CAPÍTULO 3 / TEMA 5

PORCENTAJES

Los porcentajes son expresiones matemáticas que sirven para relacionar dos cantidades. Se emplean en diferentes situaciones como, por ejemplo, los descuentos. Están estrechamente relacionados con los números fraccionales, porque se emplean para representar una fracciones de denominador igual a 100. 

¿qUÉ ES UN PORCENTAJE?

Un porcentaje, al igual que una fracción, es una forma de indicar una parte de un todo. Los porcentajes se utilizan a diario, por ejemplo, en los siguientes casos:

  • El 30 % de los vuelos proviene de Europa.
  • El 40 % de las personas en la fiesta eran hombres y el 60 % eran mujeres.
  • El 60 % de la población mundial tiene acceso a Internet.

Esto quiere decir que:

  • De cada 100 vuelos, 30 proviene de Europa.
  • De cada 100 personas que había en la fiesta, 40 eran hombres y 60 eran mujeres.
  • De cada 100 personas, 60 tienen acceso a Internet.

Como vemos, el número 100 está presente en todos los casos como referencia. Esto sucede porque el porcentaje representa a una fracción decimal cuyo denominador es 100. Entonces, el número que utilizamos para indicar el porcentaje corresponde al numerador, y el denominador es siempre 100:

  • 20 % = 20/100
  • 60 % = 60/100
  • 33 % = 33/100
Un porcentaje, al igual que una fracción, es una forma de indicar una parte de un todo. Los porcentajes representan una fracción decimal cuyo denominador es 100. Se utiliza frecuentemente en la estadística para distinguir a ciertas porciones del total con respecto a otras. Por ejemplo, en esta imagen vemos un gráfico que divide al total en cuatro partes,  la porción más grande representa el 45 %, mientras que las otras representan el 20 %, el 10 % y el 25 % del total.

Símbolo de porcentaje

El símbolo que utilizamos para indicar un porcentaje es “%” y se lee “por ciento“. Podemos observar algunos ejemplos a continuación:

  • 100 % = “cien por ciento”.
  • 80 % = “ochenta por ciento”.
  • 44 % = “cuarenta y cuatro por ciento”.
  • 30 % = “treinta por ciento”.
El símbolo que utilizamos para indicar un porcentaje es %. Cuando un número está acompañado de dicho símbolo se trata de una expresión de este tipo. Por ejemplo, 100 % se lee “cien por ciento”. Los porcentajes también se utilizan en la economía para indicar los aumentos de precios, el crecimiento de las acciones de una empresa y la inflación de un país.

¿Sabías qué?
El agua constituye el 98 % de un melón, el 80 % de un pez y el 70 % de un ser humano.

Cálculo de porcentaje

Para calcular el porcentaje de una cantidad dada se deben seguir los siguientes pasos:

  1. Multiplicar el porcentaje por la cantidad conocida.
  2. Dividir el resultado obtenido entre cien.
  3. Escribir el resultado final.

Por ejemplo:

1. Calcular el 30 % de  60.

Para calcula cuánto es el 30 % de 60 se deben multiplicar ambos números y luego dividir el resultado entre cien de la siguiente forma:

\frac{30\times 60}{100}=\frac{1.800}{100}=18

En este caso el 30 % de 60 es 18.

2. ¿Cuánto es el 20 % de $ 150?

\frac{20\times 150}{100}=\frac{3.000}{100}=30

El 20 % de $ 150 son $ 30.

¿Cómo determinar qué porcentaje se aplicó?

Hay ocasiones en las que necesitamos calcular cuál es el porcentaje aplicado. Esto es muy útil cuando se va a realizar una compra. Por ejemplo, si un pantalón tiene un precio de $ 120 y el descuento es de $ 12, ¿Cuál es el porcentaje de descuento que se le aplicó?

En este caso se debe multiplicar el descuento por 100 y luego dividir el resultado entre el precio del pantalón que es $ 120:

\frac{12\times 100}{120}=\frac{1.200}{120} = 10\, %

El porcentaje de descuento en este caso fue del 10 %, es decir,  $ 12 representa el 10 % de $ 120.

