CAPÍTULO 3 / TEMA 3

FRACCIONES Y DECIMALES

Algunos números decimales pueden ser representados a través de fracciones, por esta razón se dice que los números decimales y las fracciones se encuentran relacionados. Los números decimales que se pueden representar a través de fracciones se denominan racionales y de acuerdo a su tipo se realiza la conversión.

Los números fraccionarios están formados por el numerador y el denominador que se encuentran divididos por una raya horizontal. Por otro lado, los números decimales están formados por una parte entera y una parte decimal separadas por una coma. En el caso de números racionales es posible representar la misma cantidad en fracción o decimal.

LOS NÚMEROS DECIMALES

Los números decimales son aquellos que están formados por una parte entera y una parte decimal. Estos están separados por una coma o un punto. Estos números son otra forma de escribir el resultado de las fracciones. Ambas expresiones representan cualquier número no entero (aunque las fracciones pueden representar cantidades enteras en el caso de las fracciones aparentes).

En este sentido, las fracciones se pueden expresar en forma de números decimales, para lo cual se debe realizar la división de la fracción, es decir, numerador entre denominador. Por ejemplo, al dividir el numerador entre el denominador de la fracción 5/4 se obtiene 1,25, que corresponde a la misma cantidad.

Convertir una fracción a número decimal

Solo existe un método para convertir una fracción a número decimal y se realiza a través de la división. Si divides el numerador entre el denominador por lo general obtienes un número decimal. Siempre y cuando no sea una fracción aparente, en la que el resultado es un número entero (como en el caso de 4/2 = 2).

Algunos ejemplos de conversión de fracciones a decimales son los siguientes:

\frac{9}{8}=1,125

\frac{3}{14}=0,214

\frac{26}{63}= 0,4127

Convertir un número decimal a fracción

Existen diferentes procedimientos para convertir números decimales a fracciones. Estos pasos dependen del tipo de número que se va a transformar.

Tipos de números decimales

Los números decimales pueden ser racionales o irracionales. Los racionales pueden representarse en forma de fracción y los irracionales no. Los números racionales se clasifican en decimales exactos y decimales periódicos.

Decimales exactos: son aquellos números que tiene una parte limitada o finita de cifras decimales. Los decimales finitos representan a las fracciones decimales. Por ejemplo: 2,38; 4,681; 68,98135; 9647,3543.

Decimales periódicos: son aquellos en los que toda la parte decimal o una porción de esta sigue un patrón infinito de números denominado período y se denota en forma de arco en la parte superior del mismo.

Se pueden distinguir dos tipos de decimales periódicos:

Números decimales periódicos puros

Estos números decimales tienen la parte decimal periódica inmediatamente después de la coma. La parte periódica se suele señalar usualmente con una línea horizontal o arco en la parte superior del mismo. Por ejemplo: 2,3333… = \inline 2,\widehat{33}.

Números decimales periódicos mixtos

Estos números decimales poseen dos partes decimales: una parte no periódica, denominada anteperíodo, y la otra parte es la periódica, que se denota con el arco superior. Por ejemplo: 2,147151515… = \inline 2,147\widehat{15}.

¿Sabías qué?
Al dividir la longitud de una circunferencia entre su diámetro se obtiene un número irracional denominado número pi.

Convertir un número decimal exacto a fracción

Para transformar un número decimal exacto a una fracción decimal se debe escribir el decimal dividido por 1. Luego hay que multiplicar tanto el numerador como el denominador por una potencia de base diez (10, 100, 1.000, etc.) que tenga tantos ceros como cifras decimales tenga el número. Si la fracción que se obtiene no es irreducible, entonces se debe simplificar para obtener el resultado

Por ejemplo:

Otro ejemplo sería:

 

Al igual que las demás clases de números, los decimales y los fraccionarios pueden ubicarse en la recta numérica. Estos se encuentran entre dos números enteros, por lo tanto, permiten realizar e indicar mediciones mucho más precisas. Un ejemplo de esto son las llaves mecánicas, las cuales tienen medidas fraccionarias en pulgadas y decimales en milímetros.

Convertir un decimal periódico puro a fracción

Para convertir un decimal periódico puro a fracción es necesario aplicar los siguientes pasos:

1. Se coloca en el numerador una resta entre el número formado por la parte entera y la parte periódica sin la coma, y la parte entera. Observemos el siguiente ejemplo en el que se desea convertir en fracción el número \inline 7,\widehat{66}.

2. Se coloca en el denominador un número formado por tantos 9 según la cantidad de cifras en el período, es decir, si hay un número bajo la línea periódica se coloca un solo 9, si hay dos números bajo el período se coloca 99 y así sucesivamente.

