CAPÍTULO 8 / TEMA 4

Formas básicas de nutrición

Los seres vivos requieren energía para realizar diferentes funciones. Esta energía la obtienen de los alimentos y les permite crecer, reparar y reemplazar las células, liberar energía y mantener todos sus procesos vitales. Este proceso se llama nutrición y los componentes químicos en los alimentos son los nutrientes.

VER INFOGRAFÍA

AUTÓTROFOS

Son los organismos que sintetizan sus propias moléculas orgánicas a partir de sustancias inorgánicas simples, como por ejemplo CO2 y nitratos. La energía para este proceso deriva de la luz solar (fotosíntesis) o de la oxidación de moléculas inorgánicas (quimiosíntesis).

Las plantas y ciertas bacterias fotosintéticas pueden fabricar sus propios alimentos a partir de sustancias inorgánicas, como el agua y el dióxido de carbono, junto a la energía de la luz solar.

Debido a que los autótrofos sintetizan sus propias moléculas orgánicas, se los conoce comúnmente como productores.

Fotosíntesis y quimiosíntesis

Son procesos por los cuales los organismos producen alimentos. La fotosíntesis es alimentada por la luz solar, mientras que la quimiosíntesis funciona con energía química.

La fotosíntesis es la conversión de energía lumínica en energía química.

  1. En las plantas, el agua absorbida por las raíces del suelo sube por el xilema y llega hasta las hojas.
  2. El dióxido de carbono entra por los estomas presentes en el envés de las hojas.
  3. La luz del sol penetra en las hojas a modo de energía solar.
  4. El producto final de la fotosíntesis es la glucosa que, a menudo, se convierte en almidón.

Todos los organismos fotosintéticos usan energía solar para convertir el dióxido de carbono y el agua en glucosa y oxígeno:

6CO2 + 6H2O a C6H12O6 + 6O2

La quimiosíntesis ocurre en bacterias y otros organismos e implica el uso de energía liberada por las reacciones químicas inorgánicas para producir alimentos.

Por ejemplo, en los respiraderos hidrotermales, algunas bacterias oxidan el sulfuro de hidrógeno, agregan dióxido de carbono y oxígeno para producir azúcar, azufre y agua:

CO2 + O2 + 4H2S a CH20 + 4S + 3H2O

¿Sabías qué?
El conocimiento de las comunidades quimiosintéticas es relativamente nuevo y fue sacado a la luz cuando los humanos observaron por primera vez un respiradero en el fondo del océano en 1977.

HETERÓTROFOS

Son los organismos que obtienen moléculas orgánicas de otros organismos. Debido a que los heterótrofos no pueden producir sus propias moléculas orgánicas y deben obtenerlas de otras fuentes, se los llama consumidores.

Existen tres tipos de heterótrofos: holozoicos, saprófitos y parásitos.

Herbívoros

Los herbívoros son animales cuya fuente primaria de alimento está basada en plantas. Estos animales han desarrollado sistemas digestivos capaces de digerir grandes cantidades de material vegetal. Las plantas son ricas en fibra y almidón, y proporcionan la principal fuente de energía en su dieta.

Dado que algunas partes de los materiales vegetales, como la celulosa, son difíciles de digerir, el tracto digestivo de los herbívoros está adaptado para que los alimentos puedan digerirse adecuadamente.

Muchos herbívoros grandes tienen bacterias simbióticas dentro de sus intestinos para ayudar con la descomposición de la celulosa, también tienen tractos digestivos largos y complejos para permitir suficiente espacio y tiempo para que ocurra la fermentación microbiana.

Tipos de herbívoros

Frugívoros

Granívoros

Nectarívoros

Folívoros

 

Carnívoros

Los carnívoros son animales que se alimentan de otros animales.

Mientras que la mayoría de los carnívoros, como los felinos, comen solo carne, los carnívoros facultativos, como los perros, se comportan más como omnívoros, ya que pueden comer materia vegetal y carne.

¿Sabías qué?
Los carnívoros no solo son los grandes vertebrados, también existen carnívoros invertebrados como las estrellas de mar y las arañas.

Detritívoros vs. descomponedores

Ambos tipos de animales se encuentran dentro del grupo de organismos heterotróficos que descomponen la materia orgánica. La principal diferencia está en el modo en que se alimentan y la manera en que descomponen los alimentos que ingieren. Cabe destacar que los detritívoros forman parte de los descomponedores.