Relación de porcentaje y fracción

Tanto los porcentajes como las fracciones son formas de representar una parte de un todo. Entonces, podemos convertir un porcentaje en una fracción y viceversa.

Convertir fracción a porcentaje

Para convertir cualquier fracción a porcentaje, debemos dividir el numerador con el denominador, y luego multiplicar dicho resultado por cien. Al número obtenido le agregamos siempre el símbolo de porcentaje (%) para indicar que nos referimos a un porcentaje. Por ejemplo, si convertimos 3/5 en porcentaje tenemos que:

Convertir porcentaje a fracción

En este caso, debemos colocar el porcentaje en el numerador de la fracción y agregar 100 como denominador. Luego, simplificamos hasta obtener una fracción irreducible. Por ejemplo, para convertir 20 % a fracción:

La fracción 20/100 se puede simplificar a 1/5 al dividir tanto al numerador como al denominador entre 5.

Los porcentajes y las fracciones son formas de representar una parte de un total. Entonces, podemos convertir tanto los porcentaje a fracciones como las fracciones a porcentajes. Los porcentajes son muy utilizados en las ofertas, para indicar el descuento sobre el total. Mientras mayor sea el porcentaje, mayor será el descuento.

¡A practicar!

1. ¿Cuánto es el 15 % de 300?

a) 150
b) 45
c) 100
d) 30

SOLUCIÓN
b) \frac{15\times 300}{100}=\frac{4.500}{100}=45

2. Convierte los siguientes porcentajes en fracciones.

a) 25 %
b) 35 %
c) 40 %
d) 90 %

SOLUCIÓN

a) \frac{1}{4}

b) \frac{7}{20}

c) \frac{2}{5}

d) \frac{9}{10}

3. Convierte las siguientes fracciones a porcentaje.

a) \frac{4}{5}

b) \frac{1}{2}

c) \frac{7}{50}

d) \frac{1}{4}

RESPUESTAS

a) 80 %
b) 50 %
c) 14 %
d) 25 %

RECURSOS PARA DOCENTES

Artículo “Porcentajes”

En este artículo se explican las características de los porcentajes y los diferentes métodos para calcularlos, como la regla de tres simple.

VER

Artículo “Porcentaje y proporcionalidad. Descuentos y recargos”

En este artículo se explican algunas aplicaciones de los porcentajes, como los descuentos y las recargas.

VER

 

CAPÍTULO 5 / TEMA 7 (REVISIÓN)

Geometría | ¿Qué aprendimos?

Elementos geométricos

El punto, la recta y el plano se denominan entes fundamentales de la geometría porque no tienen definición y su comprensión depende de comparaciones con elementos similares. El punto es adimensional y se nombra con letras mayúsculas del alfabeto. La recta está formada por infinitos puntos que se extienden en una misma dirección. Las rectas pueden ser paralelas, secantes o perpendiculares. El plano es un ente bidimensional, es decir, posee dos dimensiones y se suele nombrar con letras del alfabeto griego.

Un segmento es una parte de la recta que se encuentra ubicada entre dos puntos.

Ángulos

La región del plano comprendida entre dos semirrectas se denomina ángulo. De acuerdo a su medida pueden ser nulos (cuando miden 0°), agudos (cuando no son nulos y miden menos de 90°), rectos (cuando miden 90°), obtusos (cuando son menores a 180° y mayores a 90°) y llanos (cuando miden 180°). Se habla de dos ángulos complementarios cuando la suma de estos es igual a 90°, por otra parte, dos ángulos son suplementarios si la suma de ambos es igual a 180°. La sumatoria de los ángulos internos de un triángulo da 180°, mientras que en un cuadrilátero da 360°.

El transportador es uno de los instrumentos más usados en la lectura y construcción de ángulos.

