.
Obtusos, cuando son mayores a 90°.
¿Cómo nombrar un triángulo?
Los vértices de los triángulos se designan con letras mayúsculas, mientras que los lados se denominan por la misma letra que el vértice opuesto, pero en minúscula. Por ejemplo:
El lado a es el segmento que une los vértices B y C.
El lado b es el segmento que une los vértices A y C.
El lado c es el segmento que une los vértices A y B.
[/su_note]
CLASIFICACIÓN de los triángulos
Son varios los criterios de clasificación que permiten agrupar a los triángulos de acuerdo a ciertas particularidades, los más utilizados son la medida de sus lados y la medida de sus ángulos.
Triángulos según sus lados
Triángulo equilátero: tiene 3 lados con la misma longitud.
Triángulo isósceles: tiene 2 lados con la misma longitud.
Triángulo escaleno: tiene todos sus lados desiguales.
Triángulos según sus ángulos
Triángulo rectángulo: tiene un ángulo recto, es decir, que mide 90°.
Triángulo acutángulo: tiene todos sus ángulos agudos, es decir, ángulos menores que 90°.
Triángulo obtusángulo: tiene un ángulo obtuso, es decir, un ángulo mayor a 90°.
Los triángulos pueden cumplir con ambos criterios de clasificación. Así, un triángulo isósceles también puede ser un triángulo rectángulo.
¡A practicar!
Observa los siguientes triángulos y clasifícalos según sus lados:
Solución
A) Escaleno
B) Equilátero
C) Isósceles
Observa los siguientes triángulos y clasifícalos según sus ángulos:
Solución
A) Rectángulo
B) Obtusángulo
C) Rectángulo
Perímetro de un triángulo
El perímetro es la medida del contorno de una figura. Lo calculamos al sumar la longitud de todos sus lados.
Donde:
P = perímetro
l = lados
– Ejemplo:
El perímetro de este triángulo isósceles es igual a la suma de la longitud de sus lados.
Este triángulo tiene un perímetro de 11 cm.
¿Sabías qué?
Para calcular el perímetro de un triángulo equilátero solo se debe multiplicar la longitud de un lado por 3. Esto se debe a que los tres lados miden lo mismo. Entonces, puedes utilizar la fórmula: P = 3 × l
área de un triángulo
El área es la medida de la superficie de la figura. La calculamos por medio de una expresión matemática que considera la longitud de la base y su altura:
Donde:
A = área
b = base
h = altura
– Ejemplo:
La base de este triángulo mide 6 cm y la altura 4 cm, así que solo sustituimos los valores en la fórmula y resolvemos:
Este triángulo tiene un área de 12 cm2.
Teorema de Pitágoras y el triángulo rectángulo
Pitágoras de Samos, un matemático griego del siglo VI a. C. descubrió que los triángulos rectángulos guardaban una relación respecto a sus lados. Él llegó a la conclusión de que el cuadrado del lado mayor de un triángulo rectángulo, es decir, la hipotenusa, siempre era igual a la suma del cuadrado de sus otros dos lados o catetos. A esta relación se la conoce como teorema de Pitágoras.
Podemos observar polígonos en múltiples objetos de nuestro alrededor. Estos son muy diversos y los hay con lados y ángulos iguales o desiguales entre sí. Son elementos fundamentales de la geometría y su conocimiento es esencial en diversos campos del conocimiento, como la ingeniería o la arquitectura.
¿Qué es un polígono?
En geometría, un polígono es una figura geométrica plana delimitada por un número finito de segmentos rectos.
¿Sabías qué?
La palabra “polígono” proviene del griego antiguo que quiere decir “muchos ángulos”.
Los polígonos presentan los siguientes elementos:
Lados: son los segmentos rectos que conforman al polígono.
Vértices: son los puntos en común entre dos lados consecutivos.
Diagonales: son los segmentos que unen a dos lados no consecutivos de un polígono.
Ángulos interiores: están formados por dos lados consecutivos en el interior del polígono.
Ángulos exteriores: están formados en el exterior del polígono entre un lado y la prolongación de otro lado consecutivo.
Polígonos regulares y sus tipos
Un polígono regular tiene lados con la misma longitud. Se caracterizan también porque sus ángulos internos y externos también son iguales. Otra característica es que poseen la misma cantidad de ejes de simetrías que de lados. Las diagonales en este tipo de polígonos tienen la misma longitud y siempre son interiores.
Todo polígono regular puede estar circunscrito en una circunferencia, lo que quiere decir que cada uno de sus vértices corresponde a un punto de la circunferencia. Mientras más lados tenga el polígono, más se va a aproximar a la forma de la circunferencia. Por esta razón, se asocia a la circunferencia (de forma informal) a un polígono de infinitos lados.
Área de polígonos regulares
Para medir el área de los polígonos es necesario conocer las definiciones de perímetro y apotema.
Perímetro: es la suma de los lados que forman una figura geométrica. En el caso de los polígonos regulares, se calcula al multiplicar el número de lados por la longitud de uno de sus lados.
Donde:
P: perímetro n: número de lados del polígono regular. L: longitud de uno de los lados del polígono.
Apotema: es la distancia perpendicular desde el centro de un polígono hasta uno de sus lados.
El área de un polígono regular se define como el producto de su perímetro por la apotema (a) dividido entre dos.
Donde:
A: área
P: perímetro
a: apotema
– Ejemplo:
Calcular el área de un pentágono cuyos lados miden 6 cm y su apotema es de 4,13 cm.
Lo que debemos hacer es calcular primero el perímetro para luego sustituir en la fórmula junto con la apotema para calcular el área.
