CAPÍTULO 2 / TEMA 4

MULTIPLICACIÓN

La multiplicación es una de las operaciones fundamentales que realizamos con los números. Se encuentra estrechamente relacionada con la adición, por lo tanto, cuando sumamos repetidas veces una misma cantidad, realmente hacemos una multiplicación. A partir de esto se crearon las tablas de multiplicar para facilitar los cálculos.

RELACIÓN ENTRE LA ADICIÓN Y LA MULTIPLICACIÓN

Se denomina adición iterada a la adición que posee todos sus sumandos iguales y se puede representar como una multiplicación.

– Ejemplo 1:

Observa que cada mariposa tiene 2 alas. Por lo tanto, en 4 mariposas hay 8 alas.

4 veces 2 es igual a 8.

4 × 2 = 8

– Ejemplo 2:

¿Cuántas patas (extremidades) hay en total?

5 veces 2 es igual a 10.

5 × 2 = 10

– Ejemplo 3:

Sofía tiene tres portalápices y en cada uno de ellos caben 5 lápices, ¿cuántos lápices tiene Sofía en total?

3 veces 5 es igual a 15.

3 × 5 es igual a 15.

La multiplicación es considerada como una adición con sumandos iguales (adición iterada). Nos ayuda a obtener resultados más rápidos de manera sencilla. Los elementos de la multiplicación son los factores y el producto. Los números multiplicados son los factores y el resultado es el producto. Para resolver multiplicaciones se usan las tablas de multiplicar.

¡Es tu turno!

  • ¿Cuántos huevos hay en total?

Solución

3 + 3 + 3 = 9

3 veces 3 es igual a 9.

3 × 3 = 9

  • ¿Cuántas flores hay en total?

Solución

4 + 4 + 4 + 4 = 16

4 veces 4 es igual a 16.

4 × 4 = 16

  • Expresa las adiciones como multiplicación, resuelve y completa:
Adición Multiplicación
1 + 1 + 1 + 1 = 4 1 × 4 = 4
5 + 5 + 5 =
6 + 6 + 6 + 6 + 6 =
7 + 7 + 7 + 7 =
2 + 2 + 2 =
3 + 3 + 3 + 3 + 3 + 3 =

Solución
Adición Multiplicación
1 + 1 + 1 + 1 = 4 1 × 4 = 4
5 + 5 + 5 = 15 5 × 3 = 15
6 + 6 + 6 + 6 + 6 = 30 6 × 5 = 30
7 + 7 + 7 + 7 = 28 7 × 4 = 28
2 + 2 + 2 = 6 2 × 3 = 6
3 + 3 + 3 + 3 + 3 + 3 = 18 3 × 6 = 18

elementos de la multiplicación

Los términos de una multiplicación se denominan factores y producto. Los factores son los números que se multiplican, y el producto es el resultado de la operación de multiplicación.

Tablas de multiplicar

Para hacer cálculos de multiplicaciones se crearon las tablas de multiplicar, que no son más que un atajo para realizar sumas largas de forma rápida. La forma más común de representar las tablas de multiplicación es, como su nombre lo indica, a través de tablas. Normalmente se muestran las tablas del 1 al 10 y cada una de ellas a su vez indica las multiplicaciones del número que representan del 1 al 10 o del 0 al 10.

Multiplicación en forma vertical

La multiplicación es una adición de sumandos iguales, el signo de la multiplicación es “×” y se lee “por”.

La multiplicación es la operación matemática que consiste en determinar el resultado de un número que se haya sumado tantas veces como indique otro. La palabra multiplicación proviene del latín de la palabra multus que significa “mucho” y plico que quiere decir “doblar”. En este sentido, multiplicar es doblar o repetir un número muchas veces.

¿Sabías qué?
Además del símbolo de la cruz, en la multiplicación también puede usarse el punto a media altura (·).

Para multiplicar un número de una cifra por otro de dos cifras, multiplicamos cada cifra de los factores. Para esto seguimos los siguientes pasos:

1. Colocamos los factores uno sobre el sobre.

2. Multiplicamos la unidad del segundo factor por la unidad del primer factor: 3 × 3 = 9

3. Multiplicamos la unidad del segundo factor por las decenas de la primer factor: 3 × 2 = 6.

4. También podemos escribir el resultado de forma horizontal:

23 × 3 = 69

 

– Otros ejemplos:

Multiplicación con llevadas

Cuando multiplicamos las cifras de los factores y el resultado es mayor a 9, debemos hacer llevadas. Los pasos son los siguientes:

1. Colocamos los factores uno sobre otro según su valor posicional.

2. Multiplicamos la unidad del segundo factor por la unidad del primer factor: 4 × 3 = 12. Como el resultado es mayor a 9, colocamos la unidad (2) en la columna de las unidades y la cifra de la decena (1) la colocamos en la columna de la izquierda.

3. Multiplicamos la unidad del segundo factor por las decenas del segundo factor y consideramos el 1 que se lleva: 4 × 2 = 8 + 1 = 9.

– Otros ejemplos:

 

También es posible que llevemos cifras a las centenas. En estos casos los pasos son estos:

1. Colocamos los factores uno sobre otro según sus valores posicionales.

2. Multiplicamos la unidad del segundo factor por la unidad del primer factor: 7 × 4 = 28. Como el resultado es mayor a 9, escribimos el 8 en la columna de las unidades y llevamos la decena (2) a la columna de la izquierda.

3. Multiplicamos la unidad del segundo factor por las decenas del primer factor, como llevamos 2: 7 × 2 = 14 + 2 = 16. Escribimos el 6 en las decenas y el 1 en la columna de las centenas.

 

– Otros ejemplos:

¿Sabías qué?
Es común que en las multiplicaciones se escriba arriba el número mayor (multiplicando) y debajo el número menor (multiplicador).

MULTIPLICACIÓN POR 10, POR 100 Y POR 1.000

Para multiplicar un número natural por 10 agregamos un cero a la derecha del número. Si lo multiplicamos por 100 agregamos 2 ceros y si lo multiplicamos por 1.000 agregamos 3 ceros. Ejemplo:

  • ¿Cuál es el producto de 35 × 10?

Como se multiplica por 10, se agrega un cero a la derecha del 35, es decir:

35 × 10 = 350

  • ¿Cuál es el producto de 35 × 100?

Como se multiplica por 100, se agregan dos ceros a la derecha del 35, es decir:

35 × 100 = 3.500

  • ¿Cuál es el producto de 35 × 1.000?

Como se multiplica por 1.000, se agregan tres ceros a la derecha del 35, es decir:

35 × 1.000 = 35.000

– Otros ejemplos:

Factores 2 5 17 29 40 73 91
× 10 20 50 170 290 400 730 910
× 100 200 500 1.700 2.900 4.000 7.300 9.100
× 1.000 2.000 5.000 17.000 29.000 40.000 73.000 91.000
Las propiedades de la multiplicación permiten realizar operaciones de manera más sencilla. Por ejemplo, la propiedad conmutativa nos permite cambiar el orden de los factores sin alterar el producto, por esta razón, el número mayor se suele colocar arriba y el menor debajo al momento de resolver los cálculos. Lo mismo aplica para el resto de las propiedades.

PROBLEMAS DE MULTIPLICACIÓN

1. Tres camiones viajan del campo a la ciudad, cada uno con 800 sandías. ¿Cuántas sandías llevan en total?

  • Datos

Cantidad de camiones: 3

Cantidad de sandías por camión: 800

  • Pregunta

¿Cuántas sandías llevan en total?

  • Reflexiona

Para resolver el problema debemos multiplicar las 800 sandías por 3, para lo cual se ubica el 800 en el multiplicando por ser mayor y el 3 en el multiplicador.

  • Resuelve

 

  • Respuesta

Entre los camiones hay 2.400 sandías.


2. A la hermana de Susana le gusta coleccionar zapatos. Tiene tantos que los organiza en un estante por tramos. Si el estante tiene seis tramos y en cada uno hay catorce pares, ¿cuántos pares de zapatos tiene la hermana de Susana?

  • Datos

Tramos del estante: 6

Pares de zapatos por tramos: 14

  • Pregunta

¿Cuántos pares de zapatos tiene la hermana de Susana?

