CAPÍTULO 2 / TEMA 2

MULTIPLICACIÓN

Si queremos comprar 8 chocolates y cada uno cuesta $ 6, ¿cuánto dinero tenemos que pagar? Para responder esta pregunta debemos hacer una multiplicación. Esta es una operación que simplifica la tarea de sumar varias veces un mismo número. Así que, en lugar de contar 8 veces 6, lo podemos representar como 8 × 6 = 48. A continuación aprenderás cómo hacer estos cálculos con números grandes.

¿Qué es la multiplicación?

La multiplicación es una operación matemática que consiste en sumar varias veces un mismo número.

Los elementos de la multiplicación son:

  • Factores: son los números que se multiplican o suman reiteradas veces.
  • Producto: es el resultado de la multiplicación. Cuando las multiplicaciones son largas el producto final se obtiene por la suma de los productos parciales.

Multiplicaciones en la Fórmula 1

Las multiplicaciones se utilizan en una gran variedad de situaciones y las carreras de automóviles son un ejemplo. Supongamos que una vuelta completa a la pista de carrera es de 4 kilómetros y para realizar toda carrera el vehículo tiene que dar 52 vueltas. Si multiplicamos la cantidad de vueltas por los kilómetros de cada vuelta sabremos la distancia total recorrida por el vehículo, es decir, 52 × 4 = 208. Entonces, el vehículo recorre 208 kilómetros en toda la carrera.

multiplicación sin reagrupación

Es un método que consiste en multiplicar las unidades, las decenas y las centenas de 2 factores entre sí cuando ninguno de los productos formados supera la decena.

– Ejemplo: 234 × 21

Lo primero que tenemos que hacer es ubicar los factores uno arriba del otro, de manera tal que las unidades estén sobre las unidades, las decenas sobre las decenas y las centenas sobre las centenas.

Luego multiplicamos las unidades del factor de abajo por todas las cifras del factor de arriba (1 × 324 = 324). Colocamos el resultado en la fila inferior desde la derecha hacia la izquierda.

Después multiplicamos las decenas del factor de abajo por cada cifra del factor de arriba (2 × 324 = 648). Escribimos este resultado debajo del obtenido anteriormente y dejamos un espacio a la derecha.

Finalmente realizamos una suma de los productos parciales.

 

– Ejemplo: 122 × 332

Ubicamos los factores uno sobre otro.

Multiplicamos las unidades del segundo factor por todas las cifras del primer factor (2 x 122 = 244) y escribimos el resultado en la última fila.

Multiplicamos las decenas del segundo factor por cada cifra del primer factor (3 × 122 = 366). Escribimos el resultado y dejamos un espacio a la derecha.

Repetimos el procedimiento anterior, esta vez con las centenas del segundo factor (3 × 122 = 366).

Al final sumamos las tres filas. Ese será el resultado de nuestra multiplicación.

 

El área de un rectángulo es igual a una multiplicación de dos de sus lados. Por ejemplo, un campo de fútbol puede llegar a tener 120 metros de largo y 90 metros de ancho. Para saber el área del campo solo tenemos que multiplicar ambas medidas, es decir, 120 m x 90 m = 10.800 m2. Por lo tanto, el campo tiene un área de 10.800 metros cuadrados.
¡A practicar!

Realiza las siguientes multiplicaciones:

  • 231 × 32
Solución

  • 321 x 123
Solución

MULTIPLICACIÓN CON REAGRUPACIÓN

Es un procedimiento que podemos utilizar cuando algún producto es igual o mayor a 10. Aquí reagrupamos decenas o centenas según sea el caso.

– Ejemplo: 469 x 73

Al igual que en el caso anterior, colocamos los factores uno sobre otros y nos aseguramos de que las unidades, decenas y centenas de cada factor estén en las mismas columnas.

Multiplicamos las unidades del factor ubicado debajo por todas las cifras del factor de arriba. En este caso comenzamos con 3 y lo multiplicamos por 9. Como 3 × 9 = 27, colocamos el 7 en la fila de los resultados y el 2 lo ubicamos en la columna de las decenas de los factores.

Ahora multiplicamos 3 x 6 = 18, pero debemos agrupar este resultado con el 2 que colocamos antes. Entonces, el resultado es 18 + 2 = 20. Escribimos el 0 en la fila del resultado y colocamos el 2 en la columna de las centenas.

