El punto, la recta y el plano se denominan entes fundamentales de la geometría porque no tienen definición y su comprensión depende de comparaciones con elementos similares. El punto es adimensional y se nombra con letras mayúsculas del alfabeto. La recta está formada por infinitos puntos que se extienden en una misma dirección. Las rectas pueden ser paralelas, secantes o perpendiculares. El plano es un ente bidimensional, es decir, posee dos dimensiones y se suele nombrar con letras del alfabeto griego.
Ángulos
La región del plano comprendida entre dos semirrectas se denomina ángulo. De acuerdo a su medida pueden ser nulos (cuando miden 0°), agudos (cuando no son nulos y miden menos de 90°), rectos (cuando miden 90°), obtusos (cuando son menores a 180° y mayores a 90°) y llanos (cuando miden 180°). Se habla de dos ángulos complementarios cuando la suma de estos es igual a 90°, por otra parte, dos ángulos son suplementarios si la suma de ambos es igual a 180°. La sumatoria de los ángulos internos de un triángulo da 180°, mientras que en un cuadrilátero da 360°.
Polígonos
Los polígonos son figuras caracterizadas por estar delimitadas por segmentos finitos rectos denominados lados. Si todos sus lados tienen la misma longitud se denominan polígonos regulares, de lo contrario, se denominan polígonos irregulares. En el caso de los polígonos regulares se cumple que sus ángulos internos son iguales, lo mismo sucede con sus ángulos externos. Los polígonos regulares también se caracterizan por tener igual cantidad de ejes de simetrías que de lados y sus diagonales son todas internas y de la misma longitud.
Cuerpos geométricos
Los cuerpos geométricos pueden clasificarse en poliedros cuando todas sus caras son iguales y planas, y en cuerpos redondos cuando poseen al menos una cara curva. Sus elementos principales son las caras, las aristas y los vértices. Cada uno de los cuerpos geométricos posee su fórmula para determinar su volumen. De igual forma, cada uno de los cuerpos geométricos pueden representarse en construcciones de tres dimensiones.
Circunferencia y círculo
La circunferencia es una línea cerrada que sobresale por ser el perímetro del círculo. Por otra parte, el círculo es una figura geométrica que se encuentra delimitada por una circunferencia. Los elementos principales de una circunferencia son: centro, radio, cuerda, diámetro, semicircunferencia y arco. Entre una circunferencia y una recta pueden darse tres tipos diferentes de relación: recta exterior (cuando no toca ningún punto de la circunferencia), recta tangente (cuando toca un solo punto de la circunferencia) y recta secante (cuando atraviesa la circunferencia en dos puntos). El área de un círculo es igual al producto de el número pi por el radio de la circunferencia al cuadrado.
Aplicación de la geometría
Incontables son las disciplinas y las situaciones en las que se emplea la geometría. Desde que apareció esta rama de la matemática ha permitido resolver infinidad de problemas. El cálculo de áreas de superficies planas puede extenderse a situaciones cotidianas como el cálculo de la extensión de un terreno, esto se debe a que cada figura posee su fórmula particular. Lo mismo sucede con el cálculo de volumen y los cuerpos geométricos.
Uno de los objetos de estudio de la geometría son los cuerpos geométricos. Una pelota de fútbol, un cono de helado o un dado son algunos objetos cotidianos que podemos asociar con estos cuerpos, los cuales se caracterizan por ocupar volumen en el espacio y estar formados con figuras geométricas.
Principales cuerpos geométricos
Los cuerpos geométricos son infinitos y cada uno posee características propias. Los más comunes son el cubo, el prisma, la pirámide, el cilindro, el cono y la esfera. Ellos se clasifican en poliedros y cuerpos redondos.
Los poliedros son cuerpos geométricos. Todas sus caras son planas. Estos, a su vez, pueden ser regulares si sus caras son todas iguales o irregulares cuando son diferentes. Un ejemplo de poliedro es el cubo.
Los cuerpos redondos son cuerpos geométricos con al menos una cara curva, como sucede con el cilindro.
En la mayoría de los cuerpos geométricos se pueden identificar los siguientes elementos.
Cara: corresponde a cada una de las superficies planas que delimitan al cuerpo geométrico. Pueden ser caras basales, las que sirven de apoyo (base) al cuerpo en el plano, o caras laterales, que corresponden a las de los costados.
Vértice: es el punto en el que se juntan tres o más caras.
Arista: es el segmento de línea que se forma cuando dos caras se juntan.
La esfera y sus curiosidades
La esfera es un cuerpo geométrico que no posee ni caras, ni aristas ni vértice. Y se caracteriza porque todos los puntos de su superficie están a la misma distancia del centro.
Volumen de cuerpos geométricos
De acuerdo a su tipo, cada cuerpo geométrico tiene características propias que permiten calcular su volumen a través de fórmulas.
Un cubo se caracteriza porque todos sus lados miden lo mismo, de manera que al conocer solo la medida de un lado se puede aplicar la fórmula:
– Calcula el volumen del siguiente cilindro.
Según la fórmula, los únicos datos que se necesitan son el radio del cilindro y su altura. De la imagen se obtienen los datos:
En este caso observa que el radio está elevado al cuadrado, por lo tanto, al resolver esa potencia las unidades también se verán afectadas, por lo que quedarán centímetros cuadrados:
El número pi (π) es un número irracional, por lo cual es infinito. Para efectos de estos cálculos, usaremos solamente 2 de sus decimales, es decir, lo aproximamos a 3,14.
Al resolver este producto se obtiene el volumen del cilindro.
¿Sabías qué?