  • Reflexiona

Para resolver el problema debemos multiplicar los 14 pares de zapatos por los 6 tramos que tiene el estante. Para esto ubicamos el 14 arriba y el 6 debajo.

  • Resuelve

  • Respuesta

La hermana de Susana tiene 84 pares de zapatos.


3. Si un paquete de caramelos cuesta $ 843, ¿cuánto cuestan 9 paquetes?

  • Datos

Valor del paquete de caramelos: $ 843

  • Pregunta

¿Cuánto cuestan 9 paquetes de caramelos?

  • Reflexiona

Para resolver el problema debemos multiplicar el costo del paquete de caramelos que son $ 843 por el número de paquetes que pide el problema, es decir 9.

  • Resuelve

  • Respuesta

Nueve paquetes de caramelos tienen un valor de $ 7.587

¡A practicar!

1. Valentina compró cinco paquetes de palomitas de maíz por un valor de $ 1.569 cada uno. ¿Cuánto dinero gastó Valentina?

Solución
  • Datos

Valor del paquete de palomitas: $ 1.569

Cantidad de paquetes de palomitas comprado: 5

  • Pregunta

¿Cuánto gastó Valentina?

  • Reflexiona

Para resolver el problema debemos multiplicar el costo del paquete de palomitas que son $ 1.569 por el número de paquetes que compró Valentina, es decir 5.

  • Resuelve

  • Respuesta

Valentina gastó $17.845.

2. En un salón de clases hay 42 estudiantes, si cada uno de ellos trae 2 paletas de caramelo, ¿cuántas paletas de caramelo tendrían en total?

Solución
  • Datos

Cantidad de estudiantes: 42

Cantidad de paletas por estudiante: 2

  • Pregunta

¿Cuántas paletas de caramelo tendrían en total?

  • Reflexiona

Para resolver el problema debemos multiplicar el número total de estudiantes, que son 42 por la cantidad de paletas de caramelo que trajo cada estudiante, es decir 2.

  • Resuelve

  • Respuesta

Los alumnos tendrían en total 84 paletas de caramelo.

3. En la granja de don Tomás hay 8 vacas lecheras, cada una produce diariamente 52 litros. ¿Cuántos litros de leche se producen durante 7 días?

Solución
  • Datos

Cantidad de vacas: 8

Litros de leche producidos por una vaca en 1 día: 52

  • Pregunta

¿Cuántos litros de leche se producen durante 7 días en la granja de don Tomás?

  • Reflexiona

Para resolver el problema debemos hacerlo en dos partes, primero se debe sacar la cantidad de litros que producen diariamente por medio de una multiplicación entre 52 y 8. Luego, multiplicar ese resultado por 7.

  • Resuelve

 

  • Respuesta

Durante siete días se producen 2.912 litros de leche en la granja de don Tomás.

4. En una granja hay 3 corrales para cerdos y en cada corral caben seis cerdos, ¿qué adición iterada representaría la situación?

a) 4 + 4 + 4 + 4 + 4

b) 6 + 4

c) 6 + 6 + 6

d) 24 + 24 + 24 + 24

Solución
c) 6 + 6 + 6

5. Víctor lee cuatro páginas de su libro favorito por día, ¿cuántas páginas leerá en seis días?

Solución

1 día → 4 páginas

2 días → 4 + 4 = 8 páginas

3 días → 4 + 4 + 4 = 12 páginas

4 días → 4 + 4 + 4 + 4 = 16 páginas

5 días → 4 + 4 + 4 + 4 + 4 = 20 páginas

6 días → 4 + 4 + 4 + 4 + 4 + 4 = 24 páginas

 

Podemos ver que 6 veces 4 es 24, por lo tanto:

6 × 4 = 24

Victor leerá 24 página en 6 días.

RECURSOS PARA DOCENTES

Artículo “Trucos para aprender las tablas de multiplicar”

El siguiente material ofrece algunos trucos para aprender las tablas de multiplicar sin necesidad de memorizarlas.

VER

Artículo “Multiplicación por una cifra”

El artículo muestra los procedimientos principales para resolver multiplicaciones por una cifra. También ofrece una serie de ejercicios propuestos.

VER

CAPÍTULO 5 / TEMA 2

TABLAS

SI QUEREMOS INFORMAR SOBRE UN TEMA ESPECÍFICO TENEMOS QUE RECOLECTAR DATOS, POR EJEMPLO, PARA SABER LA CANTIDAD DE HOMBRES Y MUJERES EN UNA ESCUELA DEBEMOS CONTARLOS UNO POR UNO. ESTA INFORMACIÓN SE PUEDE GRAFICAR DE FORMA RESUMIDA Y CLARA EN UNA TABLA. LAS TABLAS PUEDEN SER CON NÚMEROS, PICTOGRAMAS O DE DOBLE ENTRADA.

ES NORMAL QUE VEAMOS TABLAS EN LOS AEROPUERTOS. ESTAS TABLAS MUESTRAN LA HORA DE SALIDA Y LA HORA DE LLEGADA DE UN VUELO. TAMBIÉN NOS DA INFORMACIÓN SOBRE EL AVIÓN Y LAS CIUDADES O PAÍSES ENTRE LAS CUALES SE HACE EL VIAJE. ES POSIBLE QUE TAMBIÉN VEAS TABLAS EN LAS TERMINALES O EN LOS MERCADOS CON LOS PRECIOS DE LOS PRODUCTOS.

¿QUÉ ES UNA TABLA?

ES UN GRÁFICO CON FORMA CUADRADA O RECTANGULAR. SIRVE PARA ORGANIZAR Y RESUMIR INFORMACIÓN. ESTÁ FORMADA POR FILAS, COLUMNAS Y CELDAS.

GRADO NOMBRE Y APELLIDO EDAD
MARÍA PÉREZ 8
JOSÉ COLINA 7
CARLA GONZÁLEZ 8

 

  • LAS FILAS SON LAS HILERAS HORIZONTALES.

  • LAS COLUMNAS SON LAS HILERAS VERTICALES.

  • LAS CELDAS SON LAS CASILLAS QUE RESULTAN DE LA UNIÓN ENTRE UNA FILA Y UNA COLUMNA.

TABLA DE DATOS

LAS TABLAS DE DATOS EXPONEN INFORMACIÓN RECOLECTADA. VEAMOS UNA TABLA SIMPLE CON UNA INFORMACIÓN SOBRE UNA FAMILIA.

– EJEMPLO:

PRIMOS DE LUCAS EDAD
ANGÉLICA 5
JOSÉ 9
MARIO 13
CARLA 15

ESTA TABLA EXPRESA UNA INFORMACIÓN SENCILLA, LAS EDADES DE LO PRIMOS DE LUCAS: 5, 9, 13 Y 15. AL MISMO TIEMPO PODEMOS LEER OTRA INFORMACIÓN: LUCAS TIENE 4 PRIMOS.

TAMBIÉN PODEMOS EXPRESAR UNA MAYOR CANTIDAD DE DATOS DE MANERA ORGANIZADA.

– EJEMPLO:

OBSERVA ESTA IMAGEN. ¿QUÉ CANTIDAD HAY DE CADA FRUTA Y VEGETAL?

LA CANTIDAD DE FRUTAS Y VEGETALES LA PODEMOS REPRESENTAR EN UNA TABLA COMO ESTA:

FRUTA O VEGETAL CANTIDAD
MANZANAS 6
PERAS 4
ZANAHORIAS 9
FRESAS 9

¿SABÍAS QUÉ?
LAS COLUMNAS TAMBIÉN SON LLAMADAS “CAMPOS”.

¿CÓMO LEER UNA TABLA DE DATOS?

1. OBSERVA LA PRIMERA FILA. ESTA ES LA FILA DE ENCABEZADO Y MUESTRA LAS CATEGORÍAS DE LOS DATOS. POR EJEMPLO, EN ESTA TABLA LAS CATEGORÍAS SON “DEPORTE FAVORITO” Y “CANTIDAD DE ESTUDIANTES”.

DEPORTE FAVORITO CANTIDAD DE ESTUDIANTES
FÚTBOL 12
BALONCESTO 8
NATACIÓN 5
TENIS 2
BÉISBOL 10
NINGUNO 5

 

2. CADA DATO DE UNA COLUMNA CORRESPONDE AL DATO DE LA OTRA COLUMNA. ASÍ, POR EJEMPLO, SI QUEREMOS SABER LA CANTIDAD DE ESTUDIANTES QUE PREFIEREN EL BALONCESTO, SOLO TENEMOS QUE OBSERVAR LA FILA DE ESE DEPORTE: PARA 8 ESTUDIANTES EL BALONCESTO ES SU DEPORTE FAVORITO.