El siguiente producto es 3 x 4 = 12 y agrupamos con el 2 de las centenas. Así que 12 + 2 = 14. En la fila del resultado colocamos las dos cifras del número.

 

Repetimos el mismo procedimiento con las decenas del factor de abajo y lo multiplicamos por cada cifra del primer factor (7 × 469 = 3.283).

Luego sumamos las dos filas y obtenemos el resultado de la multiplicación.

Tabla pitagórica

Es otro modelo de tabla de multiplicar. Fue construida por Pitágoras, filósofo y matemático griego del siglo V a. C., para enseñarles a multiplicar a los más pequeños. La primera columna y fila dispone de los números que van ser multiplicados, y cada una de las celdas internas de la tabla representa la multiplicación entre los números de la primera fila y columna.

– Ejemplo: 423 x 514

Cuando los dos factores tienen tres cifras el procedimiento es el mismo. Ubicamos los factores uno sobre otro, y multiplicamos las unidades del segundo factor por el primero (4 × 423 = 1.692). 

Multiplicamos las decenas del segundo factor por cada cifra del primer factor (1 × 423 = 423).

Repetimos el procedimiento con las centenas del factor de abajo (5 × 423 = 2.115).

Sumamos las filas con los productos parciales.

¡A practicar!

Realiza esta multiplicación:

  • 721 × 166
Solución
721 × 166 = 119.686

MULTIPLICACIÓN DE UN NÚMERO NATURAL POR 10, 100 Y 1.000

Veamos estas 3 multiplicaciones:

  1. 473 × 10 = 4.730
  2. 473 × 100 = 47.300
  3. 473 × 1.000 = 473.000

Como ves, cuando se multiplica un número natural por 10, 100 y 1.000 basta con agregar ceros al número original como se resume en la siguiente tabla:

Para multiplicar un número natural por… Agregamos… Ejemplo
10 un cero 912 × 10 = 9.120
100 dos ceros 411 × 100 = 41.100
1.000 tres ceros 746 × 1.000 = 746.000

LA MULTIPLICACIÓN Y LA PROPIEDAD DISTRIBUTIVA

La propiedad distributiva establece que si multiplicamos un número por una suma es igual a multiplicar ese número por cada sumando y luego sumar los productos finales.

– Ejemplo:

Esta propiedad también se cumple en la resta:

¿Sabías qué?
Puedes resolver primero la suma o resta que esté dentro de los paréntesis y luego hacer la multiplicación. El resultado será el mismo. 
Las multiplicaciones forman parte de nuestro día a día. Las usamos cada vez que hacemos compras, contamos las butacas de un cine o jugamos con nuestros amigos. Por lo general hacemos esta operación cuando manejamos dinero, pues si tenemos 6 billetes de $ 100 es más fácil solo multiplicar 6 x 100 = 600 en lugar de contar de 100 en 100 hasta llegar a 600.

¡A practicar!

1. Resuelve las siguientes multiplicaciones:

  • 414 x 24 =
    Solución
    414 x 24 = 9.936
  • 121 x 38 =
    Solución
    121 x 38 = 4.598
  • 741 x 51 =
    Solución
    741 x 51 = 37.791
  • 620 x 324 =
    Solución
    620 x 324 = 200.880
  • 496 x 531 =
    Solución
    496 x 531 = 263.376
  • 589 x 10 = 
    Solución
    589 x 10= 5.890
  • 144 x 100 =
    Solución
    144 x 100 = 14.400
  • 378 x 1.000 = 
    Solución
    378 x 1.000 = 378.000

2. Usa la propiedad distributiva para resolver estas operaciones:

  • (25 + 30) x 2 = 
    Solución
    (25 + 30) x 2 = 110
  • (10 + 9) x 4 = 
    Solución
    (10 + 9) x 4 = 76
  • (15 − 8 ) x 100 = 
    Solución
    (15 − 8) × 100 = 700
  • (24 − 22) × 5 = 
    Solución
    (24 − 22) × 5 = 10
RECURSOS PARA DOCENTES

Artículo “Multiplicación por dos o más cifras”

En este artículo podrás acceder a información complementaria sobre algunos métodos de multiplicación

VER

Artículo “Trucos para aprender las tablas de multiplicar”

Este artículo brinda los recursos necesarios para estudiar las tablas de multiplicar.