Cuando se usan múltiplos o submúltiplos del metro, el volumen siempre se expresa en unidades cúbicas: m3, cm3, mm3, km3, etc.
Construcción de cuerpos geométricos
Los cuerpos geométricos tienen volumen y, por lo tanto, se pueden representar en tres dimensiones: largo, alto y ancho. Las imágenes a continuación son patrones que puedes usar para construir los cuerpos geométricos más comunes:
Cubo
Prisma rectangular
Pirámide
Cilindro
Cono
¡A practicar!
1. Calcula el volumen de los siguientes cuerpos geométricos.
a)
*La base es un rectángulo.
Solución
V = 133,33 cm3
b)
Solución
V = 64 cm3
c)
Solución
V = 904,32 cm3
d)
Solución
V = 33,49 cm3
e)
Solución
V = 96 cm3
f)
Solución
V = 62,8 cm3
RECURSOS PARA DOCENTES
Artículo “Poliedros irregulares”
El artículo explica qué es un poliedro y qué caracteriza a los irregulares. También hace una breve explicación de los sólidos platónicos y muestra algunos ejemplos.
En este artículo destacado se explica qué es el volumen y cómo calcularlo en los diferentes cuerpos geométricos. También se plantean una serie de problemas resueltos y de ejercicios planteados.
Desde la elaboración de planos y dibujos a escalas en hojas cuadriculadas, hasta la localización de estrellas en la galaxia, la unión de rectas perpendiculares nos ayuda a distinguir la posición de cualquier objeto. Una cuadrícula es un sistema de coordenadas compuesto por líneas perpendiculares verticales y horizontales, que funciona como sistema de referencias y permite ubicar elementos en un espacio definido. El conjunto de líneas horizontales y verticales, también llamadas ejes, suelen nombrarse con números y letras.
TIPOS DE LÍNEAS
Las líneas son un conjunto de puntos ubicados uno junto al otro que generan un trazo continuo. Si los puntos están orientados en una misma dirección, entonces, forman una línea recta. Las líneas rectas son continuas e infinitas, no tienen ni principio ni final y se pueden clasificar según la forma en que interaccionan entre ellas en rectas paralelas (aquellas que nunca se cortan), rectas secantes perpendiculares (aquellas que se cortan formando ángulos rectos) y rectas secantes oblicuas (aquellas que se cortan sin formar ángulos rectos).
LOS ÁNGULOS Y SUS TIPOS
Un ángulo es una porción del plano delimitado por dos semirrectas. Cada semirrecta es uno de los lados del ángulo y coinciden en un punto de origen al que se denomina vértice. A la distancia entre lado y lado del ángulo se la denomina amplitud, y esta se mide en grados (°). Si queremos medir o trazar un ángulo es indispensable el uso del transportador. Según su amplitud, un ángulo puede ser convexo, cóncavo, nulo, completo, llano, agudo, recto u obtuso.
LOS TRIÁNGULOS
Los triángulos son polígonos regulares cerrados de tres lados, tres ángulos y tres vértices. Los ángulos interiores de un triángulo siempre suman 180° y los ángulos exteriores suman 360°. Son varios los criterios de clasificación que permiten agrupar a los triángulos de acuerdo a ciertas particularidades, los más utilizados son: la medida de sus lados y la medida de sus ángulos. Según la medida de sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos; mientras que, según la medida de sus ángulos se clasifican en acutángulo, obtusángulo y rectángulo.
CUADRILÁTEROS
Los cuadriláteros tienen cuatro lados, cuatro ángulos internos, cuatro ángulos externos, cuatro vértices y dos diagonales. Estos se clasifican en paralelogramos, trapecios y trapezoides. Los paralelogramos son aquellos cuadriláteros que poseen dos pares de lados opuestos paralelos y que comparten algunas propiedades específicas; los trapecios, por su parte, son figuras que presentan un par de lados opuestos paralelos a los que se suele denominar base; y los trapezoides son aquellos cuyos lados no son paralelos.
POLIEDROS
Los poliedros son cuerpos geométricos tridimensionales con caras planas formados por polígonos. Cada una de las caras de un poliedro es un polígono (triángulo, cuadrado, rombo, etc.). Los poliedros pueden ser regulares cuando sus caras están compuestas por el mismo polígono regular; o irregulares si sus caras presentan diferentes formas. En estos poliedros el número de caras no presenta límites como ocurre con los poliedros regulares y se dividen en prismas (tienen dos bases) y pirámides (tienen una sola base).
La palabra “poliedro” proviene del griego y significa “que tiene muchas caras o planos”. Con este nombre se designa a aquellos cuerpos geométricos que están formados por polígonos y encierran un volumen. Cada una de las caras de un poliedro es un polígono (un triángulo, un cuadrado, un rombo, etc.) y se caracterizan por tener un mínimo de cuatro caras.
ELEMENTOS DE LOS POLIEDROS
Los poliedros son cuerpos geométricos tridimensionales con caras planas y que encierran un volumen. Es decir que un poliedro es una porción acotada de espacio limitada por distintos polígonos, a diferencia de los polígonos, que son porciones del plano limitadas por segmentos.
Los poliedros están constituidos por los siguientes elementos:
Bases
Caras
Aristas
Vértices
Son las caras sobre las cuales se apoya el poliedro.
Son las superficies planas que delimitan el espacio interno del poliedro.
Son las líneas que componen el cuerpo de un poliedro.
Son los puntos de encuentro entre tres o más aristas del poliedro.
TIPOS DE POLIEDROS
Poliedros regulares
Los poliedros regulares son aquellos cuyas caras están compuestas por el mismo polígono regular. Estos son conocidos también como sólidos platónicos.