El perímetro del apotema es 30 cm, al sustituir en la fórmula de área nos queda:
El área del pentágono es de 61,95 cm2.
¿Sabías qué?
El Departamento de Defensa de los Estados Unidos es un edificio en forma de Pentágono que mide 140.000 metros cuadrados aproximadamente.
Polígonos irregulares y sus tipos
En los polígonos irregulares se pueden cumplir algunas de estas condiciones:
– Tener sus lados con igual longitud pero sus ángulos internos diferentes.
– Tener sus ángulos de igual medida pero sus lados con diferente longitud.
– Tener sus lados con diferente longitud y sus ángulos internos con diferente medida.
Ejemplos de polígonos irregulares
Rombo
El rombo tiene los cuatro lados con igual longitud pero sus cuatro ángulos internos son diferentes: solo los ángulos opuestos de este polígono son iguales. Por eso se trata de un polígono irregular.
Rectángulo (no cuadrado)
Es un cuadrilátero con sus cuatro ángulos iguales (90°), pero sus lados tienen diferente longitud entre sí. Solo los lados paralelos comparten la misma longitud.
Triángulo (no equilátero)
Todo triángulo con un ángulo interior diferente de 60 grados es un polígono irregular.
Triángulos regulares e irregulares
Según sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos. Los equiláteros son los únicos triángulos que cumplen con las características de un polígono regular. Los triángulos escalenos son aquellos en los que las longitudes de sus lados y la medida de sus ángulos internos son diferentes, por lo tanto no son polígonos regulares. Por otra parte, los triángulos isósceles al contar solo con dos lados y dos ángulos iguales tampoco son considerados como polígonos regulares.
Perímetro de polígonos
Calculamos el perímetro de los polígonos regulares a través de la fórmula planteada anteriormente:
En cambio, en los polígonos irregulares, cuyos lados generalmente son diferentes, esta ecuación no siempre aplica. Para lo cual debemos sumar de forma separada las longitudes de cada uno de los lados.
Por ejemplo, para calcular el perímetro del siguiente triángulo isósceles simplemente sumamos cada una de las longitudes de sus lados.
El perímetro de este triángulo irregular es de 160 cm.
¡A practicar!
1. Determina el perímetro y el área de los siguientes polígonos regulares según los datos mostrados.
a) Un eneágono regular cuyos lados miden 7 cm y su apotema 9,62 cm.
Solución
P = 63 cm
A = 303,03 cm2
b) Un pentágono regular cuyos lados miden 6 cm y su apotema 4,13 cm.
Solución
P = 30 cm
A = 61,95 cm2
c) Un heptágono regular cuyos lados miden 8 cm y su apotema 8,31.
Solución
P = 56 cm
A = 232,68 cm2
d) Un triángulo regular (equilátero) cuyos lados miden 5 cm y su apotema 1,44 cm.
Solución
P= 15 cm
A = 10,8 cm2
e) Un decágono regular cuyos lados miden 3 cm y su apotema 4,62 cm.
Solución
P= 30 cm
A = 69,3 cm2
f) Un dodecágono regular cuyos lados miden 4 cm y su apotema 7,46 cm.
Solución
P= 48 cm
A = 179,04 cm2
g) Un hexágono regular cuyos lados miden 7 cm y su apotema 6,06 cm.
Solución
P= 42 cm
A = 127,26 cm2
h) Un octágono regular cuyos lados miden 2 cm y su apotema 2,41 cm.
Solución
P= 16 cm
A = 19,28 cm2
i) Un endecágono regular cuyos lados miden 3 cm y su apotema 5,11 cm.
Solución
P= 33 cm
A = 84,315 cm2
j) Un cuadrado cuyos lados miden 4 cm y su apotema 2 cm.
Solución
P= 16 cm
A = 16 cm2
2. ¿A qué polígono con una apotema de 4,33 cm le corresponde un área de 64,95 cm2.
a) Un decágono de 2 cm de lado.
b) Un hexágono de 5 cm de lado.
c) Un pentágono de 7 cm de lado.
d) Un octágono de 4 cm de lado.
Solución
b) Un hexágono de 5 cm de lado.
3. ¿Qué polígono irregular tiene sus lados de igual longitud pero sus ángulos internos son diferentes?
a) Círculo
b) Cuadrado
c) Rectángulo
d) Rombo
Solución
d) Rombo
RECURSOS PARA DOCENTES
Artículo “Perímetro de los polígonos”
Este artículo define qué es un polígono, cuáles son sus clasificaciones y cómo se calcula su el perímetro. También plantea una serie de ejercicios para resolver.
Micrositio “Tarjetas Educativas – Geometría y medidas”
En este micrositio se puede encontrar una serie de tarjetas interactivas que resumen los elementos principales de la geometría, como los polígonos y sus principales características.
Es posible que identifiques diversas figuras geométricas al observar el mundo que te rodea y los objetos presentes en él. La mayoría de estas figuras están compuestas por semirrectas unidas por un punto en común, es decir, un vértice. Esa porción del plano delimitada por dos semirrectas que nacen de un mismo punto se conoce como ángulo y según su medida puede ser de distintos tipos.
¿qué es un ángulo?
Es una porción del plano delimitada por dos semirrectas, las cuales también son llamadas lados. Ambos lados coinciden en un punto de origen o vértice. La abertura de un lado con respecto al otro es la que denominamos ángulo.
Con una letra griega, por ejemplo α y se lee “ángulo alpha”. En esta imagen vemos un ángulo α = 52,13°.