VER

 

CAPÍTULO 2 / TEMA 1

ADICIÓN

MUCHAS VECES NECESITAMOS AGRUPAR OBJETOS, POR EJEMPLO, LAS TARJETAS DE UN COMPAÑERO CON LAS NUESTRAS, PERO ¿CÓMO SABER CUÁNTAS HAY AL FINAL? PARA ESTO USAMOS UNA OPERACIÓN LLAMADA ADICIÓN O SUMA QUE CONSISTE EN UNIR CANTIDADES. SEGURO LA USAS DIARIAMENTE. HOY APRENDERÁS CUÁLES SON SUS PROPIEDADES Y CÓMO CALCULARLA.

LA ADICIÓN Y SUS ELEMENTOS

LA ADICIÓN ES UNA OPERACIÓN MATEMÁTICA QUE UNE DOS O MÁS CANTIDADES. EN ESA UNIÓN SE FORMA OTRA CANTIDAD LLAMADA SUMA. SUS ELEMENTO SON LOS SUMANDOS Y LA SUMA TOTAL.

– EJEMPLO:

JOSÉ Y CARLOS COMPRARON PALETAS PARA TODOS SUS AMIGOS. SI JOSÉ COMPRÓ 4 PALETAS Y CARLOS COMPRÓ 5 PALETAS, ¿CUÁNTAS PALETAS COMPRARON EN TOTAL?

ESTE PROBLEMA SE RESUELVE CON UNA SUMA. LOS SUMANDOS SON 4 Y 5 Y LA SUMA TOTAL ES LA UNIÓN DE ESAS DOS CANTIDADES, ES DECIR, 9.

LA SUMA ES UNA DE LAS PRIMERAS OPERACIONES MATEMÁTICAS QUE APRENDEMOS PORQUE ES UNA DE LAS MÁS USADAS EN LA VIDA COTIDIANA. DESDE LA ANTIGÜEDAD SE HAN AGRUPADO NÚMEROS PARA SABER CANTIDADES. INICIAMOS A SUMAR CON LOS DEDOS, PERO CUANDO LAS CIFRAS SON MAYORES TENEMOS QUE USAR LOS SÍMBOLOS DE LOS NÚMEROS Y SUS VALORES EN TABLAS POSICIONALES.

SUMA CON TABLA DE VALORES

ES UNA MANERA SENCILLA DE REPRESENTAR LAS SUMAS. AQUÍ DEBEMOS COLOCAR EN COLUMNAS LAS UNIDADES, LAS DECENAS Y LAS CENTENAS DE CADA NÚMERO.

– EJEMPLO:

¡ES TU TURNO!

REALIZA LAS SIGUIENTES SUMAS:

  • 15 + 14
  • 45 + 2
  • 45 + 51
SOLUCIÓN

 

SUMA CON LLEVADAS

A VECES LA SUMA DE LAS UNIDADES DE LOS SUMANDOS PUEDE SER MAYOR A 10, EN ESE CASO SEGUIMOS ESTOS PASOS:

1. SUMAMOS LAS UNIDADES Y COLOCAMOS EL 1 EN LA COLUMNA DE LAS DECENAS.

2. SUMAMOS LAS DECENAS CON EL 1 QUE SE COLOCÓ ANTES.

 

– EJEMPLOS:

 

TAMBIÉN PUEDE OCURRIR CON LAS CENTENAS. OBSERVA:

 

NUESTRO SISTEMA DE NUMERACIÓN SOLO TIENE DIEZ DÍGITOS: 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9. CON ELLOS FORMAMOS TODOS LOS NÚMEROS QUE EXISTEN Y CADA CIFRA TENDRÁ UN VALOR DIFERENTE SEGÚN EL LUGAR QUE OCUPE DENTRO DEL NÚMERO. POR EJEMPLO, EN EL NÚMERO 25, EL 2 VALE 20 Y EL 5 VALE 5, PERO EN EL NÚMERO 52, EL 5 VALE 50 Y EL 2 VALE 2.

PROPIEDADES DE LA ADICIÓN

PROPIEDAD CONMUTATIVA

EN UNA SUMA DE DOS CANTIDADES, SI CAMBIAMOS EL ORDEN DE LOS SUMANDOS EL RESULTADO ES EL MISMO.

PROPIEDAD ASOCIATIVA

EN UNA SUMA DE TRES SUMANDOS, SI CAMBIAMOS LA AGRUPACIÓN DE LOS SUMANDOS EL RESULTADO ES EL MISMO.