Polígonos

Los polígonos son figuras caracterizadas por estar delimitadas por segmentos finitos rectos denominados lados. Si todos sus lados tienen la misma longitud se denominan polígonos regulares, de lo contrario, se denominan polígonos irregulares. En el caso de los polígonos regulares se cumple que sus ángulos internos son iguales, lo mismo sucede con sus ángulos externos. Los polígonos regulares también se caracterizan por tener igual cantidad de ejes de simetrías que de lados y sus diagonales son todas internas y de la misma longitud.

El rectángulo y el rombo son algunos ejemplos de polígonos irregulares.

Cuerpos geométricos

Los cuerpos geométricos pueden clasificarse en poliedros cuando todas sus caras son iguales y planas, y en cuerpos redondos cuando poseen al menos una cara curva. Sus elementos principales son las caras, las aristas y los vértices. Cada uno de los cuerpos geométricos posee su fórmula para determinar su volumen. De igual forma, cada uno de los cuerpos geométricos pueden representarse en construcciones de tres dimensiones.

La esfera es un cuerpo geométrico que no posee caras, aristas ni vértices.

Circunferencia y círculo

La circunferencia es una línea cerrada que sobresale por ser el perímetro del círculo. Por otra parte, el círculo es una figura geométrica que se encuentra delimitada por una circunferencia. Los elementos principales de una circunferencia son: centro, radio, cuerda, diámetro, semicircunferencia y arco. Entre una circunferencia y una recta pueden darse tres tipos diferentes de relación: recta exterior (cuando no toca ningún punto de la circunferencia), recta tangente (cuando toca un solo punto de la circunferencia) y recta secante (cuando atraviesa la circunferencia en dos puntos). El área de un círculo es igual al producto de el número pi por el radio de la circunferencia al cuadrado.

El matemático griego Eratóstenes fue la primera persona en calcular el diámetro de la Tierra en el 230 a. C.

Aplicación de la geometría

Incontables son las disciplinas y las situaciones en las que se emplea la geometría. Desde que apareció esta rama de la matemática ha permitido resolver infinidad de problemas. El cálculo de áreas de superficies planas puede extenderse a situaciones cotidianas como el cálculo de la extensión de un terreno, esto se debe a que cada figura posee su fórmula particular. Lo mismo sucede con el cálculo de volumen y los cuerpos geométricos.

La geometría ha permitido a la arquitectura realizar obras de singular belleza.

CAPÍTULO 5 / TEMA 6

Aplicación de la geometría

La geometría se encuentra inmersa dentro de diferentes ciencias y situaciones de la vida. Muchos desarrollos de la actualidad no se habrían logrado sin los aportes de la geometría. La astronomía, la computación y la cartografía son algunos de los muchos campos donde la geometría es empleada. 

Cálculo de área de una superficie

Para el cálculo de superficies usamos las fórmulas de área de las principales figuras geométricas. Las principales fórmulas son las siguientes:

Nombre Figura Área
Cuadrado \boldsymbol{A = l^{2}}

 

Donde:

A = área

l = lado

Rectángulo \boldsymbol{A = a\times b}

 

Donde:

A = área

a = altura

b = base

Triángulo \boldsymbol{A = \frac{b\times h}{2}}

 

Donde:

A = área

b = base

h = altura

Rombo \boldsymbol{A = \frac{D\times d}{2}}

 

Donde:

A = área

D = diagonal mayor

d = diagonal menor

Paralelogramo \boldsymbol{A = b\times h}

 

Donde:

A = área

b = base

h = altura

Trapecio \boldsymbol{A = \left (\frac{a+ b}{2} \right )\times h}

 

Donde:

a = base menor

b = base mayor

h = altura

Círculo \boldsymbol{A = \pi \times r^{2}}

 

Donde:

A = área

π = número pi

r = radio

Polígono regular \boldsymbol{A = \frac{n\times b\times Ap}{2}}

 

Donde:

A = área

n = número de lados regulares

b = longitud de un lado

Ap = apotema

Las figuras compuestas

Una figura compuesta es aquella que está formada por dos o más figuras geométricas más simples. Para calcular el área de estas figuras se suelen calcular las áreas de las figuras más simples por separado y la sumatoria de estas será el área total de la figura. Por otra parte, para el cálculo de perímetro suelen usarse ecuaciones trigonométricas, y teoremas como el de Pitágoras para calcular las longitudes de los lados de la figura.