Los detritívoros son los organismos que se alimentan de materia orgánica muerta y en descomposición por ingestión oral. La materia orgánica que alimenta a los detritívoros se llama detrito. El material animal y vegetal muerto puede considerarse como detrito.

Tipos de detritívoros

Terrestres

 

Escarabajos

Moscas

Ácaros

Babosas

Caracoles

Lombrices de tierra

Milpiés

 

Acuáticos

 

Cangrejos

Langostas

Estrellas de mar

Pepinos de mar

Por su parte, los descomponedores son los organismos que descomponen el material orgánico. Los hongos y las bacterias forman parte de este grupo.

Los hongos son descomponedores del tipo saprófito, secretan enzimas digestivas en el material orgánico y luego absorben los nutrientes.

Mixótrofos

Ciertos organismos unicelulares pueden en ocasiones utilizar ambas formas de nutrición, según la disponibilidad de recursos. Euglena gracilis posee clorofila para la fotosíntesis (autotrófica) pero también puede alimentarse de detritos (heterotrófica).

RECURSOS PARA DOCENTES

Video “La fotosíntesis”

Con este vídeo podrá dar a conocer las diferentes etapas de la fotosíntesis y los productos que resultan de esta reacción.

VER

Vídeo “Nutrición de los seres vivos”

Este recurso audiovisual le permitirá mostrar cómo es la nutrición de todos los seres vivos y su influencia en el ecosistema.

VER

Artículo “Cadenas Tróficas: ¿quién come a quién?”

Con este recurso podrá adquirir conocimientos acerca de las cadenas y redes tróficas del ecosistema.

VER

CAPÍTULO 6 / TEMA 4

NUTRICIÓN Y RESPIRACIÓN CELULAR

Las células necesitan energía para poder realizar todas sus funciones vitales. La mejor manera de obtenerla es mediante la respiración celular llevada a cabo en las mitocondrias, que tiene como resultado la producción de adenosín trifosfato o ATP. Se conoce como respiración al conjunto de reacciones bioquímicas mediante las cuales la energía es liberada a partir de sustancias alimenticias, como por ejemplo la glucosa obtenida principalmente de los nutrientes.

¿CÓMO OBTIENE ENERGÍA LA CÉLULA?

Se necesita energía para realizar trabajos pesados y ejercicios, pero los humanos también utilizamos energía mientras pensamos e incluso mientras dormimos. De hecho, las células vivas de cada organismo utilizan constantemente energía. Los nutrientes y otras moléculas se importan a la célula, se metabolizan (se descomponen) y, posiblemente, se sintetizan en nuevas moléculas, se modifican si es necesario, se transportan alrededor de la célula y posiblemente se distribuyen a todo el organismo.

La mayor parte de las estructuras que componen a los seres vivos pertenecen a tres tipos de moléculas básicas: aminoácidos, azúcares y grasas. Estas moléculas son vitales y el metabolismo se centra en sintetizarlas para la construcción o reparación de células y tejidos, o en degradarlas y utilizarlas como recurso energético.

De los carbohidratos se obtiene la mayor cantidad de energía a través del metabolismo de la glucosa o glucólisis y la respiración celular.

¿Qué es el metabolismo?

Es la circulación continua de materia y energía a través del cuerpo. El metabolismo es una red de procesos que generan energía y le permiten a los seres vivos perpetuarse y autorrepararse.

¿QUÉ ES LA RESPIRACIÓN CELULAR?

Es el el proceso mediante el cual los organismos combinan el oxígeno con las moléculas de los productos alimenticios y desvían la energía química de estas sustancias a actividades que sustentan la vida y los descartan, como productos de desecho, dióxido de carbono y agua.

¿Sabías qué?
Los organismos que no dependen del oxígeno degradan los alimentos en un proceso llamado fermentación.

Glucólisis

Es el conjunto de reacciones químicas en las que la energía es extraída de la glucosa mediante su ruptura en dos moléculas llamadas piruvato. Este mecanismo es parte de la respiración celular y es la primera etapa del metabolismo de los carbohidratos, específicamente del catabolismo, donde las moléculas grandes se transforman en otras más pequeñas. Al romperse la glucosa, se libera energía en forma de dos moléculas de ATP. Finalmente, el producto resultante del piruvato puede ser utilizado en la respiración celular para almacenar aún más energía.