Con los puntos correspondientes a las semirrectas que lo constituyen y al vértice. Estos puntos se nombran mediante letras, por ejemplo, en la imagen vemos el ángulo AOB.
CLASIFICACIÓN DE LOS ÁNGULOS
Los ángulos se clasificar según tres criterios diferentes: su medida, su posición y la suma de sus medidas con otros ángulos.
¿Sabías qué?
Los ángulos se miden en grados (°).
Ángulos según su medida
Ángulo completo: tiene una amplitud de 360°, significa que es un giro completo.
Ángulo nulo: tiene una amplitud de 0°.
Ángulo llano: tiene una amplitud de 180°, podrás verlo representado como una línea recta.
Ángulo cóncavo: tiene una amplitud mayor que 180° pero menor que 360°.
Ángulo convexo: tiene una amplitud menor que 180°.
Dentro de los ángulos convexos encontramos otras clasificaciones:
Ángulos rectos: miden 90°.
Ángulos obtusos: miden más de 90°.
Ángulos agudos: miden menos de 90°.
Ángulos según su posición
Según su posición los ángulos pueden ser:
Adyacentes: son aquellos que tienen el vértice y un lado en común. Al sumar las amplitudes de cada uno de ellos el resultado será 180°.
Consecutivos: son aquellos que comparten tanto el vértice como uno de sus lados.
Opuestos por el vértice: son aquellos que solo tienen el vértice en común.
Ángulos según la suma de su medida con otros ángulos
Los ángulos también pueden clasificarse según el resultado obtenido al sumar la medida de la amplitud de un ángulo con la de otro ángulo, así sabrás que:
Un ángulo es suplementario con otro si la suma de sus amplitudes da como resultado un ángulo de 180°.
Un ángulo es complementario con otro si la suma de sus amplitudes da como resultado un ángulo de 90°.
MEDICIÓN DE ÁNGULOS
Por lo general, la medición de los ángulos se realiza por medio de un transportador.
¿Qué es un transportador?
Es un instrumento geométrico que puede tener una forma circular o semicircular y se utiliza para medir gráficamente un ángulo así como para construirlo. Cuenta con graduaciones o marcas iguales que sirven de escala para identificar la medida del ángulo. Los transportadores circulares están divididos en 360 partes iguales, mientras que los semicirculares están divididos en 180 partes iguales. Cada una de estas partes representa un grado (1°) .
Para medir un ángulo con transportador seguimos estos pasos:
1. Identificamos el vértice, es decir, el punto del que nacen las semirrectas y hacemos que coincida con el centro del transportador.
2. Verificamos que el cero (0) en el transportador esté justo sobre uno de los lados del ángulo.
3. Observamos el valor que marca el otro lado que pasa por la escala graduada. En este caso, la medida del ángulo â = 165°.
¿Sabías qué?
Los transportadores tienen escalas graduadas dobles: una va en sentido de las manecillas del reloj y las otra en sentido contrario. Siempre debes recordar comenzar a medir a partir del cero.
LOS ÁNGULOS EN LAS FIGURAS GEOMÉTRICAS
Las figuras geométricas planas poseen ángulos interiores, ubicados dentro de la figuras; y ángulos exteriores, ubicados entre un lado de la figura y el otro lado siguiente.
Los ángulos interiores de los triángulos siempre suman 180°. Según sus ángulos los triángulos pueden ser:
Nombre
Figura
Características
Triángulo rectángulo
Tiene un ángulo recto (90°).
Triángulo acutángulo
Tiene todos sus ángulos agudos (menores a 90°).
Triángulo obtusángulo
Tiene un ángulo obtuso (mayores a 90° pero menores a 180°).
Ángulos interiores de los cuadriláteros
En el caso de los cuadriláteros, la suma de sus cuatro ángulos internos siempre es igual a 360°. De acuerdo al tipo de cuadrilátero el valor del ángulo puede variar. Su clasificación es la siguiente:
Nombre
Figura
Característica
Cuadrado
Tiene cuatro ángulos rectos (90°).
Rectángulo
Tiene cuatro ángulos rectos (90°).
Rombo
Tiene ángulos opuestos iguales.
Romboide
Tiene ángulos opuestos iguales.
Trapecio rectángulo
Tiene dos ángulos rectos (90°).
Trapecio isósceles
Los dos ángulos de la base menor son iguales. Los dos ángulos de la base mayor son iguales.
Trapecio escaleno
Todos sus ángulos son diferentes.
¿Sabías qué?
La palabra “geometría” viene de geo que significa “Tierra”, y de metría que significa “medir”.
Ángulos internos de polígonos regulares
Los polígonos regulares son aquellos que tienen todos sus ángulos internos iguales. Para calcular su valor se emplea la ecuación (n − 2) × 180°/n donde n es el número de lados que tiene el polígono. Por ejemplo, para un hexágono se sustituye la n por el número 6 que corresponde al número de sus lados y obtenemos que (6 − 2) × 180°/6 = 120°, lo que quiere decir que cada uno de los ángulos internos de un hexágono mide 120°.
¡A practicar!
1. Observa los ángulos entre estas rectas. Completa la tabla con los ángulos solicitados.
Tipo de ángulo
Nombre del ángulo
Recto
Ángulo α
Agudo
Obtuso
Complementario
Suplementario
Adyacente
Solución
Tipo de ángulo
Nombre del ángulo
Recto
Ángulo α
Agudo
Ángulo β
Obtuso
Ángulo GOC
Complementario
Ángulos BOE y EOC
Suplementario
Ángulos EOG y GOF
Adyacente
Ángulos AOC y COB
2. Calcula los ángulos complementarios y suplementarios para los siguientes ángulos:
β = 50°
Solución
Ángulo complementario = 40° porque 50° + 40° = 90°.