DEPORTE FAVORITO CANTIDAD DE ESTUDIANTES
FÚTBOL 12
BALONCESTO 8
NATACIÓN 5
TENIS 2
BÉISBOL 10
NINGUNO 5

¡ES TU TURNO!

OBSERVA DE NUEVO LA TABLA ANTERIOR Y RESPONDE:

  • ¿CUÁNTOS ESTUDIANTES PREFIEREN JUGAR BÉISBOL?
    SOLUCIÓN
    10
  • ¿CUÁL ES EL DEPORTE FAVORITO DE LA MAYORÍA DE ESTUDIANTES?
    SOLUCIÓN
    FÚTBOL
  • ¿CUÁNTOS ESTUDIANTES NO TIENEN ALGÚN DEPORTE FAVORITO?
    SOLUCIÓN
    5
  • ¿CUÁNTOS ESTUDIANTES HAY EN TOTAL?
    SOLUCIÓN
    12 + 8 + 5 + 2 + 10 + 5 = 42
    HAY 42 ESTUDIANTES.

TABLA DE PICTOGRAMAS

ASÍ COMO COLOCAMOS LOS DATOS EN FORMA DE NÚMEROS, TAMBIÉN PODEMOS COLOCAR PICTOGRAMAS PARA REPRESENTAR LOS DATOS. POR EJEMPLO: CELESTE, ARIEL, LETICIA Y RAMIRO CONTARON LAS MONEDAS QUE LES QUEDARON PARA LOS JUEGOS. LOS RESULTADOS FUERON LOS SIGUIENTES:

NOMBRE MONEDAS
CELESTE
ARIEL
LETICIA
RAMIRO
CLAVE

 = 1 MONEDA

¡ES TU TURNO!

OBSERVA LA TABLA DE PICTOGRAMAS Y RESPONDE LAS PREGUNTAS:

  • ¿CUÁNTAS MONEDAS TIENE CELESTE?
    SOLUCIÓN
    6
  • ¿CUÁNTAS MONEDAS TIENE ARIEL?
    SOLUCIÓN
    3
  • ¿CUÁNTAS MONEDAS TIENE LETICIA?
    SOLUCIÓN
    5
  • ¿CUÁNTAS MONEDAS TIENE RAMIRO?
    SOLUCIÓN
    6
  • ¿QUIÉNES TIENEN MÁS MONEDAS?
    SOLUCIÓN
    CELESTE Y RAMIRO.
  • ¿QUIÉN TIENE MENOS MONEDAS?
    SOLUCIÓN
    ARIEL.

TABLA DE DOBLE ENTRADA

LAS TABLAS DE DOBLE ENTRADA MUESTRAN LA RELACIÓN ENTRE DOS O MÁS CATEGORÍAS.

– EJEMPLO:

EN EL SALÓN DE 2º GRADO SE LE PREGUNTARON A TODOS LOS ALUMNOS SI LES GUSTABA O NO LES GUSTABA EL ARTE. LAS RESPUESTAS SE GRAFICARON EN ESTA TABLA:

LES GUSTA EL ARTE NO LES GUSTA EL ARTE
NIÑOS 10 5
NIÑAS 12 8

EN ESTA TABLA PODEMOS VER LA CANTIDAD DE NIÑOS Y NIÑAS A LOS QUE LES GUSTA EL ARTE. TAMBIÉN PODEMOS VER LA CANTIDAD DE NIÑOS Y NIÑAS A LOS QUE NO LES GUSTA EL ARTE.

¡ES TU TURNO!

OBSERVA LA TABLA DE DOBLE ENTRADA Y RESPONDE LAS PREGUNTAS:

  • ¿A CUÁNTAS NIÑAS LES GUSTA EL ARTE?
    SOLUCIÓN
    12
  • ¿A CUÁNTOS NIÑOS LES GUSTA EL ARTE?
    SOLUCIÓN
    10
  • ¿A CUÁNTOS NIÑOS NO LES GUSTA EL ARTE?
    SOLUCIÓN
    5
  • ¿A CUÁNTAS NIÑAS NO LES GUSTA EL ARTE?
    SOLUCIÓN
    8
  • ¿A CUÁNTOS NIÑOS Y NIÑAS LES GUSTA EL ARTE?
    SOLUCIÓN
    10 + 12 = 22
    A 22 NIÑAS NO LES GUSTA EL ARTE.
  • ¿A CUÁNTOS NIÑOS Y NIÑAS NO LES GUSTA EL ARTE?
    SOLUCIÓN
    8 + 5 = 13
    A 13 NIÑOS Y NIÑAS NO LES GUSTA EL ARTE.
  • ¿CUÁNTAS NIÑAS HAY EN EL SALÓN DE 2º GRADO?
    SOLUCIÓN
    12 + 8 = 20
    HAY 20 NIÑAS.
  • ¿CUÁNTOS NIÑOS HAY EN EL SALÓN DE 2º GRADO?
    SOLUCIÓN
    10 + 5 = 15
    HAY 15 NIÑOS.
  • ¿CUÁNTOS NIÑOS Y NIÑAS HAY EN EL SALÓN DE 2º GRADO?
    SOLUCIÓN
    10 + 12 + 5 + 8 = 35
    HAY 35 NIÑOS Y NIÑAS.

TABLAS CON OPERACIONES

LAS TABLAS TAMBIÉN SON MUY ÚTILES PARA REPRESENTAR OPERACIONES MATEMÁTICAS COMO LA SUMA Y LA MULTIPLICACIÓN. EN ESTA TABLA VEMOS QUE CADA CELDA DE COLOR ES EL RESULTADO DE LA SUMA ENTRE UN DATO DE LA FILA DE ENCABEZADO Y LA COLUMNA DE ENCABEZADO. POR EJEMPLO, 3 + 6 = 9.

RECURSOS PARA DOCENTES

Artículo “Estadística: tabla de valores”

Con este recurso se podrá profundizar sobre el uso de las tablas de datos en la estadística.

VER

CAPÍTULO 2 / TEMA 2

MULTIPLICACIÓN

Si queremos comprar 8 chocolates y cada uno cuesta $ 6, ¿cuánto dinero tenemos que pagar? Para responder esta pregunta debemos hacer una multiplicación. Esta es una operación que simplifica la tarea de sumar varias veces un mismo número. Así que, en lugar de contar 8 veces 6, lo podemos representar como 8 × 6 = 48. A continuación aprenderás cómo hacer estos cálculos con números grandes.

¿Qué es la multiplicación?

La multiplicación es una operación matemática que consiste en sumar varias veces un mismo número.

Los elementos de la multiplicación son:

  • Factores: son los números que se multiplican o suman reiteradas veces.
  • Producto: es el resultado de la multiplicación. Cuando las multiplicaciones son largas el producto final se obtiene por la suma de los productos parciales.

Multiplicaciones en la Fórmula 1

Las multiplicaciones se utilizan en una gran variedad de situaciones y las carreras de automóviles son un ejemplo. Supongamos que una vuelta completa a la pista de carrera es de 4 kilómetros y para realizar toda carrera el vehículo tiene que dar 52 vueltas. Si multiplicamos la cantidad de vueltas por los kilómetros de cada vuelta sabremos la distancia total recorrida por el vehículo, es decir, 52 × 4 = 208. Entonces, el vehículo recorre 208 kilómetros en toda la carrera.

multiplicación sin reagrupación

Es un método que consiste en multiplicar las unidades, las decenas y las centenas de 2 factores entre sí cuando ninguno de los productos formados supera la decena.

– Ejemplo: 234 × 21

Lo primero que tenemos que hacer es ubicar los factores uno arriba del otro, de manera tal que las unidades estén sobre las unidades, las decenas sobre las decenas y las centenas sobre las centenas.

Luego multiplicamos las unidades del factor de abajo por todas las cifras del factor de arriba (1 × 324 = 324). Colocamos el resultado en la fila inferior desde la derecha hacia la izquierda.