La glucólisis consta de 2 etapas: la fase de requerimiento energético, donde se gastan dos moléculas de ATP, y la fase de liberación de energía, donde se genera piruvato.

Ciclo de Krebs

Es la segunda etapa del proceso de respiración celular, mecanismo mediante el cual las células vivas descomponen moléculas de combustible orgánico en presencia de oxígeno para recoger la energía que necesitan para crecer y dividirse.

El combustible orgánico, ahora piruvato, es degradado a acetil coenzima A o acetil coA para poder entrar al ciclo de Krebs, el cual consta de 8 reacciones: citrato sintasa, acontinasa, isocitrato deshidrogenasa, alfa-cetoglutarato deshidrogenasa, succinil CoA sintetasa, succinato deshidrogenasa, fumarasa y malato deshidrogenasa. De todas estas reacciones se producen 2 moléculas de ATP, 6 de NADH y 2 de FADH2, de estas dos últimas se generarán 18 ATP y 4 ATP respectivamente.

Cadena transportadora de electrones

Es la ruta final de la respiración aerobia y, además, es la única parte del metabolismo de la glucosa donde se utiliza el oxígeno atmosférico. Se lleva a cabo en la membrana interna de la mitocondria y tiene como finalidad crear un gradiente de protones (hidrogeniones H+) que luego puede ser utilizado en la fosforilación oxidativa para producir energía en forma de ATP.

El transporte de electrones es un conjunto de reacciones de óxido-reducción (reacciones de transferencia de electrones) que se asemejan a una especie de carrera de relevos. Allí los electrones son pasados rápidamente de un componente a otro hasta llegar al final de la cadena, donde los electrones reducen el oxígeno molecular y producen agua.

Los electrones transferidos en esta etapa pertenecen a las coenzimas NADH+H y FADH, provenientes de la glucólisis y el ciclo de Krebs, en total son 10 NADH+H y 2 FADH.

La cadena transportadora está formada por 4 complejos transportadores: complejo I o NADH deshidrogenasa, complejo II o succinato deshidrogenasa, complejo III o citocromo bc1 y complejo IV o citocromo oxidasa.

LA FABRICA DE ENERGÍA CELULAR: LA MITOCONDRIA

Las mitocondrias actúan como las centrales eléctricas de la célula. Contienen dos membranas principales. La membrana mitocondrial externa rodea completamente la membrana interna, con un pequeño espacio intermembrana en medio. La membrana externa tiene poros basados ​​en proteínas y suficientemente grandes para permitir el paso de algunos iones y moléculas.

Tanto el ciclo de Krebs como la cadena transportadora de electrones se producen dentro de la mitocondria.

En contraste, la membrana interna tiene una permeabilidad mucho más restringida. Al igual que la membrana plasmática de una célula, también está cargada de proteínas involucradas en el transporte de electrones y la síntesis de ATP. Esta membrana rodea la matriz mitocondrial, donde el ciclo de Krebs produce los electrones que viajan de un complejo de proteínas a otro en la membrana interna. El aceptor final de electrones es el oxígeno, y esto en última instancia forma agua. Al mismo tiempo, la cadena de transporte de electrones produce ATP.

¿QUÉ ES EL ATP?

El adenosín trifosfato o ATP es una molécula transportadora de energía y se encuentra en las células de todos los seres vivos. El ATP captura la energía química obtenida de la descomposición de las moléculas de los alimentos y la libera para alimentar otros procesos celulares.

¿Cómo es la estructura del ATP?

El ATP es un nucleótido que consta de tres estructuras principales: la base nitrogenada, la adenina; el azúcar (ribosa) y una cadena de tres grupos fosfato unidos a la ribosa.

La cadena de fosfato del ATP es la fuente de energía real que la célula utiliza. La energía disponible está contenida en los enlaces de los fosfatos y se libera cuando se rompen, lo que ocurre mediante la adición de una molécula de agua (un proceso llamado hidrólisis). Por lo general, solo el fosfato externo se elimina del ATP para producir energía; cuando esto ocurre, el ATP se convierte en difosfato de adenosina (ADP), la forma del nucleótido que tiene solo dos fosfatos.

De ADP a ATP

La mayor parte del ATP en las células es producido por la enzima ATP sintasa, que convierte el ADP y el fosfato en ATP.