Ejercicios

– Una cancha de fútbol mide 105 metros de largo y 68 metros de ancho. ¿Cuántos metros cuadrados de césped artificial se necesitarían para cubrir toda la cancha?

Es un problema de área porque al calcular los metros cuadrados de césped artificial que se necesitan, se calcula la superficie. Como todos sabemos, una cancha de fútbol tiene una forma rectangular, por lo tanto se debe aplicar la fórmula del rectángulo:

A = a\times b
A = 105\, m\times 68\, m
A = \mathbf{7.140\, m^{2}}

Por lo tanto, para cubrir toda la cancha se necesitarían 7.140 m2 de césped artificial.


– La siguiente figura muestra el plano de una casa. ¿Cuántos metros cuadrados de cerámica se necesitan para cubrir el piso?

El piso de la casa forma una figura compuesta. Por lo tanto, antes de resolver el problema debemos separarlo en formas geométricas más simples:

La figura 1 corresponde a un rectángulo y la figura 2 a un cuadrado (ya que sus cuatro lados miden lo mismo). El área total del piso será igual a:

A_{t} = A_{1}+A_{2}

Donde:

At = área total del piso

A1 = área de la figura 1

A2 = área de la figura 2

Por lo tanto, para calcular el problema tenemos que resolver las áreas por separado:

En la figura 1 se cumple que:

A_{1} = a\times b

A_{1} = 13\, m\times 5\, m

A_{1} = 65\, m^{2}

En la figura 2 se cumple que:

A_{2} = l^{2}

A_{2} = (10\, m)^{2}

A_{2} = 100\, m^{2}

Al reemplazar los valores de A1 y A2 se tiene que:

A_{t} = 65\, m^{2}+100\, m^{2}

A_{t} = \mathbf{165\, m^{2}}

Por lo tanto, el piso de la casa necesita 165 m2 de cerámica para cubrirlo.

¿Sabías qué?
La hectárea (ha) es una medida de área que equivale a 10.000 m2.

Cálculo de volumen de un cuerpo

Todo cuerpo ocupa un lugar en el espacio. Se denomina volumen. Como ya sabemos, los principales cuerpos geométricos se calculan a través de fórmulas:

Nombre Figura Fórmula de volumen
Cubo \boldsymbol{V=l^{3}}

 

 

Donde:

V = volumen

l = lado

Prisma \boldsymbol{V = A_{b}\times h}

 

 

Donde:

V = volumen

Ab = área basal

h = altura

Pirámide \boldsymbol{V = \frac{A_{b}\times h}{3}}

 

 

Donde:

V = volumen

Ab = área basal

h = altura

Cilindro \boldsymbol{V =\pi \times r^{2}\times h}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Cono \boldsymbol{V =\frac{\pi \times r^{2}\times h}{3}}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Esfera \boldsymbol{V =\frac{4}{3}\times \pi \times r^{3}}

 

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

En el caso de las pirámides y los primas, las formas de sus bases pueden ser diferentes.

Estas ecuaciones pueden aplicarse a figuras similares para resolver diferentes problemas.

Ejercicios

– Calcula el volumen de la Gran Pirámide de Guiza, cuya base es un cuadrado de aproximadamente 230 m cada lado y de altura mide aproximadamente 186 m.

La fórmula para calcular el volumen de una pirámide es la siguiente:

V = \frac{A_{b}\times h}{3}

Lo primero es calcular el valor de Ab que es el área de la base. En este caso, su base es un cuadrado de 230 metros de cada lado. Por lo tanto:

A_{b} = l^{2}

A_{b} = (230\, m)^{2}

A_{b} = 52.900 \, m^{2}

Reemplazamos el valor del área de la base y el de la altura (que es 186 m) en la fórmula:

V = \frac{52.900\, m^{2}\times 186\, m}{3}

V = \frac{9.839.400\, m^{3}}{3}

V = \mathbf{3.279.800\, m^{3}}

El volumen aproximado de la pirámide de Guiza es de 3.279.800 m3 (si se considera la pirámide como un cuerpo rígido sin cámaras interiores).