Después multiplicamos las decenas del factor de abajo por cada cifra del factor de arriba (2 × 324 = 648). Escribimos este resultado debajo del obtenido anteriormente y dejamos un espacio a la derecha.

Finalmente realizamos una suma de los productos parciales.

 

– Ejemplo: 122 × 332

Ubicamos los factores uno sobre otro.

Multiplicamos las unidades del segundo factor por todas las cifras del primer factor (2 x 122 = 244) y escribimos el resultado en la última fila.

Multiplicamos las decenas del segundo factor por cada cifra del primer factor (3 × 122 = 366). Escribimos el resultado y dejamos un espacio a la derecha.

Repetimos el procedimiento anterior, esta vez con las centenas del segundo factor (3 × 122 = 366).

Al final sumamos las tres filas. Ese será el resultado de nuestra multiplicación.

 

El área de un rectángulo es igual a una multiplicación de dos de sus lados. Por ejemplo, un campo de fútbol puede llegar a tener 120 metros de largo y 90 metros de ancho. Para saber el área del campo solo tenemos que multiplicar ambas medidas, es decir, 120 m x 90 m = 10.800 m2. Por lo tanto, el campo tiene un área de 10.800 metros cuadrados.
¡A practicar!

Realiza las siguientes multiplicaciones:

  • 231 × 32
Solución

  • 321 x 123
Solución

MULTIPLICACIÓN CON REAGRUPACIÓN

Es un procedimiento que podemos utilizar cuando algún producto es igual o mayor a 10. Aquí reagrupamos decenas o centenas según sea el caso.

– Ejemplo: 469 x 73

Al igual que en el caso anterior, colocamos los factores uno sobre otros y nos aseguramos de que las unidades, decenas y centenas de cada factor estén en las mismas columnas.

Multiplicamos las unidades del factor ubicado debajo por todas las cifras del factor de arriba. En este caso comenzamos con 3 y lo multiplicamos por 9. Como 3 × 9 = 27, colocamos el 7 en la fila de los resultados y el 2 lo ubicamos en la columna de las decenas de los factores.

Ahora multiplicamos 3 x 6 = 18, pero debemos agrupar este resultado con el 2 que colocamos antes. Entonces, el resultado es 18 + 2 = 20. Escribimos el 0 en la fila del resultado y colocamos el 2 en la columna de las centenas.

El siguiente producto es 3 x 4 = 12 y agrupamos con el 2 de las centenas. Así que 12 + 2 = 14. En la fila del resultado colocamos las dos cifras del número.

 

Repetimos el mismo procedimiento con las decenas del factor de abajo y lo multiplicamos por cada cifra del primer factor (7 × 469 = 3.283).

Luego sumamos las dos filas y obtenemos el resultado de la multiplicación.

Tabla pitagórica

Es otro modelo de tabla de multiplicar. Fue construida por Pitágoras, filósofo y matemático griego del siglo V a. C., para enseñarles a multiplicar a los más pequeños. La primera columna y fila dispone de los números que van ser multiplicados, y cada una de las celdas internas de la tabla representa la multiplicación entre los números de la primera fila y columna.

– Ejemplo: 423 x 514

Cuando los dos factores tienen tres cifras el procedimiento es el mismo. Ubicamos los factores uno sobre otro, y multiplicamos las unidades del segundo factor por el primero (4 × 423 = 1.692). 

Multiplicamos las decenas del segundo factor por cada cifra del primer factor (1 × 423 = 423).

Repetimos el procedimiento con las centenas del factor de abajo (5 × 423 = 2.115).

Sumamos las filas con los productos parciales.

¡A practicar!

Realiza esta multiplicación:

  • 721 × 166
Solución
721 × 166 = 119.686

MULTIPLICACIÓN DE UN NÚMERO NATURAL POR 10, 100 Y 1.000

Veamos estas 3 multiplicaciones:

  1. 473 × 10 = 4.730
  2. 473 × 100 = 47.300
  3. 473 × 1.000 = 473.000

Como ves, cuando se multiplica un número natural por 10, 100 y 1.000 basta con agregar ceros al número original como se resume en la siguiente tabla:

Para multiplicar un número natural por… Agregamos… Ejemplo
10 un cero 912 × 10 = 9.120
100 dos ceros 411 × 100 = 41.100
1.000 tres ceros 746 × 1.000 = 746.000

LA MULTIPLICACIÓN Y LA PROPIEDAD DISTRIBUTIVA

La propiedad distributiva establece que si multiplicamos un número por una suma es igual a multiplicar ese número por cada sumando y luego sumar los productos finales.

– Ejemplo:

Esta propiedad también se cumple en la resta:

¿Sabías qué?
Puedes resolver primero la suma o resta que esté dentro de los paréntesis y luego hacer la multiplicación. El resultado será el mismo. 
Las multiplicaciones forman parte de nuestro día a día. Las usamos cada vez que hacemos compras, contamos las butacas de un cine o jugamos con nuestros amigos. Por lo general hacemos esta operación cuando manejamos dinero, pues si tenemos 6 billetes de $ 100 es más fácil solo multiplicar 6 x 100 = 600 en lugar de contar de 100 en 100 hasta llegar a 600.

¡A practicar!

1. Resuelve las siguientes multiplicaciones:

  • 414 x 24 =
    Solución
    414 x 24 = 9.936
  • 121 x 38 =
    Solución
    121 x 38 = 4.598
  • 741 x 51 =
    Solución
    741 x 51 = 37.791
  • 620 x 324 =
    Solución
    620 x 324 = 200.880
  • 496 x 531 =
    Solución
    496 x 531 = 263.376
  • 589 x 10 = 
    Solución
    589 x 10= 5.890
  • 144 x 100 =
    Solución
    144 x 100 = 14.400
  • 378 x 1.000 = 
    Solución
    378 x 1.000 = 378.000

2. Usa la propiedad distributiva para resolver estas operaciones:

  • (25 + 30) x 2 = 
    Solución
    (25 + 30) x 2 = 110
  • (10 + 9) x 4 = 
    Solución
    (10 + 9) x 4 = 76
  • (15 − 8 ) x 100 = 
    Solución
    (15 − 8) × 100 = 700
  • (24 − 22) × 5 = 
    Solución
    (24 − 22) × 5 = 10
RECURSOS PARA DOCENTES

Artículo “Multiplicación por dos o más cifras”

En este artículo podrás acceder a información complementaria sobre algunos métodos de multiplicación

VER

Artículo “Trucos para aprender las tablas de multiplicar”

Este artículo brinda los recursos necesarios para estudiar las tablas de multiplicar.

VER

 

CAPÍTULO 4 / TEMA 4

Conversión de unidades

Sin unidades de medidas no podríamos comparar las cosas y por ende, la medición no existiría. Es común que una misma magnitud tenga diferentes unidades de medida y por eso es necesario realizar conversiones entre ellas. La conversión de unidades permite simplificar cálculos y establecer comparaciones de manera más fácil. 

Conversión de unidades de longitud

En el Sistema Internacional de Unidades (SI) se utiliza el metro como unidad de longitud. Se denota con el símbolo m y no lleva punto al final.

Existen medidas que provienen del metro y son conocidas como submúltiplos y múltiplos. Los submúltiplos son las subdivisiones de un metro. Por ejemplo, si dividimos un metro en diez partes iguales cada una de esas partes mide un decímetro, el decímetro es un submúltiplo del metro y se denota como dm.

Hay unidades derivadas del metro que son mucho más grandes, por ejemplo, mil metros equivalen a un kilómetro. En este caso el kilómetro es un múltiplo del metro y se denota como km.

Múltiplos y submúltiplos del metro

Unidad de medida Símbolo Equivalencia en metros
Kilómetros km 1 km = 1.000 m
Hectómetro hm 1 hm = 100 m
Decámetro dam 1 dam = 10 m
Metro m 1 m
Decímetro dm 1 dm = 0,1 m
Centímetro cm 1 cm = 0,01 m
Milímetro mm 1 mm = 0,001 m

De menor a mayor, observa que las unidades aumentan un cero en relación al metro y si lo miramos en sentido contrario disminuyen un cero. Esto nos permite convertir unidades de este tipo entre sí.

¿Cómo realizar conversiones de longitud?

Para convertir unidades de longitud debemos imaginarnos que las unidades se encuentran ubicadas cada una de mayor a menor en cada escalón de una escalera. El kilómetro (km) se encuentra en el escalón más alto y el milímetro (mm) en el más bajo.