RECURSOS PARA DOCENTES

Artículo “Glucólisis: la energía del azúcar”

En este artículo encontrará información acerca de la glucólisis y sus etapas.

VER

Artículo “Respiración: cadena transportadora de electrones”

Este artículo contiene todos los pasos de la cadena transportadora de electrones, parte de la respiración celular.

VER

Artículo “Ciclo de Krebs: respiración celular”

Este artículo contiene toda la información necesaria acerca del ciclo de Krebs o ciclo del ácido cítrico.

VER

CAPÍTULO 8 / REVISIÓN

EL AMBIENTE Y LAS RELACIONES TRÓFICAS | ¿qué aprendimos?

Los ambientes y el ecosistema

El ambiente está relacionado al conjunto de factores físicos, químicos, biológicos y sociales que actúan sobre los seres vivos. Por su parte, el ecosistema es un sistema formado por una comunidad de seres vivos que se desarrollan en función de los factores físicos de un mismo ambiente. Dentro de los ecosistemas se establecen dos tipos de interacciones: intraespecíficas, cuando ocurren entre organismos de la misma especie, e interespecíficas, cuando ocurren entre organismos de diferentes especies. En un sentido más general, el conjunto de los diferentes ecosistemas, el entorno físico y las especies que los habitan crean paisajes en la Tierra.

La unidad principal de estudio en la ecología es el ecosistema.

Individuo, especie y población               

Un individuo, también llamado organismo, es cualquier ser vivo. Por su parte, la especie es un grupo de individuos físicamente similares que son capaces de reproducirse con el resultado de una descendencia fértil. La población está formada por un grupo de individuos de una misma especie que viven en un área geográfica determinada en un momento dado y que pueden reproducirse entre sí.

Las esponjas, las hidras y los mohos se pueden dividir muchas veces para dar origen a nuevos individuos.

Las comunidades y sus relaciones

Las comunidades son grupos de varias poblaciones de plantas, animales y/o microorganismos que viven en un área determinada e interactúan entre sí. Al igual que una población, una comunidad tiene una serie de características, como la organización trófica, el dominio de especies, la interdependencia, la estructura comunitaria, la forma de crecimiento y sucesión, y la estratificación. Las comunidades se dividen en aeroterrestres y acuáticas, dentro de las aeroterrestres se encuentran las del desierto, de los pastizales y  de la selva tropical. Las comunidades acuáticas son de agua dulce y de aguas marinas. En las comunidades, las especies participan en interacciones bióticas directas e indirectas, como las de depredador-presa, herbivoría, parasitismo, competencia y mutualismo.

Un ejemplo de una relación mutualista es la del picabueyes o garcita bueyera y el rinoceronte.

Formas básicas de nutrición

Los seres vivos requieren energía para realizar diferentes funciones que obtienen de los alimentos. Este proceso se llama nutrición, y los componentes químicos en los alimentos son los nutrientes. Los autótrofos son los organismos que sintetizan sus propias moléculas orgánicas a partir de sustancias inorgánicas simples como CO2 y nitratos, estos organismos son las plantas y ciertas bacterias fotosintéticas. Por su parte, los heterótrofos son los organismos que obtienen moléculas orgánicas de otros organismos. Los heterótrofos se dividen en herbívoros, carnívoros y descomponedores.

Los detritívoros y los descomponedores se diferencian por la manera en que descomponen y en la forma en que comen.

Tramas tróficas

Los organismos se interrelacionan en las cadenas y las redes alimentarias, por lo que dependen unos de otros para sobrevivir. Los eslabones, también llamados niveles en las tramas tróficas, son las posiciones que cada grupo de organismos ocupan en una cadena o red alimentaria. El primer nivel trófico tiene la mayor concentración de energía y está formado por los productores. Los consumidores o heterótrofos son organismos que obtienen moléculas orgánicas al comer o digerir otros organismos, son los herbívoros y los carnívoros. Los descomponedores son el eslabón final en una red alimentaria, descomponen la materia orgánica muerta y finalmente devuelven energía a la atmósfera durante la descomposición.

Los saprófitos son los organismos que viven en o sobre la materia orgánica no viva, secretan enzimas digestivas y absorben los productos de la digestión.