3. Se realizan las operaciones matemáticas necesarias para conseguir la fracción. Se simplifica si es necesario.

7,\widehat{66}=\frac{766-7}{99}=\boldsymbol{\frac{759}{99}}

Veamos otro ejemplo en el cual se aplicaron los mismos pasos:

92,\widehat{35}=\frac{9235-92}{99}=\boldsymbol{\frac{9.143}{99}}

Convertir un decimal periódico mixto a fracción.

Para llevar un número decimal mixto a fracción, seguimos los siguientes pasos:

1. Se coloca en el numerador una resta formada por el número completo sin la coma menos la parte entera y el anteperíodo. Observemos el siguiente ejemplo: \inline 58,3\widehat{7}.

2. Se coloca el denominador de la fracción que será un número formado por tantos 9 como cifras tenga el período y tantos 0 como cifras tenga el anteperíodo.

Por último, se realizan los cálculos necesarios para conseguir la fracción y se simplifica si la misma lo requiere.

58,3\widehat{7}=\frac{5837-583}{90}=\frac{5.254}{90}=\boldsymbol{\frac{2.627}{45}}

Veamos otro ejemplo con el mismo procedimiento:

64,12\widehat{91}=\frac{641291-6412}{9900}=\boldsymbol{\frac{634.879}{9.900}}

 

Los números irracionales

Este tipo de números decimales no pueden ser convertidos en fracciones, debido a que tienen cifras decimales infinitas que no pueden ser definidas como un patrón. Por lo tanto, crear una fracción de estos números sería infinita. Podemos mencionar como ejemplos de estos números al número pi = 3,1416… o al resultado de \sqrt{7}=2,6457512110...

VER INFOGRAFÍA

La estadística es una de las ramas de la matemática que emplea el uso de los números fraccionarios y decimales para realizar el estudio de muestras y poblaciones. Por tal motivo, tener conocimientos sobre cómo convertir un número fraccionario a decimal, y viceversa, puede ser muy útil en diversos campos.

Operaciones entre fracciones y decimales

Los números decimales y las fracciones se pueden sumar, restar, dividir, y multiplicar, entre otras operaciones, siempre y cuando se apliquen los métodos anteriormente vistos, como convertir un número decimal a fracción o una fracción a número decimal. Es importante tener presente que para resolver estos ejercicios debemos convertir todos los números a decimales o todos los números a fracciones.

– Primer método: convertir la fracción en un número decimal. Esto se realiza al dividir el numerador entre el denominador.

Ejemplo:

45,18 + \frac{38}{17}= 45,18 + 2,2353 = 47,4153

– Segundo método: convertir el número decimal en una fracción. En este caso, se utiliza la conversión del número decimal a fracción. En el ejemplo anterior, se puede notar que el número decimal es exacto, por lo tanto, se utiliza la conversión de número decimal exacto a fracción.

45,18+\frac{38}{17}=\frac{4.518}{100}+\frac{38}{17}=\frac{2.259}{50}+ \frac{38}{17}=\frac{2.259\times 17+50\times38}{50\times 17}= \frac{38.403+1.900}{850}=

\boldsymbol{=\frac{40.303}{850}}

En ambos casos se obtuvo el mismo resultado expresado de una forma diferente \frac{40.303}{850}=47,4153

Estos pasos previos se utilizan para realizar los otros cálculos matemáticos como la división, la multiplicación, las potencias, las raíces y las operaciones combinadas.

¡A practicar!

1. Convierte los siguientes números a decimales:

a) \frac{15}{12}

RESPUESTAS

\frac{15}{12}=1,25

b) \frac{28}{15}

RESPUESTAS

\frac{28}{15}= 1,8\widehat{6}

2. Convierte los siguientes números a fracciones:

a) 42,56\widehat{3}

RESPUESTAS

42,56\widehat{3}=\frac{42.563-4.256}{900}=\frac{38.307}{900}

b) 938,\widehat{7}

RESPUESTAS

938,\widehat{7}=\frac{9.387-938}{9}=\frac{8.449}{9}

c) 456,328

RESPUESTAS

456,328=\frac{456.328}{1.000}=\frac{228.164}{500}=\frac{114.082}{250}=\frac{57.041}{125}

3. Resuelve las siguientes operaciones:

a) 726,328+\frac{15}{6}

RESPUESTAS

726,328+\frac{15}{6}=\frac{726.328}{1.000}+\frac{15}{6}=\frac{90.791}{125}+\frac{15}{6}= 728,828

b) 415,14-\frac{425}{3}

RESPUESTAS

415,14-\frac{425}{3}=415,14-141,66=273,48

c) 26,31\times\frac{18}{23}

RESPUESTAS

26,31\times\frac{18}{23}=\frac{2.631}{100}\times\frac{18}{23}= \frac{47.358}{2.300}=\frac{23.679}{1.150}

d) 92,78 :\frac{87}{17}

RESPUESTAS

92,78 :\frac{87}{17}=\frac{9.278}{100}:\frac{87}{17}=\frac{4.639}{50}:\frac{87}{17}=\frac{\frac{4.639}{50}}{\frac{87}{17}}=\frac{78.863}{4.350}

RECURSOS PARA DOCENTES

Artículo “Resolución de cálculos combinados con paréntesis, corchetes y llaves”

Este artículo explica cómo resolver operaciones matemáticas con fracciones y decimales que incluyen paréntesis, corchetes y llaves.