Para convertir una unidad en otra, debemos ubicarnos en el escalón de la unidad que queremos convertir y luego contar el número de escalones que tenemos que movernos para llegar a la unidad deseada. Si subimos de escalón tenemos que multiplicar por 10 en cada escalón que nos desplacemos y si bajamos de escalón tenemos que dividir entre 10 por cada escalón.

Un truco útil para estos ejercicios es multiplicar la medida inicial por el número 1 seguido de tantos ceros según el número de escalones que hayamos subido o bajado respectivamente. Por ejemplo, si bajamos dos escalones tenemos que multiplicar la medida inicial por 100, pero si subimos dos escalones dividimos la unidad inicial entre 100.

– Transforma 5 metros a centímetros

Lo primero es observar el diagrama y ubicarnos en la unidad inicial que es el metro. Observa que el centímetro se encuentra dos escalones por debajo, así que tenemos que multiplicar la medida inicial que es 5 por 100.

5\times 100=500

Por lo tanto:

5\; m=\mathbf{500\; cm}

Quiere decir que 5 m equivalen a 500 cm, en longitud miden lo mismo solo que con diferente unidad.

 

– Transformar 2.500 centímetros a decímetros

En este caso, para convertir centímetro a decímetros tenemos que subir un escalón, así que dividimos la unidad inicial entre 10.

2.500 \, \div \, 10 = 250

Por lo tanto:

2.500\; cm = \mathbf{250\; dm}

 

¿Sabías qué?
La palabra “metro” proviene del término griego “metron” que quiere decir “medida”.

Pequeñas unidades

Los investigadores usan unidades especiales para medir cosas que no se pueden percibir a simple vista como una bacteria, un virus o una molécula. En estos casos usan el micrómetro (µm) y el nanómetro (nm). El micrómetro equivale a la millonésima parte de un metro y el nanómetro es la mil millonésima parte de un metro.

Estas unidades son tan pequeñas que si pudieras dividir un milímetro de la regla en mil partes iguales, cada parte mediría un micrómetro y si este lo pudieras dividir a su vez en mil partes iguales, cada parte mediría un nanómetro. La mayoría de las bacterias miden entre 1 y 10 micrómetros mientras que los virus suelen medir de 30 a 90 nm.

Conversión de unidades de capacidad

La unidad de capacidad aceptada por el Sistema Internacional de unidades es el litro. Se denota con la letra ele mayúscula o minúscula: “l” o “L”. Al igual que en las unidades de longitud el litro tiene múltiplos y submúltiplos.

Múltiplos y submúltiplos del litro

De mayor a menor se indican los múltiplos y submúltiplos del litro:

Unidad de medida Símbolo Equivalencia en metros
Kilolitro kL 1 kL = 1.000 L
Hectolitro hL 1 hL = 100 L
Decalitro daL 1 daL = 10 L
Litro L 1 L
Decilitro dL 1 dL = 0,1 L
Centilitro cL 1 cL = 0,01 L
Mililitro mL 1 mL = 0,001 L

¿Cómo realizar conversiones de capacidad?

El procedimiento es el mismo que el usado para transformar unidades de longitud, la diferencia son la unidades, porque en unidades de capacidad se emplea el litro con sus múltiplos y submúltiplos. De manera que el diagrama en este caso quedaría:

– Transforma 50 litros a mililitros

Para transformar litros a milímetros hay que bajar tres escalones, es decir, se debe multiplicar entre 1.000.

50\times 1.000 = 50.000

Por lo tanto:

50\; L =\mathbf{50.000\; mL}

 

– Transforma 300 decalitros a kilolitros

Para transformar decalitros a kilolitros se deben subir dos posiciones, por lo cual se debe dividir entre 100.

300\div 100 = 100

Por lo tanto:

300\; daL = \mathbf{3\; kL}

 

Origen del litro

Esta unidad de capacidad se empezó a utilizar por primera vez en el año 1795 en Francia. Hoy en día es muy usado para describir la capacidad de algunos electrodomésticos y utensilios de cocina.

Conversión de unidades de tiempo

Las unidades de tiempo más comunes de mayor a menor son la hora, el minuto y el segundo.

Unidad de tiempo Símbolo
Hora h
Minuto min
Segundo s

Se cumple que:

  • 1 hora = 60 minutos
  • 1 minuto = 60 segundos

Observa que cada unidad es sesenta veces menor que la anterior, por eso, se habla de que es un sistema sexagesimal. Para convertir unidades se aplica un formato similar al de la conversión de longitud y capacidad pero en vez de multiplicar o dividir por 10, se hace por 60.

– Transforma 13 horas a minutos

Para transformar horas a minutos tenemos que movernos una posición hacia abajo, de manera que hay que multiplicar por 60.

13\times 60=780

Por lo tanto:

13\, h= \mathbf{780\, min}

 

– Transforma 900 segundos a minutos

Para transformar segundos a minutos se debe subir un escalón hacia arriba, de manera que debemos dividir entre 60.

900\div60=15

Por lo tanto:

900\; s=\mathbf{15\; min}

 

Oficina Internacional de Pesas y Medidas

Es un organismo que fue creado en 1875 en París, Francia. Su misión es velar por la uniformidad en las mediciones a nivel mundial. En sus instalaciones se encuentra un cilindro de metal de 1 kg que hasta el año 2019 era usado como patrón de esta unidad.

¡A practicar!

1. Escribe el símbolo de las siguientes unidades de medición.

a) Hectómetro

Solución
hm

b) Decilitro

Solución
dL

c) Hora

Solución
h

d) Decámetro

Solución
dam

e) Kilolitro

Solución
kL

2. ¿Cuál de las siguientes unidades permite medir la longitud?

a) Segundo

b) Hectolitro

c) Minuto

d) Centímetro

e) Hora

Solución
Centímetro.

3. Transforma las siguientes cantidades.

a) 5 kilómetros a metros.

Solución
5 km = 5.000 m

b) 10 minutos a segundos.

Solución
10 min = 600 s

c) 40 mililitros a centilitros.

Solución
40 mL = 4 cL

d) 8.000 decámetros a kilómetros.

Solución
8.000 dam = 80 km

e) 120 minutos a horas.

Solución
120 min = 2 h

e) 400 decímetros a metro.

Solución
400 dm = 40 m

RECURSOS PARA DOCENTES

Artículo “Medidas de longitud”

Este artículo explica qué son las unidades de longitud y se concentra en los múltiplos y submúltiplos del metro. También describe cómo realizar conversiones entre este tipo de magnitudes.

VER

Artículo “Múltiplos y submúltiplos del: metro, gramo, litro”

Este artículo no solamente detalla cada uno de los múltiplos y submúltiplos del metro, sino que también los de el gramo y el litro. En cada caso muestra como realizar las respectivas conversiones.

VER

Artículo “El tiempo”

Este artículo hace una breve descripción de lo que es el tiempo y por qué es tan difícil definirlo incluso para los científicos experimentados.

VER

CAPÍTULO 2 / TEMA 3

¿QUÉ ES LA MULTIPLICACIÓN?

CUANDO UNA CANTIDAD SE REPITE VARIAS VECES PODEMOS ACUDIR A UNA OPERACIÓN BÁSICA DE LAS MATEMÁTICAS: LA MULTIPLICACIÓN. ESTA ES IGUAL A UNA SUMA RESUMIDA Y LA USAMOS CADA VEZ COMPRAMOS VARIOS PRODUCTOS IGUALES, POR EJEMPLO, 4 HELADOS A $ 2 ES IGUAL A 4 × 2 Y SE LEE “CUATRO POR DOS”.

TANTA VECES TANTO

SI TENEMOS LA MISMA CANTIDAD DE ELEMENTOS EN VARIOS GRUPOS PODEMOS SABER LA CANTIDAD TOTAL SI CONTAMOS CUÁNTOS GRUPOS HAY Y LUEGO CONTAMOS CUÁNTO HAY EN CADA GRUPO.

– EJEMPLO 1:

¿CUÁNTOS GRUPOS HAY?, ¿CUÁNTAS CEREZAS HAY EN CADA GRUPOS?, ¿CUÁNTAS CEREZAS HAY EN TOTAL?

