La adición consiste en combinar, agrupar o sumar números; la sustracción, en cambio, consiste en quitar o restar números a un grupo. Siempre que queramos resolver cualquiera de estas operaciones, debemos considerar el valor posicional de cada una de las cifras de los números. Por otro lado, la adición cumple con ciertas propiedades como la asociativa y la conmutativa que no se pueden aplicar a la sustracción.
Multiplicación
La multiplicación es una operación matemática que consiste en sumar varias veces un mismo número. Los factores son los números que se multiplican o suman reiteradas veces y el producto es el resultado de la multiplicación. La multiplicación sin reagrupación es un método que consiste en multiplicar las unidades, las decenas y las centenas de 2 factores entre sí cuando ninguno de los productos formados supera la decena, mientras que la multiplicación con reagrupación es un procedimiento que podemos utilizar cuando algún producto entre dos cifras es igual o mayor a 10.
División
La división es la operación opuesta a la multiplicación. Sus elementos son el dividendo, el divisor, el cociente y el resto. El dividendo es la cantidad que se quiere repartir; el divisor indica entre cuántas partes se reparte; el cociente es la cantidad que le corresponde a cada parte y también es el resultado de la división; y el resto representa lo que no se puede repartir. Cuando el resto es igual a cero (0) decimos que la división es exacta.
OPERACIONES CON NÚMEROS DECIMALES
Para la adición y sustracción de números decimales procedemos igual que en el caso de los números naturales, pues debemos colocar cada elemento uno sobre otro según su valor posicional, al final nos aseguramos de que la coma esté en la misma columna. En el caso de las multiplicaciones, realizamos la operación tal y como si fuera una de números naturales, luego le colocamos al producto final la coma de acuerdo a los decimales de los factores.
OPERACIONES COMBINADAS
Las operaciones combinadas son aquellas que agrupan diversos cálculos en una sola expresión. Cuando no hay paréntesis debemos seguir un orden de resolución: primero las multiplicaciones y divisiones, luego las sumas y restas. Si la operación combinada tiene paréntesis tenemos que realizar primero los cálculos que están dentro de ellos, es decir, estos tienen prioridad sobre otros.
MÍNIMO COMÚN MÚLTIPLO Y MÁXIMO COMÚN DIVISOR
El mínimo común múltiplo (mcm) y el máximo común divisor (mcd) son operaciones que nos ayudan a simplificar cálculos más complejos. El mcm es el mínimo múltiplo que tienen en común dos o más números y el mcd es el divisor mayor que tienen en común dos o más números. Ambos pueden ser calculados por comparación de múltiplos y divisores o por descomposición de su números en factores primos.
CONVERSIONES DE MEDIDAS
Algunas magnitudes que podemos medir son la longitud, la masa, el volumen y el tiempo. Cada una de ellas tiene una unidad básica de medida pero no son las únicas. Para medir longitudes podemos usar unidades como el metro, el kilómetro o el centímetro; para medir masas usamos unidades como el gramo, el kilogramo o el miligramo; para medir el volumen usamos unidades como el centímetro cúbico o el metro cúbico; y para medir el tiempo usamos unidades como los segundos, los minutos, las horas, los días o los años.
Si queremos comprar 8 chocolates y cada uno cuesta $ 6, ¿cuánto dinero tenemos que pagar? Para responder esta pregunta debemos hacer una multiplicación. Esta es una operación que simplifica la tarea de sumar varias veces un mismo número. Así que, en lugar de contar 8 veces 6, lo podemos representar como 8 × 6 = 48. A continuación aprenderás cómo hacer estos cálculos con números grandes.
¿Qué es la multiplicación?
La multiplicación es una operación matemática que consiste en sumar varias veces un mismo número.
Los elementos de la multiplicación son:
Factores: son los números que se multiplican o suman reiteradas veces.
Producto: es el resultado de la multiplicación. Cuando las multiplicaciones son largas el producto final se obtiene por la suma de los productos parciales.
Multiplicaciones en la Fórmula 1
Las multiplicaciones se utilizan en una gran variedad de situaciones y las carreras de automóviles son un ejemplo. Supongamos que una vuelta completa a la pista de carrera es de 4 kilómetros y para realizar toda carrera el vehículo tiene que dar 52 vueltas. Si multiplicamos la cantidad de vueltas por los kilómetros de cada vuelta sabremos la distancia total recorrida por el vehículo, es decir, 52 × 4 = 208. Entonces, el vehículo recorre 208 kilómetros en toda la carrera.
multiplicación sin reagrupación
Es un método que consiste en multiplicar las unidades, las decenas y las centenas de 2 factores entre sí cuando ninguno de los productos formados supera la decena.