Ángulo suplementario = 130° porque 50° + 130° = 180°.
γ = 15°
Solución
Ángulo complementario = 75° porque 15° + 75° = 90°.
Ángulo suplementario = 165° porque 15° + 165° = 180°.
δ = 75°
Solución
Ángulo complementario = 15° porque 75° + 15 = 90°.
Ángulo suplementario = 105° porque 75° + 105° = 180°.
RECURSOS PARA DOCENTES
Artículo “Ángulos”
En el siguiente artículo encontrarás información sistematizada sobre las diferentes clasificaciones de los ángulos.
Los ángulos están presentes en la mayoría de las figuras geométricas y en nuestra vida cotidiana. Se los considera indispensables para realizar cálculos trigonométricos y estudios en balística, arquitectura e ingeniería. De acuerdo a su amplitud, los ángulos se clasifican en varios tipos.
El ángulo y sus elementos principales
Un ángulo es una región del plano comprendida por dos semirrectas que tienen un origen en común. Los elementos de un ángulos son los siguientes:
Vértice: es el punto en común de las dos semirrectas.
Lados: son las dos semirrectas que conforman al ángulo.
Amplitud: es la medida de abertura de los lados de un ángulo. Esta medida usualmente se lee en grados sexagesimales.
¿Sabías qué?
Los ángulos suelen nombrarse con letras del alfabeto griego.
El sistema sexagesimal
Se usa principalmente para medir el tiempo y los ángulos. En este último caso, las unidades que emplea son grados, minutos y segundos. Al dividir un ángulo llano en 180 partes iguales, una de esas partes equivale a un grado (°). Si se divide un grado en sesenta partes iguales, una de esas partes equivale a un minuto (′). Y si el minuto se divide en 60 partes iguales, una de esas partes corresponde a un segundo (″). En resumen:
1° = 60′
1′ = 60″
Observa que este sistema emplea como base el número 60 y de ahí viene el origen de su nombre. El instrumento usado para su medición es el transportador.
Ángulo agudo: cuando es mayor que 0° pero menor que 90°.
Ángulo recto: cuando mide exactamente 90°.
Ángulo obtuso: cuando es mayor de 90° pero menor que 180°.
Ángulo llano: cuando mide exactamente 180°.
Ángulo completo: cuando mide 360°.
Ángulos complementarios
Dos ángulos son complementarios si al ser sumados el resultado es igual a 90°. Al saber el valor de uno de los ángulos puedes calcular el valor del otro al restar 90° al ángulo conocido.
– Ejemplo:
Se tienen los ángulos complementarios α y β. El valor de β es de 35°. Calcula el valor de α.
Simplemente debes resolver la resta:
Por lo tanto el valor de α es 55°.
Ángulos suplementarios
Dos ángulos son suplementarios si alser sumados el resultado es igual a 180°. Al igual que en el caso anterior puedes determinar el valor de un ángulo de este tipo si conoces el valor de otro y lo restas a 180°.
– Ejemplo:
Se tienen los ángulos suplementarios θ y δ. El valor de θ es de 160°. Calcular el valor de δ.
Resuelve la resta:
El valor de δ es 20°.
Medida de un ángulo
La medición de los ángulos se realiza a menudo a través de un transportador, el cual puede ser de dos tipos: circular o semicircular. El circular mide los 360° de la circunferencia y el semicircular mide los 180°. Ambos transportadores cuentan con una marca en el centro que se debe colocar en el vértice del ángulo a medir. El 0° de la escala debe coincidir con uno de los lados del ángulo y la lectura del ángulo sería la que indica el otro lado en la escala.
Los transportadores suelen presentar dos numeraciones que van en diferentes sentidos según se lea el ángulo: en sentido horario (en el sentido de las manecillas del reloj) o en sentido antihorario.
Los ángulos en las figuras planas
Las figuras planas poseen ángulos interiores y ángulos exteriores. Los ángulos interiores, como su nombre lo indica, se ubican en el interior de la figura, mientras que los exteriores se ubican entre un lado de la figura y el otro lado siguiente. Por ejemplo:
Cálculo de ángulos internos en triángulos
Los ángulos interiores de los triángulos siempre suman 180°. De manera que si conoces la medida de dos de sus ángulos internos puedes calcular la medida del tercero. Lo único que debes hacer es restar los valores de los ángulos conocidos a 180°. Por ejemplo:
– Calcula el valor del ángulo θ.
Como ya sabes, la sumas de los ángulos internos de un triángulo es igual a 180°, entonces, si restas los valores de los ángulos conocidos a 180° obtendrás el valor de Θ:
El valor del ángulo θ es 48°.
¿Sabías qué?
La suma de los ángulos externos de un triángulo es igual a 360°.
Cálculo de ángulos internos en cuadriláteros
En el caso de los cuadriláteros se cumple que la suma de sus cuatro ángulos internos siempre es igual a 360°. De acuerdo al tipo de cuadrilátero el valor del ángulo puede variar. Por ejemplo, en el caso del cuadrado y del rectángulo sus cuatro ángulos internos son iguales y miden 90°. En el caso del rombo y del romboide sus ángulos opuestos son iguales. Si el trapecio es rectángulo posee dos ángulos consecutivos que miden 90°. Si es isósceles tiene los ángulos adyacentes a la base mayor con la misma medida y si el trapecio es escaleno ninguno de sus ángulos mide lo mismo.