  • HAY 3 GRUPOS.
  • HAY 2 CEREZAS EN CADA GRUPO.
  • HAY 6 CEREZAS EN TOTAL PORQUE 2 + 2 + 2 = 6

PODEMOS DECIR QUE:

3 VECES 2 ES IGUAL A 6


– EJEMPLO 2:

¿CUÁNTOS GRUPOS HAY?, ¿CUÁNTAS PALETAS HAY EN CADA GRUPO?, ¿CUÁNTAS PALETAS HAY EN TOTAL?

  • HAY 2 GRUPOS.
  • HAY 4 PALETAS EN CADA GRUPO.
  • HAY 8 PALETAS EN TOTAL PORQUE 4 + 4 = 8

PODEMOS DECIR QUE:

2 VECES 4 ES IGUAL A 8

¡ES TU TURNO!

¿CUÁNTOS GRUPOS HAY?, ¿CUÁNTAS BANANAS HAY EN CADA GRUPO?, ¿CUÁNTAS BANANAS HAY EN TOTAL?

SOLUCIÓN
  • HAY 3 GRUPOS.
  • HAY 3 BANANAS EN CADA GRUPO.
  • HAY 9 BANANAS EN TOTAL PORQUE 3 + 3 + 3 = 9

ASÍ QUE:

3 VECES 3 ES IGUAL A 9

LA MULTIPLICACIÓN Y SUS ELEMENTOS

CUANDO SABEMOS LA CANTIDAD DE GRUPOS Y LA CANTIDAD DE ELEMENTOS EN CADA GRUPO PODEMOS HACER UNA OPERACIÓN LLAMADA MULTIPLICACIÓN. LA USAMOS CADA VEZ QUE LA CANTIDAD DENTRO DE CADA GRUPO SEA LA MISMA. LA MULTIPLICACIÓN ESTÁ FORMADA POR FACTORES Y UN PRODUCTO.

¿SABÍAS QUÉ?
EL SIGNO DE MULTIPLICACIÓN ES × Y SE LEE “POR”.

– EJEMPLO 1:

¿CUÁNTAS FRESAS HAY EN TOTAL?

LA CANTIDAD TOTAL DE FRESAS EN ESTA IMAGEN LA PODEMOS REPRESENTAR ASÍ:

3 + 3 + 3 + 3 = 12

4 VECES 3 ES IGUAL A 12

O COMO UNA MULTIPLICACIÓN:

4 × 3 = 12

  • EL 4 REPRESENTA LA CANTIDAD DE GRUPOS. ES UN FACTOR.
  • EL 3 REPRESENTA LA CANTIDAD DE FRESAS EN CADA GRUPO. ES UNA FACTOR.
  • EL 12 REPRESENTA EL TOTAL DE FRESAS. ES EL PRODUCTO O RESULTADO.

RESPUESTA: HAY 12 FRESAS.


– EJEMPLO 2:

¿CUÁNTAS LAZOS HAY EN TOTAL?

4 + 4 + 4 + 4 = 16

4 VECES 4 ES IGUAL A 16

4 × 4 = 16

RESPUESTA: HAY 16 LAZOS.

LA MULTIPLICACIÓN ES UNA OPERACIÓN QUE SE UTILIZA PARA ABREVIAR SUMAS REPETIDAS. LA SUMA 4 + 4 ES IGUAL QUE 2 × 4, YA QUE SON 2 VECES LAS QUE SE REPITE EL 4. POR EJEMPLO, SI TENEMOS 5 CAJAS DE ALFAJORES CON 9 EN CADA UNA. LA SUMA REPETIDA SERÍA: 9 + 9 + 9 + 9 + 9 Y EN MULTIPLICACIÓN 9 × 5. AMBAS EXPRESIONES DARÁN EL MISMO RESULTADO: 45 ALFAJORES EN TOTAL.

EL ORDEN DE LOS FACTORES NO MODIFICA EL PRODUCTO

NO IMPORTA EN QUÉ ORDEN ESCRIBAS LOS FACTORES EN UNA MULTIPLICACIÓN, EL RESULTADO SIEMPRE SERÁ EL MISMO. EJEMPLO:

3 × 4 = 12 PORQUE 4 + 4 + 4 = 12

4 × 3 = 12 PORQUE 3 + 3 + 3 + 3 = 12

EL DOBLE

EL DOBLE DE UNA CANTIDAD ES IGUAL A ESA CANTIDAD MULTIPLICADA POR 2.

– EJEMPLO 1:

SI TENEMOS 5 MANZANAS, ¿CUÁL ES EL DOBLE?

PRIMERO DIBUJAMOS LAS 5 MANZANAS:

COMO DEBEMOS SABER EL DOBLE, REPETIMOS EL CONJUNTO PARA TENERLO 2 VECES:

CONTAMOS LAS MANZANAS O REPRESENTAMOS COMO UNA MULTIPLICACIÓN:

5 + 5 = 10

2 VECES 5 ES IGUAL A 10

2 × 5 = 10

LUEGO RESPONDEMOS:

EL DOBLE DE 5 MANZANAS SON 10 MANZANAS.


– EJEMPLO 2:

¿CUÁL ES EL DOBLE DE 8?

COMO YA SABEMOS EL PROCESO, BASTA CON QUE SUMEMOS DOS VECES EL MISMO NÚMERO (8) O QUE MULTIPLIQUEMOS 8 POR 2.

8 + 8 = 16

2 × 8 = 16

EL DOBLE DE 8 ES 16.


– EJEMPLO 3:

¿CUÁL ES EL DOBLE DE 7?

7 + 7 = 14

2 × 7 = 14

EL DOBLE DE 7 ES 14.

LAS TABLAS DE MULTIPLICAR

SON UN RECURSO EXPRESADO EN UNA CUADRÍCULA DONDE PODEMOS VER LA RELACIÓN DE LOS PRODUCTOS ENTRE DOS FACTORES. LAS TABLAS DE MULTIPLICAR MUESTRAN DE FORMA RESUMIDA EL RESULTADO DE LAS MULTIPLICACIONES.

¡CONSTRUYAMOS LA TABLA DEL 2!

EN CADA CUADRO HAY 2 PELOTAS.

2 × 1 = 2
2 × 2 = 4
2 × 3 = 6
2 × 4 = 8
2 × 5 = 10
2 × 6 = 12
2 × 7 = 14
2 × 8 = 16
2 × 9 = 18

OBSERVA LOS PRODUCTOS (2, 4, 6, 8, 10, …). TODOS AUMENTAN DE 2 EN 2.

¡ES TU TURNO!

CONSTRUYE LA TABLA DE MULTIPLICAR DEL 3.

EN CADA CUADRO HAY 3 NUECES.

3 × 1 = 3
SOLUCIÓN
3 × 1 = 3
3 × 2 = 6
3 × 3 = 9
3 × 4 = 12
3 × 5 = 15
3 × 6 = 18
3 × 7 = 21
3 × 8 = 24
3 × 9 = 27

UNA GRAN HERRAMIENTA

PARA HACER CÁLCULOS DE MULTIPLICACIONES SE IDEARON LAS TABLAS DE MULTIPLICAR, QUE NO SON MÁS QUE UN ATAJO PARA REALIZAR SUMAS LARGAS DE FORMA RÁPIDA. LA FORMA MÁS COMÚN DE REPRESENTAR LAS TABLAS DE MULTIPLICACIÓN ES, COMO SU NOMBRE LO INDICA, A TRAVÉS DE TABLAS. NORMALMENTE SE MUESTRAN LAS TABLAS DEL 1 AL 10 Y CADA UNA DE ELLAS INDICA LAS MULTIPLICACIONES DEL NÚMERO QUE REPRESENTAN DEL 1 AL 10 O DEL 0 AL 10.

 

¡A PRACTICAR!

1. OBSERVA LOS GRUPOS. RESUELVE COMO SUMA REPETIDA, TANTAS VECES TANTO Y MULTIPLICACIÓN.

SOLUCIÓN

5 + 5 + 5 = 15

3 VECES 5 ES IGUAL A 15

3 × 5 = 15

SOLUCIÓN

2 + 2 + 2 + 2 = 8

4 VECES 2 ES IGUAL A 8

4 × 2 = 8

SOLUCIÓN

4 + 4 + 4 + 4 = 16

4 VECES 4 ES IGUAL A 16

4 × 4 = 16

 

2. RESPONDE:

  • ¿CUÁL ES EL DOBLE DE 9?
SOLUCIÓN
18
  • ¿CUÁL ES EL DOBLE DE 2?
SOLUCIÓN
4
  • ¿CUÁL ES EL DOBLE DE 6?
SOLUCIÓN
12
RECURSOS PARA DOCENTES

Artículo “Trucos para aprender las tablas de multiplicar”

En el siguiente artículo encontrarás un conjuntos de consejos para aprender las tablas de multiplicar.

