CAPÍTULO 5 / TEMA 4

la circunferencia

La circunferencia es una línea curva, plana y cerrada que representa el perímetro de un círculo. Unas de sus características es que todos sus puntos se encuentran a una misma distancia de otro denominado origen. Sin importar su tamaño, siempre que se divida su longitud entre su diámetro da como resultado al número pi.

elementos de la circunferencia

La circunferencia es la forma geométrica en la cual todos sus puntos se encuentran equidistantes del centro, también conocido como origen. Eso quiere decir que todos los puntos están a la misma distancia de ese punto.

La circunferencia y sus elementos

  • Centro: es el punto interior que se encuentra a la misma distancia de todos los puntos de la circunferencia.

  • Radio: es la línea recta que une el centro con cualquier punto de la circunferencia.

  • Diámetro: es la mayor linea recta que puede unir dos puntos de la circunferencia. Es el doble del valor del radio y siempre pasa por el origen.

  • Arco: es un segmento curvilíneo de puntos pertenecientes a la circunferencia.

  • Cuerda: es el segmento de recta que une dos puntos de la circunferencia sin pasar por el origen.
  • Secante: es una recta que intersecta la circunferencia en dos puntos.

  • Tangente: es una recta que intersecta la circunferencia en un solo punto.

La circunferencia es una figura única. Sus puntos equidistantes entre sí respecto al centro han permitido resolver diversos problemas, desde cálculos matemáticos hasta problemas tan cotidianos como el transporte. Y es que aunque parezca sencilla, la rueda ha sido uno de los inventos que cambió definitivamente la vida del ser humano hasta la actualidad.

El número pi

Su nombre proviene de la letra griega pi (π) que se usa para expresarlo. Es un número irracional, es decir; un número decimal infinito, cuyos decimales no siguen un patrón que se repite. En la geometría y otras áreas ha tenido un fuerte impacto en la manera de resolver problemas porque relaciona la longitud de una circunferencia con su diámetro. La fórmula para calcular el número pi es π = C/D, donde C es la longitud de la circunferencia y D es el diámetro de la misma. El valor de este número con sus primeras 5 cifras decimales es: 3,14159…

¿Sabías qué?
Para simplificar los cálculos, el número pi suele escribirse como 3,14 para obtener resultados aproximados.

área de un Círculo

El círculo es la figura geométrica que se encuentra delimitada por una circunferencia; es decir, la circunferencia representa su perímetro. Para resolver el área de un círculo simplemente debemos multiplicar el cuadrado de su radio por el número pi.

A = \pi \times r^{2}

Dónde:

A = área del círculo.
π = número pi.
r = longitud del radio de la circunferencia.

Ejemplos de cálculos de área de un círculo

1. Calcular el área de una circunferencia cuyo radio mide 3 cm.

En este caso simplemente tenemos que sustituir el valor del diámetro y del número pi en la ecuación de área:

A = \pi \times r^{2}

A = 3,14 \times (3\, cm)^{2}

Luego se resuelve la potencia. Recuerda que en este caso la unidad es centímetro y al resolver la potencia dicha unidad quedara expresada en centímetros cuadrados (cm2).

A = 3,14 \times 9\, cm^{2}

Al resolver el producto se obtiene que el área de la circunferencia es la siguiente:

A = 28,26\, cm^{2}

Recordemos que el valor de pi que usamos para los cálculos es un aproximado porque 3,14 tiene dos decimales pero ¡pi en realidad tiene infinitos decimales! Como resultará lógico pensar, es imposible multiplicar el valor de pi con todos sus decimales, por esta razón en ejercicios cotidianos se emplean únicamente dos para obtener un resultado que, aunque no corresponde al valor exacto, si se encuentra cercano a este.

2. Calcular el área de un círculo con diámetro igual a 4 cm.

En este caso, el dato que nos proporciona el problema es el diámetro. Para aplicar la fórmula necesitamos el valor del radio. Lo único que debemos hacer es dividir el diámetro entre 2 (porque el diámetro corresponde al doble del valor del radio).

r = \frac{D}{2}=\frac{4\, cm}{2}= \mathbf{2\, cm}

Luego se reemplaza en la ecuación y se resuelve de la misma forma que en el ejercicio anterior.

A = 3,14 \times (2\, cm)^{2}

A = 3,14 \times 4\, cm^{2}

A = 12,56\, cm^{2}

construcción de circunferencias

Para la construcción de las circunferencias, se emplea el compás y una regla o escuadra para medir. Debemos seguir los siguientes pasos:

  • Paso 1
    Trazar un segmento con la longitud del radio de la circunferencia que se desea construir.

  • Paso 2
    Ubicar la punta del compás en uno de los extremos del segmento y abrir la bisagra del mismo hasta que la otra punta con lápiz se encuentre a la misma distancia del otro extremo.
  • Paso 3
    Marcar firmemente la circunferencia con la punta que contiene el lápiz de marcado al tiempo que se mantiene en su lugar la otra punta.