– Calcula el volumen de una canica de 2 centímetros de diámetro.

La forma de una canica es igual a la de una esfera por lo tanto se utiliza la siguiente ecuación:

V =\frac{4}{3}\times \pi \times r^{3}

El problema nos dice que el diámetro de la canica es de 2 cm, pero la fórmula está expresada en función del radio. Como ya sabemos, el radio es la mitad del diámetro, por lo tanto, el radio de la canica es de 1 cm.

V =\frac{4}{3}\times \3,14 \times (1\, cm)^{3}

V =\frac{4}{3}\times \3,14 \times 1\, cm^{3}

V =\mathbf{4,18\, cm^{3}}

La leyenda de la corona

Hay una leyenda popular que cuenta cómo el rey Hieron II de Siracusa le encomendó al reconocido matemático griego Arquímedes que comprobara si la corona que había mandado a hacer era de oro puro o no. Arquímedes pasó mucho tiempo sin resolver el misterio y estaba frustrado hasta que un día, al meterse a la bañera, se percató que el agua que se desplazaba tenía el mismo volumen de su cuerpo. Enseguida dio un salto al tiempo que decía la frase “¡Eureka!”.

Posteriormente le demostró al rey que el volumen desplazado por la corona debía ser el mismo que el desplazado por un lingote de oro puro de la misma masa. Cuando realizó el experimento, la cantidad de agua desplazada no fue la misma y concluyó que la corona no era de oro puro.

Otros usos

Desde su aparición, la geometría ha permitido al ser humano destacarse en varios campos como la arquitectura, la escultura, la pintura y, por su puesto, en las ciencias aplicadas como la física o la química. Disciplinas como la ingeniería aplican la geometría para el cálculo de ángulo y otras medidas. La química emplea la geometría para entender las estructuras moleculares, la agrupación de los átomos y la forma de los cristales de algunos compuestos, entre otros usos.

En el ámbito de la cartografía y la agronomía, se aplica la geometría para determinar áreas, calcular perímetros y planos de terrenos. La astronomía y la computación son otras áreas que emplean conocimientos geométricos.

La geometría y la arquitectura

La arquitectura clásica no habría podido lograr obras de singular belleza o armonía sin hacer uso de conocimientos geométricos. En la actualidad, los arquitectos emplean la geometría para lograr estructuras que se vean bien estéticamente, que permitan un ahorro de materiales y un mejor aprovechamiento de los espacios.

¡A practicar!

1. Una fábrica de quesos compró una granja de 14.300 m2. ¿Cuáles son las medidas de la granja?

a) 150 m × 100 m
b) 130 m × 110 m
c) 40 m × 10 m
d) 280 m × 100 m

Solución
b) 130 m × 110 m

2. Un tablero de ajedrez mide 44 cm de alto y 44 cm de ancho, ¿cuál es el área del tablero?

a) 88 cm2
b) 1.936 cm2
c) 4.404 cm2
d) 3.854 cm2

Solución
b) 1.936 cm2

3. Una empresa inmobiliaria trabaja con propiedades que no superan los 20.000 m2. ¿Cuál de las siguientes propiedades no cumple con este requisito de la empresa inmobiliaria?

a) Casa de playa de 155 m de ancho por 84 m de alto.
b) Departamento en la ciudad de 18 m de ancho por 14 m de alto.
c) Cabaña en la montaña de 320 m de ancho por 124 m de alto.
d) Chalet de 24 m de ancho por 20 m de alto.

Solución
c) Cabaña en la montaña de 320 m de ancho por 124 m de alto. El área de esta propiedad es de 39.680 m2, por lo tanto, supera los 20.000 m2 aceptados por la inmobiliaria.