ELEMENTO NEUTRO

LA SUMA DE CUALQUIER NÚMERO CON CERO DA COMO RESULTADO SU NÚMERO INICIAL.

DESCOMPOSICIÓN ADITIVA

SE TRATA DE REPRESENTAR UN NÚMERO COMO LA SUMA DE OTROS. EN ESTE CASO CONSIDERAMOS LOS VALORES POSICIONALES. RECUERDA QUE:

  • 1 UNIDAD = 1 UNIDAD
  • 1 DECENA = 10 UNIDADES
  • 1 CENTENA = 100 UNIDADES

– EJEMPLO 1:

EL NÚMERO 156 TIENE:

  • 1 CENTENA = 1 × 100 = 100
  • 5 DECENAS = 5 × 10 = 50
  • 6 UNIDADES = 6 × 1 = 6

DESCOMPOSICIÓN ADITIVA:

156 = 100 + 50 + 6

 

– EJEMPLO 2:

EL NÚMERO 84 TIENE:

  • 8 DECENAS = 8 × 10 = 80
  • 4 UNIDADES = 4 × 1 = 4

DESCOMPOSICIÓN ADITIVA:

84 = 80 + 4

¡ANTES DE LAS CALCULADORAS!

DESDE HACE MILES DE AÑOS EL SER HUMANO HA NECESITADO CONTAR, ¡Y CLARO! SUMAR. AL PRINCIPIO LO HACÍA CON LOS DEDO, CON PALOS O CON PIEDRAS. TAMBIÉN HACÍAN NUDOS EN CUERDAS PARA CONTAR CANTIDADES. PERO UNO DE LOS MÁS IMPORTANTES INVENTOS FUE EL ÁBACO: UN HERRAMIENTA QUE HACE CÁLCULOS MANUALES POR MEDIO DE CONTADORES O ESFERAS QUE REPRESENTAN CANTIDADES.

¡PRACTIQUEMOS LO APRENDIDO!

1. PARA UN TORNEO DE BALONCESTO SE INSCRIBIERON 78 NIÑOS DE PRIMERO GRADO Y 81 NIÑOS DE SEGUNDO GRADO, ¿CUÁNTO NIÑOS SE INSCRIBIERON EN TOTAL?

  • DATOS

NIÑOS DE PRIMERO GRADO: 78

NIÑOS DE SEGUNDO GRADO: 81

  • PREGUNTA

¿CUÁNTOS NIÑOS SE INSCRIBIERON EN TOTAL?

  • ANALIZA

HAY QUE HACER UNA SUMA. PARA ESTO COLOCAMOS LOS SUMANDOS UNO SOBRE Y OTRO. SUMAMOS PRIMERO LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

SE INSCRIBIERON 159 NIÑOS PARA EL TORNEO.


2. EN UN DÍA, UNA LIBRERÍA VENDIÓ 45 LÁPICES AMARILLOS Y 82 LÁPICES ROJOS, ¿CUÁNTOS LÁPICES SE VENDIERON ESE DÍA?

  • DATOS

LÁPICES AMARILLOS VENDIDOS: 45

LÁPICES ROJOS VENDIDOS: 82

  • PREGUNTA

¿CUÁNTOS LÁPICES SE VENDIERON ESE DÍA?

  • ANALIZA

HAY QUE HACER UNA SUMA. PARA ESTO COLOCAMOS LOS SUMANDOS UNO SOBRE Y OTRO. SUMAMOS PRIMERO LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

SE VENDIERON 127 LÁPICES ESE DÍA.


3. ANTONIO TIENE 3 PAQUETES CON CARAMELOS. EN EL PRIMERO HAY 29 CARAMELOS, EN EL SEGUNDO HAY 8 Y EN EL TERCERO HAY 2. ¿CUÁNTOS CARAMELOS TIENE ANTONIO?, ¿CUÁL ES LA SOLUCIÓN MÁS FÁCIL PARA ESTE PROBLEMA?

  • DATOS

CANTIDAD DE CARAMELOS EN PAQUETE 1: 29

CANTIDAD DE CARAMELOS EN PAQUETE 2: 8

CANTIDAD DE CARAMELOS EN PAQUETE 3: 2

  • PREGUNTA

¿CUÁNTOS CARAMELOS TIENE ANTONIO?, ¿CUÁL ES LA SOLUCIÓN MÁS FÁCIL PARA ESTE PROBLEMA?