Los trapezoides son otro tipo de cuadrilátero con el valor de cada uno de sus ángulos internos diferentes. En resumen:
Figuras
Características
El cuadrado y el rectángulo tienen ángulos internos iguales y miden 90°.
El rombo tiene todos sus ángulos iguales (pero son agudos, es decir, menores a 90°).
El romboide presenta cada par de ángulos opuestos con la misma medida.
El trapecio rectángulo tiene dos ángulos rectos (miden 90° cada uno).
El trapecio isósceles presenta los ángulos adyacentes a la base mayor con la misma medida.
El trapecio escaleno presenta todos sus ángulos con diferente medida.
El trapezoide no posee ningún ángulo con la misma medida.
Para calcular ángulos en un cuadrilátero simplemente tenemos que restar los ángulos conocidos a 360°.
– Ejemplo:
Calcula el valor del ángulo ε de la siguiente figura.
El valor del ángulo ε es 115°.
¡A practicar!
1. ¿Qué tipo de ángulo observas?
a)
Solución
Ángulo obtuso.
b)
Solución
Ángulo llano.
c)
Solución
Ángulo recto.
d)
Solución
Ángulo agudo.
2. Calcula el valor del ángulo γ.
Solución
γ = 55°
3. Calcula el valor del ángulo θ.
Solución
θ = 70°
4. Calcula el valor del ángulo φ.
Solución
φ = 58°
5. Calcula el valor del ángulo β.
Solución
β = 105°
RECURSOS PARA DOCENTES
Artículo “Ángulos en triángulos. Resolución mediante ecuaciones”
El artículo explica los diferentes tipos de ángulos y cómo determinarlos a través de ecuaciones. También muestra una serie de ejemplos y ejercicios relacionados al tema.
El perímetro es el contorno de una figura geométrica. En el caso de los polígonos regulares, el perímetro lo calculamos al multiplicar la cantidad de sus lados por la longitud de uno de estos. Otra forma de calcular el perímetro es a través de la suma de cada uno de los lados de una figura. En cambio, el perímetro del círculo es igual a la multiplicación del número pi por el diámetro de la circunferencia. Existen también figuras compuestas que están formadas por dos o más figuras geométricas, para calcular su perímetro basta con sumar cada uno de los lados.
Ángulos
Uno de los elementos fundamentales para la geometría es el ángulo, el cual está formado por un par de semirrectas denominadas lados que tienen un origen común o vértice. Uno de los sistemas más usados para medir ángulos es el sistema sexagesimal, en el que medimos los ángulos en grados, minutos y segundos. De acuerdo a su tamaño, los ángulos pueden clasificarse en agudos, rectos, obtusos y llanos. Los agudos son mayores a 0° pero menores a 90°, los rectos miden 90°, los obtusos son mayores a 90° pero menores de 180° y los llanos miden siempre 180°.
Área
Para calcular superficies usamos el área, que es la extensión comprendida por una figura. Para cada figura plana existe una fórmula que permite determinar su área. En el Sistema Internacional de Unidades se emplea el metro cuadrado (m2) como unidad de medida de área, pero también podemos usar otras unidades derivadas, como el centímetro cuadrado (cm2) o el milímetro cuadrado (mm2). Podemos obtener el área de las figuras compuestas al descomponerlas en figuras geométricas más simples, para luego sumar las áreas de cada una.
Sistemas de referencia
Uno de los sistemas de referencias más usados es el sistema cartesiano, el cual está formado por dos ejes en el plano: uno horizontal denominado eje X o de las abscisas y otro vertical denominado eje Y o de las ordenadas. Para representar un punto en el plano cartesiano necesitamos sus coordenadas en el eje X y en el eje Y: la intersección de ambas coordenadas constituye su ubicación. Por otro lado, las figuras pueden experimentar transformaciones isométricas, es decir, cambios de posición y orientación que no afectan su forma. Estas transformaciones son: traslación, rotación y simetría.
Cuadriláteros
Un cuadrilátero es un polígono de cuatro lados, y aunque se pueden clasificar en varios grupos, comparten elementos en común: tienen cuatro ángulos, la suma de estos es siempre igual 360° y tienen dos diagonales que dividen al cuadrado en triángulos. De manera general, los cuadriláteros son clasificados como paralelogramos, trapecios y trapezoides. Los paralelogramos tienen sus lados opuestos paralelos y pueden ser cuadrados, rombos y rectángulos. Los trapecios tienen dos de sus lados paralelos y los trapezoides no tienen ningún lado paralelo.
Capacidad y volumen
El volumen es el espacio que ocupa un objeto mientras que la capacidad indica la cantidad que un objeto puede contener dentro de él. Todos los objetos tienen volumen pero no todos tienen capacidad. En el caso de los sólidos y los líquidos mientras mayor sea su volumen, mayor espacio van a ocupar. No es lo mismo el volumen de un grano de arroz que el de un edificio. Algunas unidades de volumen son el metro cúbico (m3), el centímetro cúbico (cm3) y milímetro cúbico (mm3), entre otras. El litro es una medida de capacidad que equivale a 1.000 cm3.
La circunferencia
La circunferencia es una curva plana con todos sus puntos ubicados a la misma distancia del origen o centro. No debe ser confundida con el círculo que corresponde al área contenida dentro de ella, es decir, la circunferencia es el perímetro del círculo. Presenta ciertos elementos como el radio, el diámetro, la tangente, la cuerda, el arco y la semicircunferencia. Uno de los instrumentos usados para su trazado es el compás.