Nombre del poliedro
Forma del poliedro
Número de caras
Polígonos que forman sus caras
Tetraedro
4
Triángulos equiláteros
Cubo
6
Cuadrados
Octaedro
8
Triángulos equiláteros
Dodecaedro
12
Pentágonos regulares
Icosaedro
20
Triángulos equiláteros
¿Sabías qué?
Se les llama sólidos platónicos porque Platón, filósofo griego del siglo IV a. C., en su diálogo el Timeo explicó la construcción del universo por asociación de cada uno de los poliedros regulares con los elementos fundamentales: agua, aire, tierra y fuego.
Poliedros irregulares
Los poliedros irregulares pueden presentar diferentes formas. En estos poliedros, el número de caras no presenta límites como ocurre con los poliedros regulares. Los poliedros irregulares más comunes son los prismas, las pirámides y todas sus variedades
Prismas: son poliedros limitados por dos bases que son polígonos iguales y por caras laterales que son paralelogramos. Ellos se nombran de acuerdo al polígono de la base. Así puedes encontrar:
Pirámides: son poliedros que tienen una sola base conformada por un polígono y por caras laterales de triángulos con un vértice común. Al igual que los prismas, se nombran por el polígono de la base.
Pirámide triangular
Pirámide cuadrangular
Pirámide pentagonal
Pirámide hexagonal
Triángulo como base.
Cuadrado como base.
Pentágono como base.
Hexágono como base.
¡Construyamos poliedros!
Los poliedros son cuerpos geométricos, esto quiere decir que son tridimensionales y puedes construirlos fácilmente con pocos materiales.
Para construir un cubo necesitarás:
Tijeras.
Regla.
Cartón o un papel duro.
Pegamento.
Copia esta plantilla en el papel. Luego recortalo y realizar pliegues en las líneas. Los cuadrados quedarán como caras del poliedro y las pequeñas solapas servirán para unir la figura. En esas solapas debes colocar pegamento, para unirlas con las caras correspondientes. Quedará formado un cubo, similar al de la imagen. Será útil, por ejemplo, para hacer tus propios dados.
Para construir un tetraedro sigue los mismos pasos. Esta es la plantilla:
Para construir un octaedro sigue los mismos pasos. Esta es la plantilla:
Para construir un dodecaedro sigue los mismos pasos. Esta es la plantilla:
Para construir un icosaedro sigue los mismos pasos. Esta es la plantilla:
Poliedros en la vida cotidiana
En la vida cotidiana puedes encontrar continuamente poliedros. A lo largo de la historia, dos ejemplos de ellos se han vuelto mundialmente reconocidos: el cubo de Rubik y las pirámides de Egipto. Estas últimas son poliedros piramidales triangulares, cuya base es un polígono cualquiera y sus caras son triángulos con un vértice común.
RECURSOS PARA DOCENTES
Artículo “Poliedro irregulares”
En este artículo encontrarás el desarrollo teórico para ahondar en las características propias de los poliedros irregulares.
UNA HOJA DE PAPEL O UNA REGLA GRADUADA SON OBJETOS PLANOS QUE SOLO TIENEN DOS DIMENSIONES: ALTO Y ANCHO. PERO TAMBIÉN HAY OBJETOS QUE TIENEN PROFUNDIDAD, COMO UNA CAJA DE ZAPATOS O UN VASO. ESTOS OBJETOS TIENEN UNA FORMA TRIDIMENSIONAL, ES DECIR, TIENEN TRES DIMENSIONES. SON MÁS COMUNES DE LOS QUE CREES Y PUEDES VERLOS EN MUCHOS OBJETOS.
¿QUÉ ES UNA FIGURA TRIDIMENSIONAL?
ES UNA FIGURA QUE TIENE TRES DIMENSIONES: ALTO, ANCHO Y LARGO.
¿SABÍAS QUÉ?
LAS FIGURAS TRIDIMENSIONALES TAMBIÉN SON CONOCIDAS COMO CUERPOS GEOMÉTRICOS.
HAY MUCHAS FIGURAS TRIDIMENSIONALES, LAS MÁS COMUNES SON:
ELEMENTOS DE LAS FIGURAS TRIDIMENSIONALES
LAS FIGURAS TRIDIMENSIONALES TIENEN CARAS, ARISTAS Y VÉRTICES.
CARAS: SON LOS LADOS PLANOS O CURVOS.
ARISTAS: SON LAS LÍNEAS RECTAS QUE UNEN LAS CARAS.
VÉRTICES: SON LOS PUNTOS QUE UNEN DOS O MÁS CARAS.
POR EJEMPLO, ESTE CUBO TIENE 6 CARAS, 12 ARISTAS Y 8 VÉRTICES.
EN ESTA TABLA MUESTRA LOS ELEMENTOS DE CADA FIGURA:
FIGURAS TRIDIMENSIONAL
ELEMENTOS
CUBO
6 CARAS
8 VÉRTICES
12 ARISTAS
ESFERA
1 CARA
CILINDRO
3 CARAS
2 ARISTAS
CONO
2 CARAS
1 ARISTAS
PRISMA RECTANGULAR
6 CARAS
8 VÉRTICES
12 ARISTAS
PIRÁMIDE
5 CARAS
5 VÉRTICES
8 ARISTAS
¿CÓMO CONSTRUIR UN PRISMA RECTANGULAR?