  • ANALIZA

EN ESTE CASO UTILIZAMOS LA PROPIEDAD ASOCIATIVA. AGRUPAMOS LOS PRIMEROS DOS TÉRMINOS Y LUEGO SUMAMOS EL TERCERO. LUEGO AGRUPAMOS EL SEGUNDO Y EL TERCER TÉRMINO Y SUMAMOS EL PRIMERO. AL COMPARAR LAS DOS OPCIONES VEREMOS CUÁL ES LA MÁS FÁCIL.

  • CALCULA

  • RESPUESTA

ANTONIO TIENE 39 CARAMELOS.

ES MÁS FÁCIL SUMAR 8 + 2 = 10 Y LUEGO SUMARLE 29.


4. CAROLINA DEBE PAGAR $ 134 EN EL SUPERMERCADO. SI SOLO TIENE BILLETES DE $ 100, $ 10 Y $ 1, ¿CUÁNTOS BILLETES DE CADA DENOMINACIÓN TIENE QUE USAR PARA PAGAR LA CUENTA?

  • DATOS

PAGO QUE TIENE QUE HACER CAROLINA: $ 134

BILLETES QUE TIENE CAROLINA: $ 100, $ 10 Y $ 1

  • PREGUNTA

¿CUÁNTOS BILLETES DE CADA DENOMINACIÓN TIENE QUE USAR PARA PAGAR LA CUENTA?

  • ANALIZA

HAY DE HACER UNA DESCOMPOSICIÓN ADITIVA DE 134. DE ESTE MODO TENDREMOS UNA SUMA DE VALORES QUE REPRESENTAN LA MISMA CANTIDAD. TENEMOS QUE VER LA CANTIDAD DE UNIDADES (QUE VALEN 1), DECENAS (QUE VALEN 10) Y CENTENAS (QUE VALEN 100) HAY EN LA SUMA.

  • CALCULA

EL NÚMERO 134 TIENE:

  • 1 CENTENA = 1 × 100 = 100
  • 3 DECENAS = 3 × 10 = 30
  • 4 UNIDADES = 4 × 1 = 4

DESCOMPOSICIÓN ADITIVA:

134 = 100 + 30 + 4

COMO YA VIMOS, 100 = 1 VEZ 100, 30 = 3 VECES 10 Y 4 = A VECES 1.

  • RESPUESTA

CAROLINA TIENE QUE USAR 1 BILLETE DE $ 100, 3 BILLETE DE $ 10 Y 4 BILLETES DE $ 1.


¡A PRACTICAR!

1. RESUELVE LAS SUMAS. COMPRUEBA LA PROPIEDAD CONMUTATIVA.

  • 15 + 10 =
SOLUCIÓN

15 + 10 = 25

10 + 15 = 25

  • 60 + 20 =
SOLUCIÓN

60 + 20 = 80

20 + 60 = 80

  • 48 + 2 =
SOLUCIÓN

48 + 2 = 50

2 + 48 = 50

 

2. RESUELVE LAS SUMAS. COMPRUEBA LA PROPIEDAD ASOCIATIVA.

  • 40 + 25 + 10 =
SOLUCIÓN

(40 + 25) + 10 = 65 + 10 = 75

40 + (25 + 10) = 40 + 35 = 75

  • 15 + 60 + 10 =
SOLUCIÓN

(15 + 60) + 10 = 75 + 10 = 85

15 + (60 + 10) = 15 + 70 = 85

  • 40 + 14 + 20 =
SOLUCIÓN

(40 + 14) + 20 = 54 + 20 = 74

40 + (14 + 20) = 40 + 34 = 74

 

3. REALIZA LA DESCOMPOSICIÓN ADITIVA DE LOS SIGUIENTES NÚMEROS.

  • 189
SOLUCIÓN
189 = 100 + 80 + 9
  • 74
SOLUCIÓN
74 = 70 + 4
  • 123
SOLUCIÓN
123 = 100 + 20 + 3
RECURSOS PARA DOCENTES

Artículo “Propiedades de la suma”

Este recurso te permitirá ampliar la información sobre las propiedades de la adición.

VER

Artículo “Cómo enseñar a sumar y a restar”

Con este artículo obtendrás algunas orientaciones y ejemplos prácticos de gran utilidad al momento de enseñar estas operaciones matemáticas.

VER