CAPÍTULO 5 / TEMA 4

LOS TRIÁNGULOS

En la vida cotidiana es común observar triángulos. Los vemos en las porciones de pizza, en las señales de tránsito, en la vela de un velero, en las pirámides e incluso cuando estudiamos matemáticas. Los triángulos son figuras geométricas de tres lados y, aunque son los polígonos más simples, presentan ciertas particulares que los diferencian del resto. 

 

Los triángulos forman parte de nuestro día a día y los vemos en múltiples objetos. Al triángulo también se lo conoce como trígono; en ambos casos su nombre indica la presencia de tres ángulos. La disciplina encargada de estudiar las relaciones y las características de estos polígonos regulares de tres lados es la trigonometría.

El triángulo y sus ELEMENTOS

Los triángulos son figuras geométricas que cuentan con tres lados, tres ángulos y tres vértices.

  • Vértice: es el punto de unión de dos lados de un polígono o un ángulo.
  • Lado: es cada uno de los segmentos que une un vértice con el siguiente.
  • Ángulo: es el formado por la unión de dos rectas con un vértice en común. Pueden ser interno o externos.
    • La suma de los ángulos interiores de un triángulo es igual a 180°.
    • Un ángulo interior y exterior de un triángulo son suplementarios, por lo tanto, suman 180°.

Ángulos

Todos los triángulos tienen tres ángulos, estos pueden ser:

  • Agudos, cuando son menores a 90°.
  • Rectos, cuando son iguales a iguales a 90°.
  • Obtusos, cuando son mayores a 90°.

¿Cómo nombrar un triángulo?

Los vértices de los triángulos se designan con letras mayúsculas, mientras que los lados se denominan por la misma letra que el vértice opuesto, pero en minúscula. Por ejemplo:

  • El lado a es el segmento que une los vértices B y C.
  • El lado b es el segmento que une los vértices A y C.
  • El lado c es el segmento que une los vértices A y B.

[/su_note]

CLASIFICACIÓN de los triángulos

Son varios los criterios de clasificación que permiten agrupar a los triángulos de acuerdo a ciertas particularidades, los más utilizados son la medida de sus lados y la medida de sus ángulos.

Triángulos según sus lados

  • Triángulo equilátero: tiene 3 lados con la misma longitud.
  • Triángulo isósceles: tiene 2 lados con la misma longitud.
  • Triángulo escaleno: tiene todos sus lados desiguales.

Triángulos según sus ángulos

  • Triángulo rectángulo: tiene un ángulo recto, es decir, que mide 90°.
  • Triángulo acutángulo: tiene todos sus ángulos agudos, es decir, ángulos menores que 90°.
  • Triángulo obtusángulo: tiene un ángulo obtuso, es decir, un ángulo mayor a 90°.

Los triángulos pueden cumplir con ambos criterios de clasificación. Así, un triángulo isósceles también puede ser un triángulo rectángulo.

¡A practicar!

Observa los siguientes triángulos y clasifícalos según sus lados:

Solución

A) Escaleno

B) Equilátero

C) Isósceles

Observa los siguientes triángulos y clasifícalos según sus ángulos:

Solución

A) Rectángulo

B) Obtusángulo

C) Rectángulo

El Triángulo de las Bermudas es un área ubicada en el océano Atlántico, se forma al trazar una línea imaginaría entre el estado de la Florida (EE. UU.), la isla de Puerto Rico y las Bermudas. Es conocido como un triángulo equilátero, ya que, las distancias geográficas entre cada uno de los puntos que lo conforman son iguales.

Perímetro de un triángulo

El perímetro es la medida del contorno de una figura. Lo calculamos al sumar la longitud de todos sus lados.

P = l_{1}+l_{2}+l_{3}

Donde:

P = perímetro

l = lados

 

– Ejemplo:

El perímetro de este triángulo isósceles es igual a la suma de la longitud de sus lados.

P=3\: cm+3\: cm+5\: cm

 

P=\boldsymbol{11\: cm}

 

 

Este triángulo tiene un perímetro de 11 cm.