Gracias al estudio de la geometría y la trigonometría, la humanidad evolucionó de tal manera que logró edificar ciudades, construir herramientas y diseñar su vestimenta; y los ángulos son parte de esto. Si observamos a nuestro alrededor todos los objetos tienen algún tipo de ángulo.
¿Qué es un ángulo?
Un ángulo es la porción comprendida entre dos semirrectas con un origen en común llamado vértice.
Tipos de ángulos
La clasificación de los ángulos dependerá por un lado de sus medidas y por el otro de sus posiciones.
Según sus medidas un ángulo puede ser:
Convexo: es el que mide menos de 180°.
Nulo: es que el que no tiene amplitud, mide 0°.
Agudo: es el que mide menos de 90°.
Recto: es el que mide 90°.
Obtuso: es el que mide más de 90° y menos de 180°.
Cóncavo: es el que mide más de 180°.
Llano: es el que mide 180°.
Completo: es el que mide 360°.
¿Sabías qué?
Los ángulos agudos, rectos y obtusos están dentro de la clasificación de ángulos convexos.
Según su posición, dos ángulos pueden ser:
Adyacentes: tienen un lado y un vértice en común. La suma de sus ángulos suma 180°.
Consecutivos: tienen un lado y un vértice en común.
Opuestos por el vértice: tienen en común solamente el vértice.
Los egipcios fueron los primeros en establecer la medida de los ángulos en grados, minutos y segundos.
¡Encuentra los ángulos!
Observa la siguiente imagen:
¿Qué tipos de ángulos encuentras en la casa?
Solución
Agudos, rectos y obtusos.
¿Dónde encontraste los ángulos agudos?
Solución
En el triángulo de la chimenea y en la unión de la pared con el techo.
¿Dónde encontraste los ángulos rectos?
Solución
En la puerta, en las ventanas y en la unión del suelo con las paredes.
¿Dónde encontraste los ángulos obtusos?
Solución
En el techo.
La vuelta del Sol
En la Antigüedad, los babilonios hicieron varios estudios sobre los astros porque creían que en ellos estaba escrito el futuro. Tras observar el cielo, consideraban que el Sol tardaba 360 días en volver a estar en la misma posición. Por esto decidieron dividir la circunferencia en 360 partes iguales. Llamamos grado a cada una de las 360 partes iguales en la que dividimos a un ángulo completo.
elementos de los ángulos
Como ya vimos, un ángulo es el espacio que existe entre dos semirrectas que parten desde un mismo punto. Los elementos que componen al ángulo son los siguientes:
Lado: es lo que antes llamábamos semirrecta.
Vértice: es el punto en el que coinciden las dos semirrectas.
Amplitud: es la apertura que hay entre los dos lados. Medimos la amplitud en grados y usamos un transportador para eso.
Transportador
El transportador es el instrumento que nos permite medir y construir un ángulo gráficamente. Por lo general son de plástico y poseen una forma circular o semicircular. Para utilizarlo apoyamos el centro del semicírculo en el vértice del ángulo, hacemos coincidir uno de los lados con el 0° y el otro lado del ángulo marcará la abertura en el punto del semicírculo graduado.
Estimación de ángulos
Para conocer la medida exacta de un ángulo se usa el transportador, pero también podemos estimar su valor. Para esto podemos usar como referencia medidas ya conocidas, como el ángulo de 45° y el ángulo de 90°; y así poder saber una medida aproximada del ángulo.
Escuadra y estimación
La escuadra es una herramienta de geometría que podemos utilizar para estimar ángulos, pues posee un ángulo de 90° como se observa en la imagen. El ángulo de 45° se obtiene de dividir a la mitad el ángulo de 90°. En la última escuadra vemos la estimación de un ángulo de 30° y otro de 80°. Para aproximar usamos las referencias de los ángulos conocidos. La abertura del ángulo de 30° es más pequeña que la de 45°, por eso el ángulo es menor. Lo mismo nos pasa con el ángulo de 80°, su apertura es menor que 90°.
Cuando un ángulo es mayor que 90°, uno de los lados del ángulo quedará a la izquierda de la escuadra. Veamos un ejemplo:
¡Estima medidas!
Estima las medidas de los ángulos marcados:
¿Cuánto estimas que mide el ángulo del objeto A?
Solución
Como la abertura es más pequeña que 45°, pero más grande que 0°, podemos decir que mide aproximadamente 30°.
¿Cuánto estimas que mide el ángulo objeto B?
Solución
Como la abertura es un poco más pequeña que 90°, pero mayor a 45°, podemos decir que mide aproximadamente 60°.
¿Cuánto estimas que mide el ángulo del objeto C?
Solución
Mide 90°.
¿Cuánto estimas que mide el ángulo del objeto D?
Solución
Como la abertura es mayor a los 90°, pero está lejos de llegar a 180°, podemos decir que mide aproximadamente 120°.
¿Cuánto estimas que mide el ángulo del objeto E?
Solución
Como la abertura es un poco más pequeña que 90°, pero mayor a 45°, podemos decir que mide aproximadamente 75°.
RECURSOS PARA DOCENTES
Artículo “Ángulos”
Este recurso le permitirá profundizar la información sobre los ángulos y su clasificación.
El ángulo es uno de los elementos fundamentales para la geometría porque está presente en las figuras ¡Incluso las paredes de nuestras casas forman ángulos entre ellas! Se puede definir como la porción del plano que se encuentra delimitada por dos semirrectas que comparten el mismo origen.