VER

CAPÍTULO 2 / TEMA 1

OPERACIONES CON DECIMALES

En la vida cotidiana muchas cantidades están expresadas con números decimales, tales como los precios de los artículos en un supermercado o la estatura de las personas. Estos números se componen de dos partes: una entera y una decimal o inferior a la unidad. A continuación verás cómo resolver operaciones con decimales. 

Por lo general, los precios de los artículos en los supermercados son expresados con números decimales sin importar la moneda utilizada. También podemos ver números decimales en algunas frecuencias de las emisoras de radio, en la capacidad de algunos envases, y en una de las constantes más famosas de las matemáticas: la constante π (pi).

VER INFOGRAFÍA

OPERACIONES BÁSICAS CON DECIMALES

Suma

Para realizar la adición de números decimales debemos ubicar las cifras una debajo de la otra, de tal manera que las comas queden alineadas en una misma columna. Además, todos los números a sumar deben tener igual cantidad de dígitos en la parte decimal, de lo contrario, agregamos los ceros que sean necesarios para igualar las cifras. Por ejemplo:

– Resuelve esta operación:

7,2139 + 1.042 + 0,065 + 38,50 =

Lo primero que hacemos es ubicar todas las cifras una debajo de la otra y nos aseguramos de que las comas queden alineadas verticalmente. Añadimos ceros a las números que sean necesarios para que todos tengan la misma cantidad de decimales:

Luego sumamos cada dígito de derecha a izquierda. Los números en círculo azul indican el orden en que sumamos las columnas. Observa que la coma está en la misma línea vertical.

Por lo tanto, el resultado es el siguiente:

7,2139 + 1.042 + 0,065 + 38,50 = 1.087,7789

 

Las operaciones con números decimales se realizan de manera muy similar a como trabajamos con los números enteros. La única diferencia es que debemos mantener la coma en la misma línea vertical. Si vamos a sumar decimales, sumamos las columnas de derecha a izquierda con la coma alineada. Con este procedimiento podemos resolver la adición de cualquier cantidad de números.

Resta

El procedimiento para la resta o sustracción de números decimales es similar a la sustracción con números enteros. Recordemos, además, que la regla para la suma algebraica establece que cuando dos números tienen signos iguales se suman y se coloca el mismo signo, mientras que cuando los números tienen signos diferentes se restan y se coloca el signo del número mayor. Por ejemplo:

– Resuelve esta operación:

(+9.821,13) + (−20.130) =

Como observamos, se trata de una suma algebraica de dos números que tienen signos diferentes, por lo tanto, tratamos la operación como una resta y al resultado le colocamos el signo del número mayor.

Primero ubicamos las dos cifras a restar: en la parte superior el número mayor y en la parte inferior el número menor. Verificamos que las comas están alineadas de forma vertical y, de ser necesario, completamos con ceros los decimales de alguna de las cifras hasta que ambas tengan la misma cantidad de dígitos en su parte decimal.

Procedemos a realizar la resta del mismo modo que hacemos con los números enteros, pero agregamos la coma en el lugar que corresponde, es decir, alineada con la columna de las comas.

Finalmente, colocamos el signo que corresponda. En este caso, el valor absoluto de −20.130 es mayor que el valor absoluto de +9.821. Por esta razón, el signo que se mantiene en el resultado es el signo negativo.

(+9.821,13) + (−20.130) = −10.308,87

Valor absoluto

El valor absoluto de un número es igual a la distancia que existe entre ese número y cero.

\left | 15 \right | = 15

\left | -1.259 \right | = 1.259

\left | -20.130 \right |=20.130

La resta también la podemos considerar como una suma algebraica de dos números que tienen signos diferentes. El resultado siempre tendrá el signo del número con mayor valor absoluto. A diferencia de la suma, en la resta conviene que restemos cantidades de dos en dos. Además, debemos ubicar al número mayor en la parte superior y al menor en la parte inferior.

Multiplicación

En el caso del producto entre dos cifras decimales, el procedimiento es el mismo que aplicamos para los números enteros, y al resultado final le agregamos la coma con la cantidad de espacios (de derecha a izquierda) equivalentes al número de cifras decimales totales que haya en los factores. Por ejemplo:

– Resuelve esta operación:

3.807,93 × 186,2 =

Primero multiplicamos el último término del multiplicador (será el pivote) por cada uno de los términos del multiplicando.

Después multiplicamos el siguiente término del multiplicador (será ahora el pivote) por cada uno de los términos del multiplicando. Anotamos los resultados en la segunda línea pero dejamos un espacio debajo del primer dígito.

Repetimos este procedimiento hasta que el primer término del multiplicador haya multiplicado todos los términos del multiplicando. Siempre dejamos un espacio debajo del primer dígito desde la derecha de cada número.

Luego sumamos todos los resultados de las multiplicaciones.

Por último, ubicamos la coma en el resultado. Para esto, contamos de derecha izquierda la cantidad de espacios equivalente al número total de decimales que tienen tanto el multiplicando como el multiplicador; en este caso, hay tres decimales en el resultado, pues el multiplicando 3.807,93 tiene dos decimales: 9 y 3, y el multiplicador 186,2 tiene un decimal: 2.

Entonces:

3.807,93 × 186,2 = 70.903,566

División

Al dividir el numerador por el denominador de una fracción, el resultado puede ser un número decimal, por lo tanto, las fracciones y los números decimales son expresiones equivalentes. Además, la notación empleada para denotar los números decimales puede ser a través de coma o de punto como se observa en la imagen.

La división que involucre números decimales implica a su vez tres posibles casos:

1. El dividendo es un número entero y el divisor es un número decimal.

En este caso, convertimos al divisor en un número entero. Para ello, agregamos al dividendo tantos ceros a la derecha como cantidad de espacios se movió la coma del divisor para convertirlo en entero. De este modo, tendremos una división de números enteros. Por ejemplo, si deseamos dividir 12 ÷ 1,5 seguimos estos pasos:

 

 

Entonces, el resultado de la división es el siguiente:

12 ÷ 1,5 = 8

 

2. El dividendo es un número decimal y el divisor es un número entero.

Aquí el procedimiento es similar a la división entre números enteros, con la única salvedad de que cuando bajamos el dígito del dividendo que se encuentra a la derecha de la coma, agregamos una coma en el cociente. Por ejemplo, la división: 78,6 ÷ 24.

Entonces, el resultado de la división es el siguiente:

78,6 ÷ 24 = 3,275

 

3. El dividendo y el divisor son números decimales.

En este caso, convertimos primero el divisor en un número entero y desplazamos la coma a la derecha tanto en el dividendo como en el divisor hasta que el divisor sea entero. De ser necesario, agregamos en el dividendo ceros a la derecha. Por ejemplo, la división: 93,48 ÷ 51,2.

Entonces, el resultado de la división es el siguiente:

93,48 ÷ 51,2 = 1,82578125

OPERACIONES ENTRE NÚMEROS DECIMALES Y OTROS NÚMEROS

Es posible que en ocasiones necesitemos realizar operaciones combinadas con números decimales y otros números, por ejemplo, con fracciones. En ese caso, podemos transformar los números decimales a fracciones o convertir las fracciones a números decimales si dividimos el numerador por el denominador como veremos en este tema.

Veamos el siguiente ejemplo y determinemos el resultado de:

\frac{3}{4} + 0,9277 \times \frac{7}{4} =

Existen diversas formas de resolver este problema, sin embargo, el orden siempre será el mismo: primero la multiplicación y al final la suma. Los pasos son los siguientes:

1. Resolvemos la multiplicación del número decimal con la fracción 7/4. Para esto debemos multiplicar 0,9277 por 7 y luego dividimos el resultado obtenido por cuatro (4).