Al momento de realizar los trazados de circunferencias, es importante que el área de trabajo esté limpia al igual que los instrumentos que vas a usar. En el caso del compás hay varios tipos que varían en la forma, lo importante en cualquier caso es verificar que el extremo que contenga al lápiz o punta de grafito se encuentre afilado para que pueda realizar trazos uniformes.

¡A practicar!

  1. ¿Cuál es el área de las siguientes circunferencias?

a)

Solución
 A = 3,14\, cm^{2} 

b)

Solución
A = 50,24\, cm^{2} 

c)

Solución
A = 200,96\, cm^{2} 

d)

Solución
A = 78,5\, cm^{2} 

e)

Solución
A = 113,04\, cm^{2} 

f)

Solución
A = 254,34\, cm^{2} 

g)

Solución
A = 314\, cm^{2} 

h)

Solución
A = 153,86\, cm^{2} 

RECURSOS PARA DOCENTES

Artículo “Circunferencia”

En este artículo se explican los elementos de la circunferencia y sus principales características.

VER

Artículo “Ángulos en una circunferencia”

En este artículo destacado se explican otros elementos de las circunferencias: los ángulos.

VER

CAPÍTULO 5 / TEMA 7 (REVISIÓN)

Geometría | ¿Qué aprendimos?

Elementos geométricos

El punto, la recta y el plano se denominan entes fundamentales de la geometría porque no tienen definición y su comprensión depende de comparaciones con elementos similares. El punto es adimensional y se nombra con letras mayúsculas del alfabeto. La recta está formada por infinitos puntos que se extienden en una misma dirección. Las rectas pueden ser paralelas, secantes o perpendiculares. El plano es un ente bidimensional, es decir, posee dos dimensiones y se suele nombrar con letras del alfabeto griego.

Un segmento es una parte de la recta que se encuentra ubicada entre dos puntos.

Ángulos

La región del plano comprendida entre dos semirrectas se denomina ángulo. De acuerdo a su medida pueden ser nulos (cuando miden 0°), agudos (cuando no son nulos y miden menos de 90°), rectos (cuando miden 90°), obtusos (cuando son menores a 180° y mayores a 90°) y llanos (cuando miden 180°). Se habla de dos ángulos complementarios cuando la suma de estos es igual a 90°, por otra parte, dos ángulos son suplementarios si la suma de ambos es igual a 180°. La sumatoria de los ángulos internos de un triángulo da 180°, mientras que en un cuadrilátero da 360°.

El transportador es uno de los instrumentos más usados en la lectura y construcción de ángulos.

Polígonos

Los polígonos son figuras caracterizadas por estar delimitadas por segmentos finitos rectos denominados lados. Si todos sus lados tienen la misma longitud se denominan polígonos regulares, de lo contrario, se denominan polígonos irregulares. En el caso de los polígonos regulares se cumple que sus ángulos internos son iguales, lo mismo sucede con sus ángulos externos. Los polígonos regulares también se caracterizan por tener igual cantidad de ejes de simetrías que de lados y sus diagonales son todas internas y de la misma longitud.

El rectángulo y el rombo son algunos ejemplos de polígonos irregulares.

Cuerpos geométricos

Los cuerpos geométricos pueden clasificarse en poliedros cuando todas sus caras son iguales y planas, y en cuerpos redondos cuando poseen al menos una cara curva. Sus elementos principales son las caras, las aristas y los vértices. Cada uno de los cuerpos geométricos posee su fórmula para determinar su volumen. De igual forma, cada uno de los cuerpos geométricos pueden representarse en construcciones de tres dimensiones.

La esfera es un cuerpo geométrico que no posee caras, aristas ni vértices.

Circunferencia y círculo

La circunferencia es una línea cerrada que sobresale por ser el perímetro del círculo. Por otra parte, el círculo es una figura geométrica que se encuentra delimitada por una circunferencia. Los elementos principales de una circunferencia son: centro, radio, cuerda, diámetro, semicircunferencia y arco. Entre una circunferencia y una recta pueden darse tres tipos diferentes de relación: recta exterior (cuando no toca ningún punto de la circunferencia), recta tangente (cuando toca un solo punto de la circunferencia) y recta secante (cuando atraviesa la circunferencia en dos puntos). El área de un círculo es igual al producto de el número pi por el radio de la circunferencia al cuadrado.

El matemático griego Eratóstenes fue la primera persona en calcular el diámetro de la Tierra en el 230 a. C.

Aplicación de la geometría

Incontables son las disciplinas y las situaciones en las que se emplea la geometría. Desde que apareció esta rama de la matemática ha permitido resolver infinidad de problemas. El cálculo de áreas de superficies planas puede extenderse a situaciones cotidianas como el cálculo de la extensión de un terreno, esto se debe a que cada figura posee su fórmula particular. Lo mismo sucede con el cálculo de volumen y los cuerpos geométricos.

La geometría ha permitido a la arquitectura realizar obras de singular belleza.