¿Sabías qué?
Para calcular el perímetro de un triángulo equilátero solo se debe multiplicar la longitud de un lado por 3. Esto se debe a que los tres lados miden lo mismo. Entonces, puedes utilizar la fórmula: P = 3 × l

área de un triángulo

El área es la medida de la superficie de la figura. La calculamos por medio de una expresión matemática que considera la longitud de la base y su altura:

A=\frac{b\cdot h}{2}

Donde:

A = área

b = base

h = altura

– Ejemplo:

La base de este triángulo mide 6 cm y la altura 4 cm, así que solo sustituimos los valores en la fórmula y resolvemos:

A = \frac{6\: cm\cdot 4\: cm}{2}

A=\frac{24\: cm^{2}}{2}

 

A=\boldsymbol{12\: cm^{2}}

 

 

Este triángulo tiene un área de 12 cm2.

Teorema de Pitágoras y el triángulo rectángulo

Pitágoras de Samos, un matemático griego del siglo VI a. C. descubrió que los triángulos rectángulos guardaban una relación respecto a sus lados. Él llegó a la conclusión de que el cuadrado del lado mayor de un triángulo rectángulo, es decir, la hipotenusa, siempre era igual a la suma del cuadrado de sus otros dos lados o catetos. A esta relación se la conoce como teorema de Pitágoras.

VER INFOGRAFÍA

¡A practicar!

Calcula el área y el perímetro del siguiente triángulo:

Solución

A=\frac{10\: cm\cdot 5\: cm}{2}=\frac{50\: cm^{2}}{2}=\boldsymbol{25\: cm^{2}}

P=10\: cm+12\: cm+\: 12\: cm=\boldsymbol{34\: cm}

TRAZADO DE un triángulo dado dos lados y una ángulo

Si queremos dibujar una triángulo que tiene un ángulo de 40° y lado de 12 cm y otro de 8 cm seguimos estos pasos:

1. Dibujamos el ángulo de 40° y al vértice lo llamamos A.

2. Con la ayuda de una regla graduada marcamos el segmento AB de 12 cm.

3. Luego marcamos el segmento AC de 8 cm.

4. Unimos los puntos B y C. Después coloreamos el triángulo.

Rectas notables de un triángulo

  • La altura es una recta perpendicular en cualquiera de los lados del triángulo que pasa por el vértice opuesto.
  • La mediana es aquella recta que une el vértice de un triángulo con el punto medio del lado opuesto.
  • La mediatriz es la perpendicular que pasa por el punto medio de un lado del triángulo.
  • Una bisectriz es una recta que pasa por el vértice de un triángulo y divide a su ángulo en dos partes iguales.

¡A practicar!

1. Traza los siguientes triángulos:

  • Triángulo con un ángulo de 90°, un lado de 4 cm y otro lado de 2 cm.
Solución

  • Triángulo con un ángulo de 80°, un lado de 4,5 cm y otro lado de 4 cm.
Solución

  • Triángulo con un ángulo de 110°, un lado de 4 cm y otro lado de 3 cm.
Solución

 

2. Clasifica cada triángulo según sus ángulos y lados:

Solución

A) Isósceles y rectángulo.

B) Isósceles y obtusángulo.

C) Escaleno y acutángulo.

D) Isósceles y acutángulo.

E) Equilátero y acutángulo.

F) Escaleno y obtusángulo.

G) Escaleno y rectángulo.

 

3. Calcula el área y el perímetro de estos triángulos:

Solución

A=\frac{9\: cm\cdot 5\: cm}{2}=\frac{45\: cm^{2}}{2}=\boldsymbol{22,5\: cm^{2}}

P= 4\: cm+8\: cm+9\: cm=\boldsymbol{21\: cm}

Solución

A=\frac{4\: cm\cdot 4\: cm}{2}=\frac{16\: cm^{2}}{2}=\boldsymbol{8\: cm^{2}}

P=4\: cm+4\: cm+6\: cm=\boldsymbol{14\: cm}

 

RECURSOS PARA DOCENTES

Artículo “Triángulos”

En este artículo encontrarás una síntesis de las características y clasificaciones de los triángulos.