CON ESTA PLANTILLA PODRÁS CONSTRUIR UN PRISMA RECTANGULAR. COMO VES, LA FIGURA ESTÁ FORMADA POR 6 CARAS: 4 CARAS CON FORMA DE RECTÁNGULO Y 2 CARAS CON FORMA DE CUADRADO. CON AYUDA DE UN ADULTO, COPIA ESTE PLANTILLA EN UNA CARTULINA, RECÓRTALA, DOBLA LAS LÍNEAS Y LUEGO PÉGALAS. CON ESTOS PASOS TENDRÁS LA FIGURA TRIDIMENSIONAL EN TUS MANOS.
TIPOS DE FIGURAS TRIDIMENSIONALES
LAS FIGURAS TRIDIMENSIONALES PUEDEN SER DE DOS TIPOS: POLIEDROS O CUERPOS REDONDOS.
POLIEDROS
CUERPOS REDONDOS
SOLO TIENEN SUPERFICIES PLANAS Y NO PUEDEN RODAR.
TIENEN AL MENOS UN SUPERFICIE CURVA Y SÍ PUEDEN RODAR.
En la vida cotidiana es común observar triángulos. Los vemos en las porciones de pizza, en las señales de tránsito, en la vela de un velero, en las pirámides e incluso cuando estudiamos matemáticas. Los triángulos son figuras geométricas de tres lados y, aunque son los polígonos más simples, presentan ciertas particulares que los diferencian del resto.
El triángulo y sus ELEMENTOS
Los triángulos son figuras geométricas que cuentan con tres lados, tres ángulos y tres vértices.
Vértice: es el punto de unión de dos lados de un polígono o un ángulo.
Lado: es cada uno de los segmentos que une un vértice con el siguiente.
Ángulo: es el formado por la unión de dos rectas con un vértice en común. Pueden ser interno o externos.
La suma de los ángulos interiores de un triángulo es igual a 180°.
Un ángulo interior y exterior de un triángulo son suplementarios, por lo tanto, suman 180°.
Ángulos
Todos los triángulos tienen tres ángulos, estos pueden ser:
Agudos, cuando son menores a 90°.
Rectos, cuando son iguales a iguales a 90°.
Obtusos, cuando son mayores a 90°.
¿Cómo nombrar un triángulo?
Los vértices de los triángulos se designan con letras mayúsculas, mientras que los lados se denominan por la misma letra que el vértice opuesto, pero en minúscula. Por ejemplo:
El lado a es el segmento que une los vértices B y C.
El lado b es el segmento que une los vértices A y C.
El lado c es el segmento que une los vértices A y B.
[/su_note]
CLASIFICACIÓN de los triángulos
Son varios los criterios de clasificación que permiten agrupar a los triángulos de acuerdo a ciertas particularidades, los más utilizados son la medida de sus lados y la medida de sus ángulos.
Triángulos según sus lados
Triángulo equilátero: tiene 3 lados con la misma longitud.
Triángulo isósceles: tiene 2 lados con la misma longitud.
Triángulo escaleno: tiene todos sus lados desiguales.
Triángulos según sus ángulos
Triángulo rectángulo: tiene un ángulo recto, es decir, que mide 90°.
Triángulo acutángulo: tiene todos sus ángulos agudos, es decir, ángulos menores que 90°.
Triángulo obtusángulo: tiene un ángulo obtuso, es decir, un ángulo mayor a 90°.
Los triángulos pueden cumplir con ambos criterios de clasificación. Así, un triángulo isósceles también puede ser un triángulo rectángulo.
¡A practicar!
Observa los siguientes triángulos y clasifícalos según sus lados:
Solución
A) Escaleno
B) Equilátero
C) Isósceles
Observa los siguientes triángulos y clasifícalos según sus ángulos:
Solución
A) Rectángulo
B) Obtusángulo
C) Rectángulo
Perímetro de un triángulo
El perímetro es la medida del contorno de una figura. Lo calculamos al sumar la longitud de todos sus lados.
Donde:
P = perímetro
l = lados
– Ejemplo:
El perímetro de este triángulo isósceles es igual a la suma de la longitud de sus lados.
Este triángulo tiene un perímetro de 11 cm.
¿Sabías qué?
Para calcular el perímetro de un triángulo equilátero solo se debe multiplicar la longitud de un lado por 3. Esto se debe a que los tres lados miden lo mismo. Entonces, puedes utilizar la fórmula: P = 3 × l
área de un triángulo
El área es la medida de la superficie de la figura. La calculamos por medio de una expresión matemática que considera la longitud de la base y su altura:
Donde:
A = área
b = base
h = altura
– Ejemplo:
La base de este triángulo mide 6 cm y la altura 4 cm, así que solo sustituimos los valores en la fórmula y resolvemos:
Este triángulo tiene un área de 12 cm2.
Teorema de Pitágoras y el triángulo rectángulo
Pitágoras de Samos, un matemático griego del siglo VI a. C. descubrió que los triángulos rectángulos guardaban una relación respecto a sus lados. Él llegó a la conclusión de que el cuadrado del lado mayor de un triángulo rectángulo, es decir, la hipotenusa, siempre era igual a la suma del cuadrado de sus otros dos lados o catetos. A esta relación se la conoce como teorema de Pitágoras.
Podemos observar polígonos en múltiples objetos de nuestro alrededor. Estos son muy diversos y los hay con lados y ángulos iguales o desiguales entre sí. Son elementos fundamentales de la geometría y su conocimiento es esencial en diversos campos del conocimiento, como la ingeniería o la arquitectura.
¿Qué es un polígono?
En geometría, un polígono es una figura geométrica plana delimitada por un número finito de segmentos rectos.
¿Sabías qué?
La palabra “polígono” proviene del griego antiguo que quiere decir “muchos ángulos”.
Los polígonos presentan los siguientes elementos:
Lados: son los segmentos rectos que conforman al polígono.