Flujos de materia y energía

Los organismos compiten por alimentos, agua, luz solar, espacio y nutrientes. Estos recursos proporcionan la energía para los procesos metabólicos y la materia para formar sus estructuras físicas. Las pirámides ecológicas muestran las cantidades relativas de varios parámetros, como el número de organismos, la energía y la biomasa, a través de los niveles tróficos y las redes alimentarias ilustran cómo la energía fluye direccionalmente a través de los ecosistemas. En la fotosíntesis, las plantas convierten la energía de la luz solar en glucosa, la materia que forma esta glucosa pasa por la cadena alimentaria de la misma manera que lo hace la energía, de organismo a organismo mientras se comen entre sí.

 

Todos los seres vivos requieren energía y no podrían ensamblar macromoléculas como proteínas, lípidos, ácidos nucleicos y carbohidratos complejos sin un aporte constante de energía.

Modificaciones por la eliminación o introducción de especies

La extinción no se trata sólo de la desaparición de una especie, sino también de los efectos que conlleva esto al medio ambiente con el que interactúa. Es un proceso natural causado por la selección natural, la escasez de alimentos o los eventos naturales, pero principalmente es la acción del hombre la que ha provocado que especies completas desaparezcan. Los seres vivos están relacionados a través de la alimentación y dependen los unos de los otros para sobrevivir, si alguno desaparece, el resto se ve afectado. Las especies exóticas son aquellas que han sido trasladadas por los humanos a un entorno donde no ocurrieron naturalmente.

Cuando los animales y las plantas que no son nativas de una región se introducen en el ecosistema pueden causar graves daños a la flora y la fauna local.

Fotosíntesis y respiración celular

Existe una estrecha relación entre la fotosíntesis y la respiración celular ya que, los productos de un sistema son los reactivos del otro. Ambos consumen y crean las mismas sustancias como agua, glucosa, oxígeno y dióxido de carbono, pero de diferentes maneras. Juntos, permiten que la vida en la Tierra reúna energía para su uso en otras reacciones.

 

Fotosíntesis Respiración celular
Utiliza Luz solar, agua y dióxido de carbono. Glucosa y oxígeno.
Producto Glucosa y oxígeno. Dióxido de carbono y agua.
Ocurre en: Plantas y otros organismos fotosintéticos. Todos los seres vivos.
Propósito Capturar, convertir y almacenar la energía. Liberar energía.
Función en común Sintetizar y usar ATP Sintetizar y usar ATP
Proceso metabólico Anabólico Catabólico
Ubicación Cloroplasto Citoplasma y mitocondrias
Fuente de energía Luz solar Glucosa
Portadores de electrones NADPH NADH y FADH2
Etapas Reacciones de luz y ciclo de Calvin. Glucólisis, oxidación del piruvato, ciclo de Krebs y cadena de transporte de electrones.

 

Biomoléculas: los carbohidratos

Las biomoléculas son componentes orgánicos presentes en las estructuras básicas de todos los organismos vivos. Existen varios tipos: proteínas, lípidos, carbohidratos y ácidos nucleicos, cada uno de ellos con una estructura que los define y con funciones particulares dentro de nuestro cuerpo.

Carbohidratos

Se conocen también con el nombre de glúcidos o sacáridos, los carbohidratos son uno de los tres principales tipos de macronutrientes del cuerpo, junto con las proteínas y los lípidos. Además, son la fuente más importante de energía para las células.

Las harinas son alimentos ricos en carbohidratos.

Los carbohidratos son los azúcares, almidones y fibras que se encuentran en muchos alimentos como, las frutas, los granos, las verduras y los productos lácteos. Aunque muchas veces su importancia es puesta en duda, los hidratos de carbono son uno de los grupos alimenticios básicos necesarios para llevar una vida sana.

¿Sabías qué...?
El consumo excesivo de carbohidratos refinados puede producir enfermedades como la obesidad, la cual tiene severas consecuencias en nuestra salud, como la hipertensión arterial o la diabetes. Por lo que siempre deben ser consumidos con moderación.
Para llevar una vida saludable es importante incluir en nuestra dieta carbohidratos, sin embargo, debe ser con moderación, ya que su exceso produce obesidad.

Estructura de los carbohidratos

Los carbohidratos están compuestos por tres elementos principales: el carbono, el hidrógeno y el oxígeno, su fórmula general es (CH2O)n sin embargo, esta puede variar de acuerdo al tipo de clasificación de los carbohidratos, sean monosacáridos o polisacáridos.

Estructura básica de un carbohidrato.