– Ejemplo: 234 × 21
Lo primero que tenemos que hacer es ubicar los factores uno arriba del otro, de manera tal que las unidades estén sobre las unidades, las decenas sobre las decenas y las centenas sobre las centenas.
Luego multiplicamos las unidades del factor de abajo por todas las cifras del factor de arriba (1 × 324 = 324). Colocamos el resultado en la fila inferior desde la derecha hacia la izquierda.
Después multiplicamos las decenas del factor de abajo por cada cifra del factor de arriba (2 × 324 = 648). Escribimos este resultado debajo del obtenido anteriormente y dejamos un espacio a la derecha.
Finalmente realizamos una suma de los productos parciales.
– Ejemplo: 122 × 332
Ubicamos los factores uno sobre otro.
Multiplicamos las unidades del segundo factor por todas las cifras del primer factor (2 x 122 = 244) y escribimos el resultado en la última fila.
Multiplicamos las decenas del segundo factor por cada cifra del primer factor (3 × 122 = 366). Escribimos el resultado y dejamos un espacio a la derecha.
Repetimos el procedimiento anterior, esta vez con las centenas del segundo factor (3 × 122 = 366).
Al final sumamos las tres filas. Ese será el resultado de nuestra multiplicación.
¡A practicar!
Realiza las siguientes multiplicaciones:
231 × 32
Solución
321 x 123
Solución
MULTIPLICACIÓN CON REAGRUPACIÓN
Es un procedimiento que podemos utilizar cuando algún producto es igual o mayor a 10. Aquí reagrupamos decenas o centenas según sea el caso.
– Ejemplo: 469 x 73
Al igual que en el caso anterior, colocamos los factores uno sobre otros y nos aseguramos de que las unidades, decenas y centenas de cada factor estén en las mismas columnas.
Multiplicamos las unidades del factor ubicado debajo por todas las cifras del factor de arriba. En este caso comenzamos con 3 y lo multiplicamos por 9. Como 3 × 9 = 27, colocamos el 7 en la fila de los resultados y el 2 lo ubicamos en la columna de las decenas de los factores.
Ahora multiplicamos 3 x 6 = 18, pero debemos agrupar este resultado con el 2 que colocamos antes. Entonces, el resultado es 18 + 2 = 20. Escribimos el 0 en la fila del resultado y colocamos el 2 en la columna de las centenas.
El siguiente producto es 3 x 4 = 12 y agrupamos con el 2 de las centenas. Así que 12 + 2 = 14. En la fila del resultado colocamos las dos cifras del número.
Repetimos el mismo procedimiento con las decenas del factor de abajo y lo multiplicamos por cada cifra del primer factor (7 × 469 = 3.283).
Luego sumamos las dos filas y obtenemos el resultado de la multiplicación.
Tabla pitagórica
Es otro modelo de tabla de multiplicar. Fue construida por Pitágoras, filósofo y matemático griego del siglo V a. C., para enseñarles a multiplicar a los más pequeños. La primera columna y fila dispone de los números que van ser multiplicados, y cada una de las celdas internas de la tabla representa la multiplicación entre los números de la primera fila y columna.
– Ejemplo: 423 x 514
Cuando los dos factores tienen tres cifras el procedimiento es el mismo. Ubicamos los factores uno sobre otro, y multiplicamos las unidades del segundo factor por el primero (4 × 423 = 1.692).
Multiplicamos las decenas del segundo factor por cada cifra del primer factor (1 × 423 = 423).
Repetimos el procedimiento con las centenas del factor de abajo (5 × 423 = 2.115).
Sumamos las filas con los productos parciales.
¡A practicar!
Realiza esta multiplicación:
721 × 166
Solución
721 × 166 = 119.686
MULTIPLICACIÓN DE UN NÚMERO NATURAL POR 10, 100 Y 1.000
Veamos estas 3 multiplicaciones:
473 × 10 = 4.730
473 × 100 = 47.300
473 × 1.000 = 473.000
Como ves, cuando se multiplica un número natural por 10, 100 y 1.000 basta con agregar ceros al número original como se resume en la siguiente tabla:
Para multiplicar un número natural por…
Agregamos…
Ejemplo
10
un cero
912 × 10 = 9.120
100
dos ceros
411 × 100 = 41.100
1.000
tres ceros
746 × 1.000 = 746.000
LA MULTIPLICACIÓN Y LA PROPIEDAD DISTRIBUTIVA
La propiedad distributiva establece que si multiplicamos un número por una suma es igual a multiplicar ese número por cada sumando y luego sumar los productos finales.