Vértices: son los puntos en común entre dos lados consecutivos.
Diagonales: son los segmentos que unen a dos lados no consecutivos de un polígono.
Ángulos interiores: están formados por dos lados consecutivos en el interior del polígono.
Ángulos exteriores: están formados en el exterior del polígono entre un lado y la prolongación de otro lado consecutivo.
Polígonos regulares y sus tipos
Un polígono regular tiene lados con la misma longitud. Se caracterizan también porque sus ángulos internos y externos también son iguales. Otra característica es que poseen la misma cantidad de ejes de simetrías que de lados. Las diagonales en este tipo de polígonos tienen la misma longitud y siempre son interiores.
Todo polígono regular puede estar circunscrito en una circunferencia, lo que quiere decir que cada uno de sus vértices corresponde a un punto de la circunferencia. Mientras más lados tenga el polígono, más se va a aproximar a la forma de la circunferencia. Por esta razón, se asocia a la circunferencia (de forma informal) a un polígono de infinitos lados.
Área de polígonos regulares
Para medir el área de los polígonos es necesario conocer las definiciones de perímetro y apotema.
Perímetro: es la suma de los lados que forman una figura geométrica. En el caso de los polígonos regulares, se calcula al multiplicar el número de lados por la longitud de uno de sus lados.
Donde:
P: perímetro n: número de lados del polígono regular. L: longitud de uno de los lados del polígono.
Apotema: es la distancia perpendicular desde el centro de un polígono hasta uno de sus lados.
El área de un polígono regular se define como el producto de su perímetro por la apotema (a) dividido entre dos.
Donde:
A: área
P: perímetro
a: apotema
– Ejemplo:
Calcular el área de un pentágono cuyos lados miden 6 cm y su apotema es de 4,13 cm.
Lo que debemos hacer es calcular primero el perímetro para luego sustituir en la fórmula junto con la apotema para calcular el área.
El perímetro del apotema es 30 cm, al sustituir en la fórmula de área nos queda:
El área del pentágono es de 61,95 cm2.
¿Sabías qué?
El Departamento de Defensa de los Estados Unidos es un edificio en forma de Pentágono que mide 140.000 metros cuadrados aproximadamente.
Polígonos irregulares y sus tipos
En los polígonos irregulares se pueden cumplir algunas de estas condiciones:
– Tener sus lados con igual longitud pero sus ángulos internos diferentes.
– Tener sus ángulos de igual medida pero sus lados con diferente longitud.
– Tener sus lados con diferente longitud y sus ángulos internos con diferente medida.
Ejemplos de polígonos irregulares
Rombo
El rombo tiene los cuatro lados con igual longitud pero sus cuatro ángulos internos son diferentes: solo los ángulos opuestos de este polígono son iguales. Por eso se trata de un polígono irregular.
Rectángulo (no cuadrado)
Es un cuadrilátero con sus cuatro ángulos iguales (90°), pero sus lados tienen diferente longitud entre sí. Solo los lados paralelos comparten la misma longitud.
Triángulo (no equilátero)
Todo triángulo con un ángulo interior diferente de 60 grados es un polígono irregular.
Triángulos regulares e irregulares
Según sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos. Los equiláteros son los únicos triángulos que cumplen con las características de un polígono regular. Los triángulos escalenos son aquellos en los que las longitudes de sus lados y la medida de sus ángulos internos son diferentes, por lo tanto no son polígonos regulares. Por otra parte, los triángulos isósceles al contar solo con dos lados y dos ángulos iguales tampoco son considerados como polígonos regulares.
Perímetro de polígonos
Calculamos el perímetro de los polígonos regulares a través de la fórmula planteada anteriormente:
En cambio, en los polígonos irregulares, cuyos lados generalmente son diferentes, esta ecuación no siempre aplica. Para lo cual debemos sumar de forma separada las longitudes de cada uno de los lados.
Por ejemplo, para calcular el perímetro del siguiente triángulo isósceles simplemente sumamos cada una de las longitudes de sus lados.
El perímetro de este triángulo irregular es de 160 cm.
¡A practicar!
1. Determina el perímetro y el área de los siguientes polígonos regulares según los datos mostrados.
a) Un eneágono regular cuyos lados miden 7 cm y su apotema 9,62 cm.
Solución
P = 63 cm
A = 303,03 cm2
b) Un pentágono regular cuyos lados miden 6 cm y su apotema 4,13 cm.
Solución
P = 30 cm
A = 61,95 cm2
c) Un heptágono regular cuyos lados miden 8 cm y su apotema 8,31.
Solución
P = 56 cm
A = 232,68 cm2
d) Un triángulo regular (equilátero) cuyos lados miden 5 cm y su apotema 1,44 cm.
Solución
P= 15 cm
A = 10,8 cm2
e) Un decágono regular cuyos lados miden 3 cm y su apotema 4,62 cm.
Solución
P= 30 cm
A = 69,3 cm2
f) Un dodecágono regular cuyos lados miden 4 cm y su apotema 7,46 cm.
Solución
P= 48 cm
A = 179,04 cm2
g) Un hexágono regular cuyos lados miden 7 cm y su apotema 6,06 cm.
Solución
P= 42 cm
A = 127,26 cm2
h) Un octágono regular cuyos lados miden 2 cm y su apotema 2,41 cm.
Solución
P= 16 cm
A = 19,28 cm2
i) Un endecágono regular cuyos lados miden 3 cm y su apotema 5,11 cm.
Solución
P= 33 cm
A = 84,315 cm2
j) Un cuadrado cuyos lados miden 4 cm y su apotema 2 cm.