4. Una pelota de fútbol tiene 22 cm de diámetro, ¿cuál es su volumen?

a) 2026,34 cm3
b) 44 cm3
c) 220 cm3
d) 5.572,45 cm3

Solución
d) 5.572,45 cm3

5. Una lata de tomates es cilíndrica y tiene una altura de 9 cm y un radio de 3 cm, ¿cuál es su volumen?

a) 384,35 cm3
b) 127,17 cm3
c) 954.44 cm3
d) 506,58 cm3

Solución
c) 254.34 cm3

RECURSOS PARA DOCENTES

Artículo “Los números ocultos en el universo”

El artículo trata de mostrar cómo la mayoría de los fenómenos del universo pueden explicarse a través de los números. También explica algunas formas geométricas que podemos encontrar en nuestro planeta.

VER

Enciclopedia “Nana y Enriqueta en el país de las matemáticas”

En este tomo, se platean los principales elementos de la geometría de una manera didáctica y sencilla. También se dan ejemplos y aplicaciones de la geometría.

VER

Artículo “Superficies de figuras geométricas”

El artículo plantea el cálculo de superficie de las principales figuras geométricas. También resuelve una serie de ejercicios y muestra al final algunos problemas propuestos.

VER

CAPÍTULO 4 / TEMA 5

APLICACIÓN DE LA POTENCIA Y DE LA RADICACIÓN

La potenciación y la radicación son operaciones estrechamente relacionadas. Mientras que la primera es una multiplicación condensada de un número por sí mismo n cantidad de veces, la segunda busca ese número que multiplicado por sí mismo resulte en el radicando. Si bien sus propiedades ya se trataron en temas anteriores, aquí aprenderás otras aplicaciones de estos cálculos.

operaciones que simplifican

Tanto la potenciación como la radicación son operaciones útiles para mostrar números de manera más simple. Por ejemplo, dentro del conjunto de los números reales encontramos otros tipos de números que no son sencillos de representar, como los números irracionales, cuyas expresiones decimales son ilimitadas y no periódicas, por lo que es más fácil mostrarlo como una raíz:

\boldsymbol{\sqrt{2}=1,414213562...}

\boldsymbol{\sqrt{3}=1,732050807...}

\boldsymbol{\sqrt{5}=2,236067977...}

Por su parte, la potencia nos ayuda a expresar números muy grandes o muy pequeños de manera resumida, pues la potencia no es más que una multiplicación abreviada.

La descomposición en factores primos y la notación científica son solo dos de los procesos que pueden verse involucrados con la potenciación y la radicación. Ambas operaciones son empleadas en múltiples cálculos cotidianos y en diversas áreas como la astronomía, la ingeniería o la biología.

Las bacterias son microorganismos que crecen con un ritmo acelerado. Este crecimiento suele expresarse en forma de potencia con exponente positivo y se grafica en forma de línea curva ascendente. Saber que tan rápida puede ser la reproducción de una bacteria puede prevenir focos de infección en un paciente y evitar que este sea una víctima mortal.

descomposición en factores primos

También conocida como descomposición factorial o factorización, consiste en escribir un número como producto de sus números primos. Cada vez que un factor se repita en la descomposición, este se convertirá  en la base de una potencia y la cantidad de veces que se repita será el exponente.

– Ejemplo:

¿Qué es un número primo?

Un número primo es un número natural que tiene dos divisores positivos: al uno y a sí mismo. Esta tabla muestra los primero números primos en color azul.

¿Sabías qué?
Las factorización es un paso indispensable para calcular el mínimo común múltiplo y el máximo común divisor de un número.

Las raíces también se pueden obtener por medio de la descomposición del radicando en sus números primos.

– Ejemplo:

Halla la raíz cuadrada de 625 por descomposición de sus factores primos.

1. Descomponemos al número 625 en sus factores primos.

2. Expresamos la raíz cuadrada con producto de la descomposición.

\boldsymbol{\sqrt{625}=\sqrt{5^{4}}}

3. Aplicamos la propiedad “raíz de un potencia”.

\boldsymbol{\sqrt{5^{4}}=5^{\frac{4}{2}}=5^{2}=25}

4. Escribimos el resultado.

\boldsymbol{\sqrt{625}=25}


– Otro ejemplo:

Halla la raíz cuadrada de 196 por descomposición de sus factores primos.