Tipos de ángulos
Antes de poder reconocer los diferentes tipos de ángulos es necesario comprender los elementos que los forman.
Lado: es cada una de las semirrectas que conforman el ángulo y que tienen un origen en común.
Vértice: es el punto común o de origen de los lados.
Sistema de medida
El sistema usado para medir ángulos se denomina sistema sexagesimal, su unidad de medida es el grado (°) y resulta de dividir un ángulo llano en 180 partes, cada una de ellas representa un grado. Para medidas más pequeñas se usa el minuto (′) y el segundo (′′). Se denomina sexagesimal porque cada unidad es 60 veces mayor que la siguiente y 60 veces inferior que la anterior. Es por ello que 1° = 60′ y 1′ = 60′′.
De acuerdo a su tamaño los ángulos se clasifican en:
Ángulo agudo: es aquel mayor a 0° pero menor a 90°.
Ángulo recto: es aquel que mide 90°.
Ángulo obtuso: es aquel cuya medida es mayor a 90°pero menor a 180°.
Ángulo llano: es aquel cuyo ángulo es igual a 180°.
Uno de los instrumentos más usados para medir ángulos es el transportador, este presenta una serie de marcas que indican los grados. El más común es el transportador semicircular el cual viene graduado en 180°. Sus partes fundamentales son:
Para medir un ángulo con el transportador debemos seguir los siguientes pasos:
Ubicar el origen del transportador en el vértice del ángulo que se va a medir.
Hacer coincidir uno de los lados del ángulo con la línea horizontal de la base.
Leer el ángulo que corta el segundo lado. Si el ángulo está abierto hacia la izquierda se usa la escala externa, si está abierto hacia la derecha se usa la escala interna (de acuerdo al tipo de instrumento las escalas pueden invertirse).
¿Sabías qué?
El teodolito es un instrumento con mayor precisión que el transportador que permite medir grados, minutos y segundos.
Construcción de ángulos
Una de las formas de construir ángulos es a través de una regla y un transportador. Para ello debemos realizar los siguientes pasos:
1. Trazamos con ayuda de la regla una semirrecta que será más adelante uno de los lados del ángulo.
2. Ubicamos el origen del transportador en uno de los extremos de la semirrecta (este también será el origen del ángulo), de manera que el número cero de la escala coincida con el otro extremo.
3. Ubicamos en la escala el ángulo que deseamos construir, para este ejemplo queremos construir un ángulo de 40°.
4. Hacemos una marca en el punto donde leímos el ángulo deseado.
5. Unimos el origen con la lectura marcada, de esta forma construimos un ángulo agudo de 40°.
Comparación de ángulos
Luego de conocer cómo funciona el sistema sexagesimal en la medición de ángulos, podemos concluir que los ángulos llanos son mayores que los obtusos, que los obtusos son mayores que los rectos y que estos últimos son mayores que los agudos.
De manera que cuando necesitemos comparar ángulos lo primero que debemos hacer es identificar qué tipo de ángulo es. En el caso de conocer los valores de los ángulos, realizamos la comparación de de los números de acuerdo a la cantidad que representan, es decir: un ángulo de 35° es mayor que uno de 20°, pero es menor que uno de 150°.
Los ángulos y el triángulo
Los ángulos son tan importantes que en sí mismos determinan un criterio de clasificación de los triángulos. En este sentido, los triángulos se clasifican en acutángulos, rectángulos y obtusángulos. Los triángulos acutángulos tienen todos sus ángulos internos agudos, los triángulos rectángulos tienen un ángulo recto y los otros dos agudos, los triángulos obtusángulos tienen un ángulo obtuso y los otros dos agudos. En los triángulos se cumple que la suma de sus ángulos internos siempre es igual 180°.
¡A practicar!
1. ¿A qué tipo de ángulo corresponde cada imagen?
a)
Solución
Ángulo recto.
b)
Solución
Ángulo llano.
c)
Solución
Ángulo obtuso.
d)
Solución
Ángulo agudo.
2. ¿Cuál de los siguientes ángulos no es agudo?
a) 95°
b) 30°
c) 3°
d) 84°
Solución
a) 95°. No es agudo porque no es menor a 90°.
3. ¿Cuál de los siguientes ángulos no es obtuso?
a) 125°
b) 95°
c) 160°
d) 180°
Solución
d) 180°. No es obtuso porque es igual a 180°, los ángulos obtusos deben ser mayores a 90° y menores a 180°.
4. ¿Cuál de los siguientes ángulos es agudo?
a) 90°
b) 180°
c) 200°
d) 50°
Solución
d) 50°. Es agudo por ser menor a 90°.
RECURSOS PARA DOCENTES
Artículo “Ángulos”
El presente artículo profundiza más en los diferentes tipos de ángulos que existen según su medida, su posición y sus características.
Este artículo detalla los elementos y tipos de ángulos, su construcción y el uso del transportador. Al final se proponen una serie de ejercicios relacionados.
TODOS LOS OBJETOS QUE NOS RODEAN TIENEN UNA FORMA Y MUCHOS DE ELLOS SON PLANOS, ES DECIR, SOLO TIENEN DOS DIMENSIONES Y NO TIENEN RELIEVE. LAS FIGURAS PLANAS MÁS COMUNES SON EL CÍRCULO, EL TRIÁNGULO EL CUADRADO Y EL RECTÁNGULO. CON ESTE ARTÍCULO APRENDERÁS A DIFERENCIAR ESTAS FIGURAS.
¿QUÉ ES UNA FIGURA PLANA?