Solución
P= 16 cm
A = 16 cm2
2. ¿A qué polígono con una apotema de 4,33 cm le corresponde un área de 64,95 cm2.
a) Un decágono de 2 cm de lado.
b) Un hexágono de 5 cm de lado.
c) Un pentágono de 7 cm de lado.
d) Un octágono de 4 cm de lado.
Solución
b) Un hexágono de 5 cm de lado.
3. ¿Qué polígono irregular tiene sus lados de igual longitud pero sus ángulos internos son diferentes?
a) Círculo
b) Cuadrado
c) Rectángulo
d) Rombo
Solución
d) Rombo
RECURSOS PARA DOCENTES
Artículo “Perímetro de los polígonos”
Este artículo define qué es un polígono, cuáles son sus clasificaciones y cómo se calcula su el perímetro. También plantea una serie de ejercicios para resolver.
Micrositio “Tarjetas Educativas – Geometría y medidas”
En este micrositio se puede encontrar una serie de tarjetas interactivas que resumen los elementos principales de la geometría, como los polígonos y sus principales características.
Los ángulos están presentes en la mayoría de las figuras geométricas y en nuestra vida cotidiana. Se los considera indispensables para realizar cálculos trigonométricos y estudios en balística, arquitectura e ingeniería. De acuerdo a su amplitud, los ángulos se clasifican en varios tipos.
El ángulo y sus elementos principales
Un ángulo es una región del plano comprendida por dos semirrectas que tienen un origen en común. Los elementos de un ángulos son los siguientes:
Vértice: es el punto en común de las dos semirrectas.
Lados: son las dos semirrectas que conforman al ángulo.
Amplitud: es la medida de abertura de los lados de un ángulo. Esta medida usualmente se lee en grados sexagesimales.
¿Sabías qué?
Los ángulos suelen nombrarse con letras del alfabeto griego.
El sistema sexagesimal
Se usa principalmente para medir el tiempo y los ángulos. En este último caso, las unidades que emplea son grados, minutos y segundos. Al dividir un ángulo llano en 180 partes iguales, una de esas partes equivale a un grado (°). Si se divide un grado en sesenta partes iguales, una de esas partes equivale a un minuto (′). Y si el minuto se divide en 60 partes iguales, una de esas partes corresponde a un segundo (″). En resumen:
1° = 60′
1′ = 60″
Observa que este sistema emplea como base el número 60 y de ahí viene el origen de su nombre. El instrumento usado para su medición es el transportador.
Ángulo agudo: cuando es mayor que 0° pero menor que 90°.
Ángulo recto: cuando mide exactamente 90°.
Ángulo obtuso: cuando es mayor de 90° pero menor que 180°.
Ángulo llano: cuando mide exactamente 180°.
Ángulo completo: cuando mide 360°.
Ángulos complementarios
Dos ángulos son complementarios si al ser sumados el resultado es igual a 90°. Al saber el valor de uno de los ángulos puedes calcular el valor del otro al restar 90° al ángulo conocido.
– Ejemplo:
Se tienen los ángulos complementarios α y β. El valor de β es de 35°. Calcula el valor de α.
Simplemente debes resolver la resta:
Por lo tanto el valor de α es 55°.
Ángulos suplementarios
Dos ángulos son suplementarios si alser sumados el resultado es igual a 180°. Al igual que en el caso anterior puedes determinar el valor de un ángulo de este tipo si conoces el valor de otro y lo restas a 180°.
– Ejemplo:
Se tienen los ángulos suplementarios θ y δ. El valor de θ es de 160°. Calcular el valor de δ.
Resuelve la resta:
El valor de δ es 20°.
Medida de un ángulo
La medición de los ángulos se realiza a menudo a través de un transportador, el cual puede ser de dos tipos: circular o semicircular. El circular mide los 360° de la circunferencia y el semicircular mide los 180°. Ambos transportadores cuentan con una marca en el centro que se debe colocar en el vértice del ángulo a medir. El 0° de la escala debe coincidir con uno de los lados del ángulo y la lectura del ángulo sería la que indica el otro lado en la escala.
Los transportadores suelen presentar dos numeraciones que van en diferentes sentidos según se lea el ángulo: en sentido horario (en el sentido de las manecillas del reloj) o en sentido antihorario.
Los ángulos en las figuras planas
Las figuras planas poseen ángulos interiores y ángulos exteriores. Los ángulos interiores, como su nombre lo indica, se ubican en el interior de la figura, mientras que los exteriores se ubican entre un lado de la figura y el otro lado siguiente. Por ejemplo:
Cálculo de ángulos internos en triángulos
Los ángulos interiores de los triángulos siempre suman 180°. De manera que si conoces la medida de dos de sus ángulos internos puedes calcular la medida del tercero. Lo único que debes hacer es restar los valores de los ángulos conocidos a 180°. Por ejemplo:
– Calcula el valor del ángulo θ.
Como ya sabes, la sumas de los ángulos internos de un triángulo es igual a 180°, entonces, si restas los valores de los ángulos conocidos a 180° obtendrás el valor de Θ:
El valor del ángulo θ es 48°.
¿Sabías qué?
La suma de los ángulos externos de un triángulo es igual a 360°.
Cálculo de ángulos internos en cuadriláteros
En el caso de los cuadriláteros se cumple que la suma de sus cuatro ángulos internos siempre es igual a 360°. De acuerdo al tipo de cuadrilátero el valor del ángulo puede variar. Por ejemplo, en el caso del cuadrado y del rectángulo sus cuatro ángulos internos son iguales y miden 90°. En el caso del rombo y del romboide sus ángulos opuestos son iguales. Si el trapecio es rectángulo posee dos ángulos consecutivos que miden 90°. Si es isósceles tiene los ángulos adyacentes a la base mayor con la misma medida y si el trapecio es escaleno ninguno de sus ángulos mide lo mismo.