– Ejemplo:
Esta propiedad también se cumple en la resta:
¿Sabías qué?
Puedes resolver primero la suma o resta que esté dentro de los paréntesis y luego hacer la multiplicación. El resultado será el mismo.
¡A practicar!
1. Resuelve las siguientes multiplicaciones:
414 x 24 =
Solución
414 x 24 = 9.936
121 x 38 =
Solución
121 x 38 = 4.598
741 x 51 =
Solución
741 x 51 = 37.791
620 x 324 =
Solución
620 x 324 = 200.880
496 x 531 =
Solución
496 x 531 = 263.376
589 x 10 =
Solución
589 x 10= 5.890
144 x 100 =
Solución
144 x 100 = 14.400
378 x 1.000 =
Solución
378 x 1.000 = 378.000
2. Usa la propiedad distributiva para resolver estas operaciones:
(25 + 30) x 2 =
Solución
(25 + 30) x 2 = 110
(10 + 9) x 4 =
Solución
(10 + 9) x 4 = 76
(15 − 8 ) x 100 =
Solución
(15 − 8) × 100 = 700
(24 − 22) × 5 =
Solución
(24 − 22) × 5 = 10
RECURSOS PARA DOCENTES
Artículo “Multiplicación por dos o más cifras”
En este artículo podrás acceder a información complementaria sobre algunos métodos de multiplicación
La adición y la sustracción son dos operaciones muy usadas en la cotidianidad. La primera consiste en combinar o agrupar números; y la segunda, en cambio, consiste en quitar números a un grupo. Saber los valores posicionales de cada cifra nos ayudan a hacer sumas y restas con números grandes por reagrupación de sus unidades, decenas y centenas.
ADICIÓN POR REAGRUPACIÓN
La adición es una operación básica en la que combinamos dos o más números para obtener una cantidad final o total. El símbolo empleado para hacer esta operación es “+“.
Toda adición consta de dos partes:
Sumandos: son los números que vamos a sumar.
Suma: es el resultado de la suma.
La adición por reagrupación es un método que consiste en agrupar las unidades, decenas y centenas del número. Para sumar dos números como 12.468 y 147.314, los pasos son los siguientes:
1. Ubica los sumandos uno arriba del otro de tal manera que los valores posicionales estén en una misma columna, es decir, unidades con unidades, decenas con decenas, centenas con centenas, y así sucesivamente.
2. Suma cada columna a partir de las unidades. Escribe en la parte inferior de la columna el resultado. Si el resultado de la suma en una columna es de dos cifras, coloca el número de la unidad de dicho número en la parte inferior y la decena la sumanos a la columna siguiente.
Propiedades de la adición
Propiedad conmutativa
Esta propiedad indica que el orden de los números no afecta el resultado de la suma.
– Ejemplo:
12.046 + 71 = 71 + 12.046
Observa que sin importar la ubicación de los sumandos, el resultado es el mismo.
¡Hay otra solución!
Podemos representar la propiedad conmutativa de otra manera. Para la suma anterior es así:
Propiedad asociativa
Esta propiedad indica que la forma en la que agrupemos los sumandos no afecta el resultado.
– Ejemplo:
(856.127 + 12.713) + 82.311 = 951.151
Primero resolvemos la suma que está dentro de los paréntesis y al final sumamos 82.311.
856.127 + (12.713 + 82.311) = 951.151
Primero resolvemos las sumas que están dentro de los paréntesis y al final sumamos 856.127.
En ambas ocasiones el resultado es el mismo sin importar la manera en la que se agruparon.
¡Hay otra solución!
Podemos representar la propiedad asociativa de otra manera. Para la suma anterior es así:
Elemento neutro
Esta propiedad indica que si a cualquier número le sumamos cero el resultado será el mismo número.
– Ejemplo:
148.583 + 0 = 148.583
Ábaco: una herramienta para contar
El ábaco es una herramienta o instrumento que se utiliza para realizar cálculos manuales a través de contadores o marcadores que representan ciertas cantidades. Es uno de los objetos más antiguos utilizados por el hombre para realizar sus operaciones matemáticas y quizás el de mayor distribución a nivel mundial.
sustracción por reagrupación
La sustracción, al igual que la adición, es una operación básica. Es considerada una operación opuesta a la adición, ya que consiste en quitar una cantidad a otra. Se representa con el símbolo “−“.