  • Multiplicación:

0,9277\times 7 = 6,4939

  • División:

6,4939 \, \div 4 = 1,623475

  • El resultado es el siguiente:

0,9277 \, \times \frac{7}{4} = 1,623475

2. Determinamos la expresión decimal equivalente para 3/4. Para esto hacemos la división: 3 ÷ 4.

3\div 4 = 0,75

3. Calculamos el resultado de la suma de 0,75 + 1,623475:

4. Expresamos el resultado de la siguiente manera:

\frac{3}{4} + 0,9277 \times \frac{7}{4} = \mathbf{2,373475}

¡A practicar!

Te invitamos a resolver los siguientes ejercicios:

a) 9.305,881 + 7,42

Solución
9.313,301

b) 466,42 - 9.138,5

Solución
−8.672,08

c) 84.361,066 \times 52,97

Solución
4.468.605,66602

d) 9.931,588\div 108,3

Solución
91,7044136657

e) 6,2544 \times \frac{17}{8} \times 28,06 - \frac{11}{4}

Solución
370,184236
RECURSOS PARA DOCENTES

Tarjetas educativas “Operaciones matemáticas”

En este enlace encontrarás una serie de tarjetas escolares. Cada una con un resumen relacionado con alguna operación matemática.

VER

Video “Multiplicación de números decimales”

Este enlace contiene un video explicativo relacionado con la multiplicación de números decimales con ejemplos ilustrativos.

VER 

Video “Suma y resta de números decimales”

Este enlace contiene un video explicativo referente a la suma y resta de números decimales a través ejemplos.

VER 

CAPÍTULO 2 / TEMA 3

Operaciones combinadas

Hay ocasiones en las que pueden aparecer varias operaciones matemáticas en un mismo problema: estas expresiones se conocen como operaciones combinadas. Para resolverlas, es importante que tengas buenas bases en las propiedades de la suma, la resta, la multiplicación y la división, así como también que sepas priorizar entre ellas.

¿Qué es una operación combinada?

Es una expresión que contiene dos o más operaciones matemáticas, como la suma, la resta, la división y la multiplicación. Algunas veces puede aparecer con paréntesis para separar términos dentro de la expresión.

Para estos problemas se deben tener en cuenta dos cosas:

  1. La regla de los signos.
  2. La prioridad de operaciones, lo que significa que hay operaciones que deben resolverse antes que otras.

Ley de los signos en suma y resta

Para resolver operaciones combinadas es indispensable comprender ciertos criterios que cumplen los números en relación a su signo, a estos criterios se los conoce como “ley de los signos”. A continuación, te mostramos aquellos orientados únicamente a operaciones de suma y resta.

  1. Cuando se suman números positivos, el resultado es otro número con signo positivo:
    10 + 13 = 23
  2. Cuando se suman números negativos, se mantiene el signo negativo y suman los números:
    (−3) + (−2) = −5
  3. Cuando se tienen números con diferente signo, se restan y se coloca el signo que corresponda al número mayor:
    15 − 3 = 12 → El número mayor es 15 y como no tiene signo se entiende que es positivo, ya que por convención los números que no presentan signo se asumen como números positivos, así que al resultado no se le coloca signo.

    3 − 7 = −4 → El número mayor es el 7 y, por tener el signo menos, el resultado debe ser negativo.

¿Sabías qué?
El símbolo “÷” algunas veces es reemplazado por dos puntos “:” para indicar una división.

Ejercicios combinados de sumas y restas

Las operaciones combinadas de sumas y restas con números naturales son fáciles de reconocer porque no llevan paréntesis. En los ejercicios de este tipo, la resolución se hace de izquierda a derecha en el orden en que aparecen los números.

– Por ejemplo:

458 − 352 + 157 − 235 + 784 − 568

Primero debes resolver los dos primeros términos: 458 − 352 = 106, y colocar el resultado como reemplazo de esos números. Luego escribe los números siguientes con sus signos:

106 + 157 − 235 + 784 − 568

Suma el resultado anterior con el siguiente término:

106 + 157 − 235 + 784 − 568

Como el resultado de 106 + 157 es igual a 263, sustituye esos números y anota los números siguientes:

263 − 235 + 784 − 568

Debido a que el número que le sigue a 263 está precedido por un signo menos, la operación a realizar es una resta, es decir, 263 − 235, cuyo resultado es 28. Anota este resultado y resuelve con el número siguiente:

28 + 784 − 568

De 28 + 784 resulta 812, entonces, escribe este resultado junto con el último número que queda y resuelve:

812 − 568 = 244

Con esta última operación obtendrás el resultado del ejercicio. También puedes escribir la solución de esta forma:

458 − 352 + 157 − 235 + 784 − 568 = 244

En los ejercicios combinados de sumas y restas es importante conocer el valor posicional de los números y dominar correctamente estas operaciones. Aunque no es necesario mantener estrictamente el orden de resolución de izquierda a derecha (se pueden resolver los números positivos primero y los negativos después), se sugiere hacerlo para evitar errores.

Ejercicios combinados de multiplicación y división

Los ejercicios combinados que involucran multiplicación y división sin paréntesis se resuelven en este orden:

  1. Realiza las multiplicaciones y las divisiones primero.
  2. Realiza las sumas y restas de la manera en la que fue explicado en el punto anterior.

– Por ejemplo:

112 + 3 x 15 − 85

Resuelve primero la multiplicación 3 x 15:

112 + 3 x 15 − 85

Como 3 x 15 = 45, coloca el 45 como reemplazo de la expresión y respeta el orden de los demás números:

112 + 45 − 85

Ahora tenemos una operación combinada de suma y resta que puedes solucionar de izquierda a derecha como se explicó anteriormente:

112 + 45 − 85

157 − 85 = 72

El resultado es el siguiente:

112 + 3 x 15 − 85 = 72

 

– Otro ejemplo:

21 + 25 ÷ 5 − 12 + 8 x 6

Primero debes identificar los números que multiplican y dividen:

21 + 25 ÷ 5 − 12 + 8 x 6

Resuelve las operaciones de multiplicación y división y reemplaza por sus respectivos resultados. El orden y los signos del resto de los números se mantiene. Recuerda que 25 ÷ 5 = 5 y que 8 x 6 = 48. Al sustituir estos números queda:

21 + 5 − 12 + 48

Ya puedes resolver la operación combinada de suma y resta de la manera explicada anteriormente:

21 + 5 − 12 + 48

26 − 12 + 48

14 + 48 = 62

Expresa el resultado de la siguiente manera:

21 + 25 ÷ 5 − 12 + 8 x 6 = 62

 

Al momento de resolver ejercicios combinados, se debe prestar atención a los signos. Un signo que no sea correcto se traduce, en la mayoría de los casos, en un resultado erróneo. De igual forma se debe tener presente el orden de las operaciones a resolver, es decir, primero resolver multiplicaciones y divisiones, después resolver sumas y restas.
¡A practicar!

1. Resuelve las siguientes operaciones combinadas de sumas y restas sin paréntesis:

a) 115 − 94 + 525 − 32 =

Solución
514
b) 350 − 257 − 50 + 117 =
Solución
160
c) 450 − 358 + 15 + 452 − 527 + 13 =
Solución
45
d) 1.975 − 1.875 + 252 =
Solución
352
e) 759 − 651 + 875 − 532=
Solución
451

2. Resuelve las siguientes operaciones combinadas con multiplicaciones y divisiones sin paréntesis:

a) 14 − 6 x 3 − 11 =

Solución
−15
b) 28 − 12 ÷ 3 + 10 =
Solución
34
c) 42 + 5 x 5 − 48 + 42 ÷ 6 =
Solución
26
d) 272 − 105 + 6 x 6 − 15 + 2 x 2 =
Solución
192
e) 3.615 ÷ 15 + 9 − 90 + 5 x 2 =
Solución
170

RECURSOS PARA DOCENTES

Artículo “Ley de los signos: suma y resta”

Este artículo explica la ley de los signos para la suma y la resta. También muestra ejemplos de ejercicios para cada caso.

VER

Artículo “Números negativos”

Este artículo ayuda a ampliar el conocimiento sobre los números negativos y algunas de sus aplicaciones. También incluye una serie de ejercicios para resolver.

VER

Artículo “Cálculos combinados”

Este artículo destacado profundiza en explicaciones sobre los cálculos combinados y su metodología para resolverlos.

VER