1. Descomponemos al número 196 en sus factores primos.

2. Expresamos la raíz cuadrada con su radicando igual al producto de su descomposición.

\boldsymbol{\sqrt{196}=\sqrt{2^{2}\times 7^{2}}}

3. Aplicamos la propiedad “raíz de un producto”.

\boldsymbol{\sqrt{2^{2}\times 7^{2}}=\sqrt{2^{2}}\times \sqrt{7^{2}}}

4. Aplicamos la propiedad “raíz de una potencia”.

\boldsymbol{\sqrt{2^{2}}\times \sqrt{7^{2}}=2^{\frac{2}{2}}\times 7^{\frac{2}{2}}=2\times 7=14}

5. Escribimos el resultado.

\boldsymbol{\sqrt{196}=14}


– Otro ejemplo:

Halla la raíz cúbica de 1.728 por descomposición de sus factores primos.

  1. Descomponemos el número 1.728 en sus factores primos.

2. Expresamos la raíz cúbica con su radicando igual al producto de su descomposición.

\boldsymbol{\sqrt[3]{1.728}=\sqrt[3]{2^{6}\times 3^{3}}}

3. Aplicamos la propiedad “raíz de un producto”.

\boldsymbol{\sqrt[3]{2^{6}\times 3^{3}}=\sqrt[3]{2^{6}}\times \sqrt[3]{3^{3}}}

4. Aplicamos la propiedad “raíz de una potencia”.

\boldsymbol{\sqrt[3]{2^{6}}\times \sqrt[3]{3^{3}}=2^{\frac{6}{3}}\times 3^{\frac{3}{3}}=2^{2}\times 3=4\times 3=12}

5. Escribimos el resultado.

\boldsymbol{\sqrt[3]{1.728}=12}

Velocidad de un auto en un accidente

Cuando ocurre una accidente de tránsito, por lo general las llantas de los autos dejan una marca sobre el pavimento al frenar. Esta marca es de gran utilidad para los fiscales de tránsito, pues la raíz cuadrada del producto entre la aceleración y la longitud de la marca de frenado es igual a la velocidad del vehículo al momento del choque.

\boldsymbol{\sqrt{-2ax}}

Donde:

a = aceleración

x = longitud de las marcas de frenado

NOTACIÓN CIENTÍFICA

La notación científica es la expresión de números a partir de potencias de base 10. De forma general se representan así:

a × 10n

Donde:

a: es el número entero o decimal que multiplica a la potencia de base 10. Su módulo debe tener un valor igual o mayor que 1 pero menor que 10.

n: es un número entero distinto de cero que corresponde al exponente de la potencia de base 10. Es conocido también como “orden de magnitud”.

Se escriben de la siguientes manera:

  • 10−5 = 0,00001
  • 10−4 = 0,0001
  • 10−3 = 0,001
  • 10−2 = 0,01
  • 10−1 = 0,1
  • 100 = 1
  • 101 = 10
  • 102 = 100
  • 103 = 1.000
  • 104 = 10.000
  • 105 = 100.000

Signos del exponente

Cuando los números son muy pequeños o menores a 1 el exponente es negativo, mientras que si el número es muy grande o mayores a 1 el exponente es positivo.

  • Los exponentes positivos indican la cantidad de ceros que se encuentran a la derecha del número que multiplica la potencia. Por ejemplo, el número 2.000.000 representado en notación científica es 2 × 106 en donde el exponente 6 indica la cantidad de ceros que están después del dos.
  • Los exponentes negativos indican la cantidad de ceros a la izquierda del número que multiplica la potencia. Por ejemplo, el número 0,00000004 representado en notación científica es 4 × 10−8. En este caso el signo menos indica que hay 8 ceros delante del 4.
Nuestro planeta Tierra se encuentra en la galaxia espiral llamada Vía Láctea, la cual tiene unos 100.000 años luz de diámetro. Los científicos estiman que hay alrededor de 400.000.000.000 estrellas en esta galaxia. Estos número tan grandes podemos expresarlos por medio de notación científica como 1 × 105 años luz de diámetro y 4 × 1011 estrellas.