Los trapezoides son otro tipo de cuadrilátero con el valor de cada uno de sus ángulos internos diferentes. En resumen:
Figuras
Características
El cuadrado y el rectángulo tienen ángulos internos iguales y miden 90°.
El rombo tiene todos sus ángulos iguales (pero son agudos, es decir, menores a 90°).
El romboide presenta cada par de ángulos opuestos con la misma medida.
El trapecio rectángulo tiene dos ángulos rectos (miden 90° cada uno).
El trapecio isósceles presenta los ángulos adyacentes a la base mayor con la misma medida.
El trapecio escaleno presenta todos sus ángulos con diferente medida.
El trapezoide no posee ningún ángulo con la misma medida.
Para calcular ángulos en un cuadrilátero simplemente tenemos que restar los ángulos conocidos a 360°.
– Ejemplo:
Calcula el valor del ángulo ε de la siguiente figura.
El valor del ángulo ε es 115°.
¡A practicar!
1. ¿Qué tipo de ángulo observas?
a)
Solución
Ángulo obtuso.
b)
Solución
Ángulo llano.
c)
Solución
Ángulo recto.
d)
Solución
Ángulo agudo.
2. Calcula el valor del ángulo γ.
Solución
γ = 55°
3. Calcula el valor del ángulo θ.
Solución
θ = 70°
4. Calcula el valor del ángulo φ.
Solución
φ = 58°
5. Calcula el valor del ángulo β.
Solución
β = 105°
RECURSOS PARA DOCENTES
Artículo “Ángulos en triángulos. Resolución mediante ecuaciones”
El artículo explica los diferentes tipos de ángulos y cómo determinarlos a través de ecuaciones. También muestra una serie de ejemplos y ejercicios relacionados al tema.
Vemos cuadriláteros en todas partes: desde la cara de un dado hasta una hoja de papel. Estas figuras geométricas son polígonos de cuatro lados con múltiples aplicaciones en la geometría. Se caracterizan por su diversidad y de acuerdo a ciertos criterios se pueden clasificar como paralelogramos, trapecios y trapezoides.
Características de los cuadriláteros
La palabra “cuadrilátero” proviene del latín y quiere decir “que tiene cuatro lados”. Entonces, los cuadriláteros son polígonos con cuatro lados que forman entre sí cuatro ángulos. Estas características permiten clasificarlos en varios tipos.
Curiosidades de los cuadriláteros
1. Presentan cuatro lados, cuatro vértices y cuatro ángulos.
2. Todo cuadrilátero tiene dos diagonales.
3. Las dos diagonales del cuadrilátero dividen al mismo en cuatro triángulos.
4. También se denominan cuadrángulo y tetrágono (ambas hacen mención a sus cuatro ángulos y lados).
¿Sabías qué?
La suma de los ángulos interiores de cualquier cuadrilátero siempre es igual a 360°.
Un ángulo es la porción de plano comprendida entre dos semirrectas que tienen un origen común. Existen muchos tipos, algunos son:
Ángulo agudo: que tiene una amplitud menor a 90° pero mayor a 0°.
Ángulo recto: que tiene una amplitud igual a 90°.
Ángulo obtuso: que tiene una amplitud mayor a 90° pero menor a 180°.
Ángulo oblicuo: que no es recto. Los ángulos agudos y obtusos son ejemplo de ángulos oblicuos.
Clasificación de los cuadriláteros
La forma de un campo de fútbol no es igual a la forma de un campo de béisbol, pero en ambos casos hablamos de cuadriláteros. Este tipo de figuras se clasifica en tres grandes grupos: paralelogramos, trapecios y trapezoides.
Paralelogramos
Son cuadriláteros que presentan dos pares de lados paralelos. Los lados opuestos de todo cuadrilátero tienen la misma longitud. Se clasifican en:
Cuadrilátero
Nombre
Características
Cuadrado
– Todos sus lados son iguales.
– Sus ángulos internos son iguales y miden 90° (ángulo recto).
Rectángulo
– Sus lados contiguos (lados que están juntos) no son iguales, pero sus lados opuestos sí lo son.
– Sus ángulos interiores son iguales y miden 90° (ángulo recto).
Rombo
– Todos sus lados son iguales.
– Sus ángulos interiores son agudos (menores a 90°).
Romboide
– Sus lados contiguos son desiguales.
– Sus ángulos opuestos son iguales.
– De sus cuatro ángulos interiores siempre hay un par de ángulos mayor que el otro.
¿Sabías qué?
Los ángulos opuestos de un paralelogramo son congruentes, es decir, tienen la misma medida.
Trapecios
Son cuadriláteros en los que solo dos de sus lados son paralelos, estos lados son llamados bases y siempre hay una de mayor longitud, denominada base mayor; y otra de menor longitud, denominada base menor. Se clasifican en:
Cuadrilátero
Nombre
Características
Trapecio rectángulo
– Dos de sus ángulos interiores son iguales a 90°, es decir, son rectos.
Trapecio isósceles
– Sus lados no paralelos tienen la misma medida.
– Presentan dos ángulos agudos del mismo valor en una de las bases y dos ángulos obtusos del mismo valor sobre la otra base.
Trapecio escaleno
– Ninguno de sus lados tiene la misma longitud.
– Ninguno de sus ángulos es recto.
Trapezoides
Son cuadriláteros que no poseen ninguno de sus lados paralelos.
Cuadrilátero
Nombre
Características
Trapezoide
– Ninguno de sus lados consecutivos es igual.