VER

Artículo “Perímetro de triángulos y cuadriláteros”

En este recurso encontrarás información detallada sobre el perímetro de figuras geométricas, como triángulos y cuadriláteros.

VER

Video “Tipos de triángulos según sus ángulos”

Este material audiovisual te ayudará a acompañar y complementar sus clases de manera ilustrativa.

VER

CAPÍTULO 5 / TEMA 3

LOS ÁNGULOS Y SUS TIPOS

Es posible que identifiques diversas figuras geométricas al observar el mundo que te rodea y los objetos presentes en él. La mayoría de estas figuras están compuestas por semirrectas unidas por un punto en común, es decir, un vértice. Esa porción del plano delimitada por dos semirrectas que nacen de un mismo punto se conoce como ángulo y según su medida puede ser de distintos tipos.

¿qué es un ángulo?

Es una porción del plano delimitada por dos semirrectas, las cuales también son llamadas lados. Ambos lados coinciden en un punto de origen o vértice. La abertura de un lado con respecto al otro es la que denominamos ángulo.

 

VER INFOGRAFÍA 

¿Cómo nombrar ángulos?

  • Con una letra griega, por ejemplo α y se lee “ángulo alpha”. En esta imagen vemos un ángulo α = 52,13°.

  • Con los puntos correspondientes a las semirrectas que lo constituyen y al vértice. Estos puntos se nombran mediante letras, por ejemplo, en la imagen vemos el ángulo AOB.

 

CLASIFICACIÓN DE LOS ÁNGULOS

Los ángulos se clasificar según tres criterios diferentes: su medida, su posición y la suma de sus medidas con otros ángulos.

¿Sabías qué?
Los ángulos se miden en grados (°).

Ángulos según su medida

  • Ángulo completo: tiene una amplitud de 360°, significa que es un giro completo.
  • Ángulo nulo: tiene una amplitud de 0°.
  • Ángulo llano: tiene una amplitud de 180°, podrás verlo representado como una línea recta.
  • Ángulo cóncavo: tiene una amplitud mayor que 180° pero menor que 360°.
  • Ángulo convexo: tiene una amplitud menor que 180°.

Dentro de los ángulos convexos encontramos otras clasificaciones:

  • Ángulos rectos: miden 90°.
  • Ángulos obtusos: miden más de 90°.
  • Ángulos agudos: miden menos de 90°.

 

Ángulos según su posición

Según su posición los ángulos pueden ser:

  • Adyacentes: son aquellos que tienen el vértice y un lado en común. Al sumar las amplitudes de cada uno de ellos el resultado será 180°.
  • Consecutivos: son aquellos que comparten tanto el vértice como uno de sus lados.
  • Opuestos por el vértice: son aquellos que solo tienen el vértice en común.

Ángulos según la suma de su medida con otros ángulos

Los ángulos también pueden clasificarse según el resultado obtenido al sumar la medida de la amplitud de un ángulo con la de otro ángulo, así sabrás que:

  • Un ángulo es suplementario con otro si la suma de sus amplitudes da como resultado un ángulo de 180°.
  • Un ángulo es complementario con otro si la suma de sus amplitudes da como resultado un ángulo de 90°.

MEDICIÓN DE ÁNGULOS

Por lo general, la medición de los ángulos se realiza por medio de un transportador.

¿Qué es un transportador?

Es un instrumento geométrico que puede tener una forma circular o semicircular y se utiliza para medir gráficamente un ángulo así como para construirlo. Cuenta con graduaciones o marcas iguales que sirven de escala para identificar la medida del ángulo. Los transportadores circulares están divididos en 360 partes iguales, mientras que los semicirculares están divididos en 180 partes iguales. Cada una de estas partes representa un grado (1°) .

Para medir un ángulo con transportador seguimos estos pasos:

1. Identificamos el vértice, es decir, el punto del que nacen las semirrectas y hacemos que coincida con el centro del transportador.