Clasificación de los carbohidratos

Monosacáridos

Son los carbohidratos más simples, por lo que también se denominan azúcares simples, se caracterizan por la incapacidad que tienen en ser descompuestos en carbohidratos más pequeños y además, por ser los bloques de construcción de los carbohidratos más grandes.

La fórmula típica de los monosacáridos es (CH2O)n, donde n puede ser 3, 5 o 6 según el número de átomos de carbono presentes, en base a estos los monosacáridos se pueden clasificar de la siguiente manera:

Triosas Si n es igual a 3, es decir, si presentan 3 átomos de carbono. Por ejemplo, gliceraldehido.
Pentosas Si n es igual a 5, es decir, si presentan 5 átomos de carbono. Por ejemplo, la ribosa y la desoxirribosa.
Hexosas Si n es igual a 6, es decir, si están compuestas por 6 átomos de carbono. Por ejemplo, la glucosa, la fructuosa y la galactosa.

Los monosacáridos son el principal combustible del metabolismo y por lo tanto del cuerpo, son utilizados como fuente de energía y como biosíntesis para otros carbohidratos, a menudo polisacáridos.

La glucosa es una hexosa ampliamente distribuida en la naturaleza, se encuentra libre en la mayoría de las frutas y en la miel. Es la principal fuente de energía que obtenemos de los alimentos y se absorbe al torrente sanguíneo en el proceso de digestión.

Estructura química de la glucosa.

Por otro lado, la galactosa se encuentra en la leche y la fructuosa o azúcar de las frutas se encuentra en la mayoría de las plantas.

La ribosa y desoxirribosa son los azúcares del ARN y el ADN respectivamente

Disacáridos

Son carbohidratos formados por la combinación de dos o más monosacáridos, se caracterizan, al igual que sus precursores, por ser dulces y solubles en agua, sin embargo, a diferencia de los monosacáridos, éstos sí pueden ser descompuestos en moléculas más pequeñas.

Dentro de los más importantes se encuentran:

  • Sacarosa: es un disacárido formado por la unión de una fructuosa y una glucosa, se obtiene usualmente de la caña de azúcar, sin embargo, está presente en muchas frutas y en el néctar de las flores.
La combinación de una molécula de glucosa con una de fructosa forma la sacarosa.
  • Maltosa: es un disacárido formado por la combinación de dos moléculas de glucosa unidas entre sí, se produce cuando se descompone el almidón y el glucógeno.
Estructura básica de la maltosa.
Almidón

El almidón es un carbohidrato de origen vegetal que proporciona entre el 70 % y el 80 % de las calorías totales consumidas por las personas. Está presente en cereales como, el maíz, el trigo o el arroz, y en tubérculos como la papa.

Al igual que otros carbohidratos, es dulce, sin embargo, no tanto como la sacarosa, por lo que no es usado como endulzante, su utilidad está relacionada con el malteado de cebada durante la elaboración de la cerveza.

La maltosa es fundamental para la elaboración de cerveza.
  • Lactosa: es un disacárido compuesto por una molécula de galactosa y una de glucosa, se se encuentra en la leche de los mamíferos.
Estructura básica de la lactosa, el carbohidrato de la leche.

Función de los carbohidratos

  • Función estructural: ciertos carbohidratos, forman parte de las paredes celulares de muchos vegetales, hongos y bacterias, lo que permite que dichas células puedan soportar cambios del medio intracelular o extracelular.

Un ejemplo común de carbohidrato estructural es la celulosa, un compuesto formado por glucosa que le confiere rigidez a las células vegetales.

La pared celular de los vegetales está compuesta por celulosa.
  • Función energética: los carbohidratos son las moléculas de uso inmediato para la obtención de energía en la mayoría de los seres vivos. Las células cubren sus necesidades energéticas mediante la degradación de los carbohidratos, la descomposición de la glucosa y la respiración.
  • Función de desintoxicación: durante el metabolismo se pueden formar ciertos compuestos de desecho que son altamente tóxicos para el cuerpo, una manera de eliminarlos es mediante la combinación con ciertos carbohidratos, quienes los hacen más solubles al agua y permiten que sean expulsados a través de, por ejemplo, la orina.
  • Función informativa: los carbohidratos unidos a proteínas (glicoproteínas) que se encuentran en la superficie de las células, se encargan de reconocer agentes extraños como virus o bacterias.
Presencia de carbohidratos en la membrana plasmática.