VER

Artículo “Cómo realizar ejercicios combinados con fracciones”

El siguiente artículo destacado se enfoca en los pasos a seguir para resolver cálculos de operaciones combinadas con fracciones.

VER

CAPÍTULO 2 / TEMA 2

MULTIPLICACIÓN

Si queremos comprar 8 chocolates y cada uno cuesta $ 6, ¿cuánto dinero tenemos que pagar? Para responder esta pregunta debemos hacer una multiplicación. Esta es una operación que simplifica la tarea de sumar varias veces un mismo número. Así que, en lugar de contar 8 veces 6, lo podemos representar como 8 × 6 = 48. A continuación aprenderás cómo hacer estos cálculos con números grandes.

¿Qué es la multiplicación?

La multiplicación es una operación matemática que consiste en sumar varias veces un mismo número.

Los elementos de la multiplicación son:

  • Factores: son los números que se multiplican o suman reiteradas veces.
  • Producto: es el resultado de la multiplicación. Cuando las multiplicaciones son largas el producto final se obtiene por la suma de los productos parciales.

Multiplicaciones en la Fórmula 1

Las multiplicaciones se utilizan en una gran variedad de situaciones y las carreras de automóviles son un ejemplo. Supongamos que una vuelta completa a la pista de carrera es de 4 kilómetros y para realizar toda carrera el vehículo tiene que dar 52 vueltas. Si multiplicamos la cantidad de vueltas por los kilómetros de cada vuelta sabremos la distancia total recorrida por el vehículo, es decir, 52 × 4 = 208. Entonces, el vehículo recorre 208 kilómetros en toda la carrera.

multiplicación sin reagrupación

Es un método que consiste en multiplicar las unidades, las decenas y las centenas de 2 factores entre sí cuando ninguno de los productos formados supera la decena.

– Ejemplo: 234 × 21

Lo primero que tenemos que hacer es ubicar los factores uno arriba del otro, de manera tal que las unidades estén sobre las unidades, las decenas sobre las decenas y las centenas sobre las centenas.

Luego multiplicamos las unidades del factor de abajo por todas las cifras del factor de arriba (1 × 324 = 324). Colocamos el resultado en la fila inferior desde la derecha hacia la izquierda.

Después multiplicamos las decenas del factor de abajo por cada cifra del factor de arriba (2 × 324 = 648). Escribimos este resultado debajo del obtenido anteriormente y dejamos un espacio a la derecha.

Finalmente realizamos una suma de los productos parciales.

 

– Ejemplo: 122 × 332

Ubicamos los factores uno sobre otro.

Multiplicamos las unidades del segundo factor por todas las cifras del primer factor (2 x 122 = 244) y escribimos el resultado en la última fila.

Multiplicamos las decenas del segundo factor por cada cifra del primer factor (3 × 122 = 366). Escribimos el resultado y dejamos un espacio a la derecha.

Repetimos el procedimiento anterior, esta vez con las centenas del segundo factor (3 × 122 = 366).

Al final sumamos las tres filas. Ese será el resultado de nuestra multiplicación.

 

El área de un rectángulo es igual a una multiplicación de dos de sus lados. Por ejemplo, un campo de fútbol puede llegar a tener 120 metros de largo y 90 metros de ancho. Para saber el área del campo solo tenemos que multiplicar ambas medidas, es decir, 120 m x 90 m = 10.800 m2. Por lo tanto, el campo tiene un área de 10.800 metros cuadrados.
¡A practicar!

Realiza las siguientes multiplicaciones:

  • 231 × 32
Solución

  • 321 x 123
Solución

MULTIPLICACIÓN CON REAGRUPACIÓN

Es un procedimiento que podemos utilizar cuando algún producto es igual o mayor a 10. Aquí reagrupamos decenas o centenas según sea el caso.

– Ejemplo: 469 x 73

Al igual que en el caso anterior, colocamos los factores uno sobre otros y nos aseguramos de que las unidades, decenas y centenas de cada factor estén en las mismas columnas.