2. Verificamos que el cero (0) en el transportador esté justo sobre uno de los lados del ángulo.

3. Observamos el valor que marca el otro lado que pasa por la escala graduada. En este caso, la medida del ángulo â = 165°.

¿Sabías qué?
Los transportadores tienen escalas graduadas dobles: una va en sentido de las manecillas del reloj y las otra en sentido contrario. Siempre debes recordar comenzar a medir a partir del cero. 

LOS ÁNGULOS EN LAS FIGURAS GEOMÉTRICAS

Las figuras geométricas planas poseen ángulos interiores, ubicados dentro de la figuras; y ángulos exteriores, ubicados entre un lado de la figura y el otro lado siguiente.

VER INFOGRAFÍA 

Ángulos interiores de los triángulos

Los ángulos interiores de los triángulos siempre suman 180°. Según sus ángulos los triángulos pueden ser:

Nombre Figura Características
Triángulo rectángulo Tiene un ángulo recto (90°).
Triángulo acutángulo Tiene todos sus ángulos agudos (menores a 90°).
Triángulo obtusángulo Tiene un ángulo obtuso (mayores a 90° pero menores a 180°).

 

Ángulos interiores de los cuadriláteros

En el caso de los cuadriláteros, la suma de sus cuatro ángulos internos siempre es igual a 360°. De acuerdo al tipo de cuadrilátero el valor del ángulo puede variar. Su clasificación es la siguiente:

Nombre Figura Característica
Cuadrado Tiene cuatro ángulos rectos (90°).
Rectángulo Tiene cuatro ángulos rectos (90°).
Rombo Tiene ángulos opuestos iguales.
Romboide Tiene ángulos opuestos iguales.
Trapecio rectángulo Tiene dos ángulos rectos (90°).
Trapecio isósceles Los dos ángulos de la base menor son iguales. Los dos ángulos de la base mayor son iguales.
Trapecio escaleno Todos sus ángulos son diferentes.

¿Sabías qué?
La palabra “geometría” viene de geo que significa “Tierra”, y de metría que significa “medir”.

Ángulos internos de polígonos regulares

Los polígonos regulares son aquellos que tienen todos sus ángulos internos iguales. Para calcular su valor se emplea la ecuación (n − 2) × 180°/n donde n es el número de lados que tiene el polígono. Por ejemplo, para un hexágono se sustituye la n por el número 6 que corresponde al número de sus lados y obtenemos que (6 − 2) × 180°/6 = 120°, lo que quiere decir que cada uno de los ángulos internos de un hexágono mide 120°.

¡A practicar!

1. Observa los ángulos entre estas rectas. Completa la tabla con los ángulos solicitados.

Tipo de ángulo Nombre del ángulo
Recto  Ángulo α
Agudo
Obtuso
Complementario
Suplementario
Adyacente
Solución
Tipo de ángulo Nombre del ángulo
Recto Ángulo α
Agudo Ángulo β
Obtuso Ángulo GOC
Complementario Ángulos BOE y EOC
Suplementario Ángulos EOG y GOF
Adyacente Ángulos AOC y COB

2. Calcula los ángulos complementarios y suplementarios para los siguientes ángulos:

  • β = 50°
Solución

Ángulo complementario = 40° porque 50° + 40° = 90°.

Ángulo suplementario = 130° porque 50° + 130° = 180°.

  • γ = 15°
Solución

Ángulo complementario = 75° porque 15° + 75° = 90°.

Ángulo suplementario = 165° porque 15° + 165° = 180°.

  • δ = 75°
Solución

Ángulo complementario = 15° porque 75° + 15 = 90°.

Ángulo suplementario = 105° porque 75° + 105° = 180°.

 

RECURSOS PARA DOCENTES

Artículo “Ángulos”

En el siguiente artículo encontrarás información sistematizada sobre las diferentes clasificaciones de los ángulos.

VER

Enciclopedia “Matemática Tomo I”.

En esta enciclopedia podrás encontrar las explicaciones necesarias para comprender la clasificación de los ángulos y su medición.

VER