UNA FIGURA PLANA ES AQUELLA QUE ESTÁ DEFINIDA POR LÍNEAS RECTAS O CURVAS. ADEMÁS, SOLO TIENE DOS DIMENSIONES: ALTO Y ANCHO.
¿VES ALGUNA FIGURA?
ESTE DIBUJO ESTÁ ELABORADO SOLO CON FIGURAS PLANAS, ¿PUEDES RECONOCER ALGUNAS?
¿CUÁLES SON LAS FIGURAS PLANAS?
HAY MUCHOS TIPOS DE FIGURAS PLANAS, LAS MÁS COMUNES SON EL CÍRCULO, EL TRIÁNGULO, EL CUADRADO Y EL RECTÁNGULO.
OBSERVA ESTOS GRUPOS DE FIGURAS, ¿EN QUÉ SE PARECEN?
LAS FIGURAS DE COLOR ROJO SON CUADRADOS.
LAS FIGURAS DE COLOR AZUL SON CÍRCULOS.
LAS FIGURAS DE COLOR AMARILLO SON TRIÁNGULOS.
LAS FIGURAS DE COLOR VERDE SON RECTÁNGULOS.
¿CUÁLES SON LOS ELEMENTOS DE LAS FIGURAS?
CÍRCULO
UN CÍRCULO ES UNA FIGURA PLANA FORMADA POR UNA CURVA CERRADA Y REDONDA QUE SIEMPRE TIENE LA MISMA DISTANCIA DEL CENTRO.
¿CUÁLES SON SUS ELEMENTOS?
EL CENTRO, LA CIRCUNFERENCIA, EL DIÁMETRO Y EL RADIO.
¿SABÍAS QUÉ?
LA LÍNEA QUE BORDEA AL CÍRCULO SE LLAMA CIRCUNFERENCIA.
TRIÁNGULO
UN TRIÁNGULO ES UNA FIGURA PLANA FORMADA POR TRES LADOS.
¿CUÁLES SON SUS ELEMENTOS?
LOS LADOS Y LOS VÉRTICES.
CLASIFICACIÓN DE LOS TRIÁNGULOS
SEGÚN SUS LADOS LOS TRIÁNGULOS PUEDEN SER EQUILÁTEROS, ISÓSCELES O ESCALENOS.
CUADRADO
UN CUADRADO ES UNA FIGURA PLANA CON CUATRO LADOS IGUALES.
¿CUÁLES SON SUS ELEMENTOS?
LOS LADOS Y LOS VÉRTICES.
RECTÁNGULO
UN RECTÁNGULO ES UNA FIGURA PLANA CON CUATRO RECTAS Y CON LADOS OPUESTOS PARALELOS.
¿CUÁLES SON SUS ELEMENTOS?
EL LARGO, EL ANCHO Y LOS VÉRTICES.
¿QUÉ ES EL TANGRAM?
ES UN JUEGO DE ORIGEN CHINO EN EL QUE PODEMOS FORMAR DIVERSAS FIGURAS CON SIETE PIEZAS BÁSICAS LLAMADAS “TANS”:
CINCO (5) TRIÁNGULOS.
UN (1) CUADRADO.
UN (1) PARALELOGRAMO.
ESTAS PIEZAS O “TANS” SE GUARDAN DE TAL MANERA QUE FORMAN UN CUADRADO.
FIGURAS PLANAS EN LOS OBJETOS
OBSERVA ESTOS OBJETOS, ¿A CUÁL FIGURA PLANA SE PARECEN?
RESPONDE:
¿CUÁLES OBJETOS SE PARECEN A UN CÍRCULO?
SOLUCIÓN
¿CUÁLES OBJETOS SE PARECEN A UN RECTÁNGULO?
SOLUCIÓN
¿CUÁLES OBJETOS SE PARECEN A UN CUADRADO?
SOLUCIÓN
¿CUÁLES OBJETOS SE PARECEN A UN TRIÁNGULO?
SOLUCIÓN
¡A PRACTICAR!
1. COLOREA LAS FIGURAS DE LA SIGUIENTE MANERA:
CÍRCULOS DE COLOR AZUL.
TRIÁNGULOS DE COLOR AMARILLO.
RECTÁNGULOS DE COLOR VERDE.
CUADRADO DE COLOR ROJO.
SOLUCIÓN
2. COLOREA DE ROJO LAS FIGURAS PLANAS FORMADAS POR TRES LADOS Y TRES VÉRTICES.
SOLUCIÓN
3. RESPONDE LAS PREGUNTAS.
¿CUÁNTOS LADOS TIENE EL CUADRADO?
SOLUCIÓN
EL CUADRADO TIENE CUATRO (4) LADOS IGUALES.
¿CUÁNTOS LADOS TIENE UN TRIÁNGULO?
SOLUCIÓN
EL TRIÁNGULO TIENE TRES LADOS.
¿QUÉ ES UNA CIRCUNFERENCIA?
SOLUCIÓN
ES LA LÍNEA QUE BORDEA AL CÍRCULO.
¿QUÉ ES UN TRIÁNGULO ISÓSCELES?
SOLUCIÓN
ES UNA TRIÁNGULO CON DOS LADOS IGUALES.
¿LOS RECTÁNGULOS TIENEN CUATRO LADOS IGUALES?
SOLUCIÓN
NO. LOS RECTÁNGULOS TIENEN DOS LADOS MÁS LARGOS QUE LOS OTROS DOS.
RECURSOS PARA DOCENTES
Artículo “Clasificación de los triángulos”
Con este recurso podrá profundizar sobre los diversos tipos de triángulos, figura básica de la geometría plana.