Multiplicamos las unidades del factor ubicado debajo por todas las cifras del factor de arriba. En este caso comenzamos con 3 y lo multiplicamos por 9. Como 3 × 9 = 27, colocamos el 7 en la fila de los resultados y el 2 lo ubicamos en la columna de las decenas de los factores.

Ahora multiplicamos 3 x 6 = 18, pero debemos agrupar este resultado con el 2 que colocamos antes. Entonces, el resultado es 18 + 2 = 20. Escribimos el 0 en la fila del resultado y colocamos el 2 en la columna de las centenas.

El siguiente producto es 3 x 4 = 12 y agrupamos con el 2 de las centenas. Así que 12 + 2 = 14. En la fila del resultado colocamos las dos cifras del número.

 

Repetimos el mismo procedimiento con las decenas del factor de abajo y lo multiplicamos por cada cifra del primer factor (7 × 469 = 3.283).

Luego sumamos las dos filas y obtenemos el resultado de la multiplicación.

Tabla pitagórica

Es otro modelo de tabla de multiplicar. Fue construida por Pitágoras, filósofo y matemático griego del siglo V a. C., para enseñarles a multiplicar a los más pequeños. La primera columna y fila dispone de los números que van ser multiplicados, y cada una de las celdas internas de la tabla representa la multiplicación entre los números de la primera fila y columna.

– Ejemplo: 423 x 514

Cuando los dos factores tienen tres cifras el procedimiento es el mismo. Ubicamos los factores uno sobre otro, y multiplicamos las unidades del segundo factor por el primero (4 × 423 = 1.692). 

Multiplicamos las decenas del segundo factor por cada cifra del primer factor (1 × 423 = 423).

Repetimos el procedimiento con las centenas del factor de abajo (5 × 423 = 2.115).

Sumamos las filas con los productos parciales.

¡A practicar!

Realiza esta multiplicación:

  • 721 × 166
Solución
721 × 166 = 119.686

MULTIPLICACIÓN DE UN NÚMERO NATURAL POR 10, 100 Y 1.000

Veamos estas 3 multiplicaciones:

  1. 473 × 10 = 4.730
  2. 473 × 100 = 47.300
  3. 473 × 1.000 = 473.000

Como ves, cuando se multiplica un número natural por 10, 100 y 1.000 basta con agregar ceros al número original como se resume en la siguiente tabla:

Para multiplicar un número natural por… Agregamos… Ejemplo
10 un cero 912 × 10 = 9.120
100 dos ceros 411 × 100 = 41.100
1.000 tres ceros 746 × 1.000 = 746.000

LA MULTIPLICACIÓN Y LA PROPIEDAD DISTRIBUTIVA

La propiedad distributiva establece que si multiplicamos un número por una suma es igual a multiplicar ese número por cada sumando y luego sumar los productos finales.

– Ejemplo:

Esta propiedad también se cumple en la resta:

¿Sabías qué?
Puedes resolver primero la suma o resta que esté dentro de los paréntesis y luego hacer la multiplicación. El resultado será el mismo. 
Las multiplicaciones forman parte de nuestro día a día. Las usamos cada vez que hacemos compras, contamos las butacas de un cine o jugamos con nuestros amigos. Por lo general hacemos esta operación cuando manejamos dinero, pues si tenemos 6 billetes de $ 100 es más fácil solo multiplicar 6 x 100 = 600 en lugar de contar de 100 en 100 hasta llegar a 600.

¡A practicar!

1. Resuelve las siguientes multiplicaciones:

  • 414 x 24 =
    Solución
    414 x 24 = 9.936
  • 121 x 38 =
    Solución
    121 x 38 = 4.598
  • 741 x 51 =
    Solución
    741 x 51 = 37.791
  • 620 x 324 =
    Solución
    620 x 324 = 200.880
  • 496 x 531 =
    Solución
    496 x 531 = 263.376
  • 589 x 10 = 
    Solución
    589 x 10= 5.890
  • 144 x 100 =
    Solución
    144 x 100 = 14.400
  • 378 x 1.000 = 
    Solución
    378 x 1.000 = 378.000

2. Usa la propiedad distributiva para resolver estas operaciones:

  • (25 + 30) x 2 = 
    Solución
    (25 + 30) x 2 = 110
  • (10 + 9) x 4 = 
    Solución
    (10 + 9) x 4 = 76
  • (15 − 8 ) x 100 = 
    Solución
    (15 − 8) × 100 = 700
  • (24 − 22) × 5 = 
    Solución
    (24 − 22) × 5 = 10
RECURSOS PARA DOCENTES

Artículo “Multiplicación por dos o más cifras”

En este artículo podrás acceder a información complementaria sobre algunos métodos de multiplicación

VER

Artículo “Trucos para aprender las tablas de multiplicar”

Este artículo brinda los recursos necesarios para estudiar las tablas de multiplicar.

VER