Las partes de esta operación son:
Minuendo: es el número al cual le quitamos una cantidad.
Sustraendo: es el número que resta al minuendo.
Diferencia: es el resultado de la operación.
La sustracción por reagrupación es un método que consiste en agrupar las unidades, decenas y centenas del número. Para restar dos números como 549.763 y 95.126, los pasos son los siguientes:
1. Ubica el minuendo sobre el sustraendo y verifica que los valores posicionales de cada cifra coincidan en la misma columna.
2. Comienza a restar desde la columna de las unidades, de derecha a izquierda. Cuando en una columna una cifra del minuendo es menor que la del sustraendo, esta toma una decena del minuendo de la izquierda. En estos casos, el minuendo que prestó una decena se reduce y debemos considerar el valor de la nueva cifra.
¿Sabías qué?
En la sustracción no existen las mismas propiedades que en la adición.
Propiedades de la sustracción
Elemento neutro
Si a un número se le resta 0, el resultado es el mismo número.
– Ejemplo:
245.630 − 0 = 245.630
Elemento simétrico
Si dos números iguales se restan, el resultado siempre es 0.
– Ejemplo:
983.124 − 983.124 = 0
Problemas de adición y sustracción
Para resolver problemas matemáticos debemos seguir una serie de pasos. Observa estos ejemplos:
1. Juan tenía en el banco $ 132.798 y le pagaron por la venta de su vehículo $ 369.000. ¿Cuánto dinero tiene Juan ahora?
Datos
Dinero en el banco: $ 132.798
Pago por el vehículo: $ 369.000
Pregunta
¿Cuánto dinero tiene Juan ahora?
Piensa
Para saber la cantidad total de dinero que Juan tiene ahora debemos sumar el dinero que tenía en el banco y el dinero que le pagaron.
Calcula
Solución
Juan tiene $ 501.798 en el banco.
2. Gabriel jugaba un videojuego. En un día obtuvo 412.312 puntos en el primer partido, 469.142 puntos en el segundo partido y 111.222 en el tercero. ¿Cuántos puntos obtuvo en total ese día?
Datos
Puntos en el primer partido: 412.312
Puntos en el segundo partido: 469.142
Puntos en el tercer partido: 111.222
Pregunta
¿Cuántos puntos obtuvo en total?
Piensa
Para hallar la cantidad total de puntos solo debemos sumar todos los puntos que obtuve en los tres partidos. Según la propiedad asociativa, no importa cómo se agrupen los números, el resultado siempre será el mismo.
Calcula
Solución
Gabriel obtuvo 992.676 puntos ese día en el videojuego.
3. Carla y Pedro tomaban fotografías en el parque. Carla tomó 2.546 fotografía y Pedro tomó 620 fotografía menos que ella. ¿Cuántas fotografía tomaron los dos?
Datos
Fotografía tomadas por Carla: 2.546
Fotografía tomadas por Pedro: 620 menos que Carla
Pregunta
¿Cuántas fotografía tomaron los dos?
Piensa
Hay que hallar las fotos que tomó Pedro. Para esto restamos 620 a la cantidad de fotos que tomó Carla.
Para saber el total de fotos tomadas entre los dos solo debemos sumar la cantidad de foto que tomaron ambos.
Calcula
1. Fotos tomadas por Pedro:
2. Fotos tomadas por los dos:
Solución
Carla y Pedro tomaron 4.472 fotografías.
¡A practicar!
Resuelve las siguientes operaciones:
18.654 + 987 =
Solución
18.654 + 987 = 19.641
546.821 + 12.547 =
Solución
546.821 + 12.547 = 559.368
452.365 − 0 =
Solución
452.365 − 0 = 452.365
89.546 + 6.547 + 3.245 =
Solución
89.546 + 6.547 + 3.245 = 99.338
81.974 − 9.634 =
Solución
81.974 − 9.634 = 72.340
15.689 − 15.689 =
Solución
15.689 − 15.689 = 0
35.785 + 54.753 + 56.852 =
Solución
35.785 + 54.753 + 56.852 =147.390
258.369 + 0 =
Solución
258.369 + 0 = 258.369
RECURSOS PARA DOCENTES
Artículo “Operaciones básicas de los número naturales y sus propiedades”
Este artículo explica las propiedades de las operaciones básicas con los números naturales, lo que te permitirá ampliar el tema.