TRIÁNGULOS
El triángulo es una de las figuras geométricas más estudiadas en la geometría y, a pesar de su simplicidad, es muy usado en muchos cálculos para resolver diversos problemas. Este polígono de tres lados puede clasificarse en diferentes tipos según el criterio que se considere.
clasificación
Los triángulos son clasificados con respecto a sus lados en: equiláteros, isósceles y escalenos. Por otro lado, si se considera la medida de sus ángulos, pueden clasificarse en: acutángulos, rectángulos y obtusángulos.
Clasificación con respecto a los lados
- Triángulo equilátero: tiene sus tres lados iguales.
- Triángulo isósceles: tiene dos lados iguales.
- Triángulo escaleno: tiene sus tres lados diferentes.
Clasificación con respecto a los ángulos
- Triángulo acutángulo: tiene los tres ángulos agudos, es decir, menores a 90°.
- Triángulo rectángulo: uno de sus ángulos es recto, es decir, mide 90°.
- Triángulo obtusángulo: uno de sus ángulos es obtuso.
ángulos internos de un triángulo
Como vimos anteriormente, los ángulos internos tienen mucha importancia con respecto a la clasificación de los triángulos. Pero, además, existe una gran relación entre ellos: la suma de todos los ángulos internos de un triángulo es igual a 180º.
Cada ángulo interno esta formado por dos lados que comparten un extremo en común, el vértice. La suma de estos ángulos internos de un triángulo siempre dará como resultado 180º, independientemente de qué tipo de triángulo sea.
triángulos congruentes
Dos triángulos son congruentes si son isométricos entre sí. Esto quiere decir que tienen las mismas dimensiones, aunque no necesariamente la misma orientación.
- Ejemplo de triángulos congruentes:
En la imagen anterior se observan dos triángulos con diferente posición y orientación. Sin embargo, son congruente porque sus dimensiones son las mismas y por lo tanto, son isométricos entre sí.
construcción de triángulos
Para la construcción de triángulos, la herramienta fundamental es el compás (aunque en algunos casos también puede usarse el transportador). Al conocer las distancias entre los puntos que conforman al triángulo se puede realizar su construcción.
¿Cómo construimos un triángulo?
Para construir un triángulo equilátero debemos seguir los siguientes pasos:
Paso 1.Dibujamos un segmento con la longitud deseada para cada uno de los lados del triángulo equilatero.
Paso 2. Con el compás apoyado en uno de los extremos, realizamos un arco con un radio igual al segmento .
Paso 3. Realizamos un arco de la misma longitud pero del lado opuesto para generar un punto de intersección.
Paso 4. Unimos con dos segmentos el extremo A y el punto de unión, y el extremo B y el mismo punto.
Paso 5. Borramos las lineas auxiliares realizadas por el compás y finalmente obtenemos el triángulo equilátero.
¡A practicar!
1. Determina qué tipos de triángulo son los siguientes según sus lados.
a)
b)
c)
2. ¿Cómo se denominan los triángulos que poseen un ángulo igual a 90°?
3. ¿Qué tipo de triángulo posee todos sus ángulos menores a 90°?
4. Determina en cada caso si los triángulos son congruentes.
a)
b)