Diagonales de los cuadriláteros
Las diagonales son los segmentos de rectas que unen el vértice de un ángulo con el vértice del ángulo opuesto no consecutivo. Todos los cuadriláteros tienen dos diagonales, pero sus características varían de acuerdo al tipo.
Paralelogramos
Las diagonales se cortan en el punto medio de ambas.
De acuerdo al tipo de paralelogramo las diagonales presentan estas características:
Cuadrado: sus diagonales son iguales y se cortan en ángulo recto.
Rombo: sus diagonales no son iguales pero se cortan en ángulo recto.
Rectángulo: sus diagonales tienen la misma longitud pero se cortan en un ángulo oblicuo.
Romboide: sus diagonales no son iguales y se cortan en un ángulo oblicuo.
Trapecios
Solo en los trapecios isósceles las diagonales son iguales, en los demás casos ambas diagonales son diferentes. En este tipo de figuras las diagonales siempre se cortan en un ángulo oblicuo.
Trapezoide
Los trapezoides presentan diagonales diferentes y oblicuas.
¿Dónde podemos observar cuadriláteros?
Si prestamos atención a nuestro entorno seguramente vamos a ver más cuadriláteros de los que imaginábamos: las baldosas del piso, el techo de la casa, las puertas y ventanas… Incontables objetos tienen forma de cuadriláteros.
Conocer los cuadriláteros tiene muchas aplicaciones. Por ejemplo, si deseamos encontrar el punto medio de un objeto cuadrado como un cartón, basta con trazar dos diagonales y ubicar su punto de intersección.
¡A practicar!
Responde las siguientes preguntas.
a) ¿Cuántas diagonales tienen los cuadriláteros?
Solución
Dos diagonales.
b) ¿Qué tipo de trapecio tiene dos ángulos rectos?
Solución
Trapecio rectángulo.
c) ¿Qué tipo de paralelogramo tiene las dos diagonales diferentes pero se cortan en ángulo recto?
Solución
El rombo.
d) ¿Qué cuadrilátero no presenta ningún lado paralelo?
Solución
El trapezoide.
2. Identifica si las siguientes figuras corresponden a un paralelogramo, trapecio o trapezoide.
a)
Solución
Trapezoide.
b)
Solución
Paralelogramo.
c)
Solución
Paralelogramo.
d)
Solución
Trapecio.
e)
Solución
Paralelogramo.
f)
Solución
Trapecio.
g)
Solución
Paralelogramo.
h)
Solución
Trapecio.
RECURSOS PARA DOCENTES
Artículo “Cuadriláteros”
Este artículo destacado describe los tipos de cuadriláteros y sus diferentes tipos y subtipos. También explica la importancia de reconocerlos y sus aplicaciones en la geometría y la publicidad.
Esta infografía permite comprender de manera ilustrada qué son los rectángulos y sus propiedades. También se enfoca en cómo construir este tipo de figura geométrica.
La ubicación espacial nos sirve para conocer dónde estamos con respecto a todo lo que nos rodea, de este modo podemos señalar con facilidad nuestra ubicación. Términos como arriba, abajo, derecha, izquierda, delante y detrás son de gran utilidad para el desarrollo del sentido de la orientación. Si deseamos ubicar puntos en un plano podemos usar los ejes de coordenadas: un conjunto de líneas verticales y horizontales que nos brindan los datos necesarios para saber la posición exacta de un objeto en una cuadrícula.
CUERPOS GEOMÉTRICOS
Los cuerpos geométricos poseen tres dimensiones: alto, largo y ancho. Estos cuerpos pueden ser poliedros, tales como el cubo, la pirámide y el prisma; también pueden ser cuerpos redondos, como la esfera, el cono y el cilindro. Los elementos que los componen son las caras, las aristas y los vértices. Las caras de los cuerpos geométricos son figuras planas.
ELEMENTOS GEOMÉTRICOS
El punto, la recta, el rayo y el segmento son elementos geométricos. El punto indica una posición, el rayo posee un origen y se extiende hacia el infinito, el segmento tiene un principio y un final, y la recta es una sucesión de puntos que siguen una misma dirección. Por otro lado, dos rectas pueden ser paralelas cuando no se cortan en ningún punto; perpendiculares cuando al cortarse forman cuatro ángulos rectos y oblicuas cuando al cortarse no forman ángulos rectos.
ángulos
El ángulo es una porción comprendida entre dos lados con un origen en común llamado vértice. Según sus medidas el ángulo puede ser convexo, nulo, agudo, recto, obtuso, cóncavo, llano y completo. Según su posición existen ángulos adyacentes, consecutivos y opuestos por el vértice. Para estimar la medida de un ángulo es preferible usar medidas de referencia que ya conocemos, como ángulos de 45° y 90°.
perímetro
El perímetro es el contorno de una figura. Para averiguar el perímetro de polígonos regulares multiplicamos la cantidad de lados por la longitud del lado. En cambio, para polígonos no regulares el perímetro lo calculamos al sumar todos los lados de la figura. Conocer cuánto mide el perímetro de una figura te ayudará a saber cuánto material se utilizó para alambrar una cancha de fútbol y en otros múltiples usos.
transformaciones isométricas
Una transformación isométrica es el cambio de posición que sufre una figura. Estas transformaciones pueden ser por rotación, por traslación o por reflexión. La rotación se refiere al giro alrededor de un punto fijo; la traslación consiste en mover todos los puntos de una figura en la misma dirección, sentido y distancia; y la reflexión no es más que el reflejo de la figura respecto de un eje de simetría. Estas transformaciones no cambian ni la forma ni el tamaño de las figuras.