– Otros ejemplos:

  • 3,2 × 10−3 = 0,0032
  • 4 × 10−4 = 0,0004
  • 1,05 × 106 = 1.050.000
  • 6,78 × 10−1 = 0,678
  • 9,43 × 102 = 943

¿Sabías qué?
En el caso de números muy grandes, lo primero que se debe hacer es mover la coma decimal a un número que esté comprendido entre 1 y 10. El número de espacios recorridos hasta dicho número corresponderá al exponente de la potencia de base 10.
  • 8.956.000.000.000 = 8,956 × 1012
  • 243.000 = 2,43 × 105
  • 90.000 = 9 × 104
  • 0,00000045 = 4,5 × 10−7
  • 0,007 = 7 × 10−3

¡A practicar!

1. Expresa los siguientes números como producto de sus factores primos.

  • 520
Solución
520 = 23 × 5 × 13
  • 156
Solución
156 = 22 × 3 × 13
  • 200
Solución
200 = 23 × 52
  • 86
Solución
86 = 2 × 43
  • 22
Solución
22 = 2 × 11

2. Calcula las siguientes raíces por descomposición de sus factores primos.

  • \sqrt[3]{729}
Solución
\sqrt[3]{729}=9
  • \sqrt[3]{64}
Solución
\sqrt[3]{64}=4
  • \sqrt[3]{343}
Solución
\sqrt[3]{343}=7
  • \sqrt{324}
Solución
\sqrt{324}=18
  • \sqrt{400}
Solución
\sqrt{400}=20

3. Calcula:

  • 6 × 108
Solución
6 × 108 = 600.000.000
  • 3 × 10−5
Solución
3 × 10−5 = 0,00003
  • 1,26 × 10−6 
Solución
1,26 × 10−6 = 0,00000126
  • 1,78 × 105
Solución
1,78 × 105 = 178.000 
  • 2 × 104
Solución
2 × 104 = 20.000

RECURSOS PARA DOCENTES

Video “Notación científica”

Este recurso audiovisual le permitirá poner en práctica lo aprendido sobre la notación científica.

VER

Artículo “Factorización de números”

Este artículo detalla cómo descomponer números en sus factores primos y su relación con el cálculo del mínimo común múltiplo y máximo común divisor.

VER

CAPÍTULO 1 / TEMA 6

POTENCIAS

La matemática está compuesta por numerosos tipos de operaciones que varían según su complejidad. Entre esas operaciones se encuentra la potenciación, que consiste en la multiplicación de factores iguales de acuerdo a un exponente. Al igual que otros cálculos, tiene sus propiedades y sus características particulares. ¡Las aprenderemos a continuación!

La potenciación también puede ser definida como la forma abreviada de escribir un producto de varios factores iguales. En muchas ocasiones, los ejercicios de potenciación pueden parecer algo complejos. Para resolverlos de manera correcta es indispensable conocer sus elementos y propiedades.

LA POTENCIA Y SUS ELEMENTOS

La potencia se define como el resultado (b) de la multiplicación de la base (a) tantas veces como lo indica el exponente (n). En esta operación, a y b son números reales y n es un número entero.

– Ejemplo:

\boldsymbol{4^{3}=4\times 4\times4 =64}

\boldsymbol{5^{4}=5\times 5\times 5\times 5=625}

\boldsymbol{8^{2}=8\times 8 = 64}

¿Cómo se lee una potencia?

Si quieres leer una potencia es necesario que hayas aprendido bien a identificar sus elementos para luego aplicar los siguientes pasos.

  1. Lee la base como cualquier número seguido de la expresión “elevado a la” o “elevado al” según sea el caso.
  2. Lee el exponente como un número ordinal. A excepción del 2 y 3 que se expresan como “al cuadrado” y “al cubo” respectivamente.

– Ejemplo:

\boldsymbol{5^{{\color{Red} 3}}} se lee “cinco al cubo”.

\boldsymbol{4^{{\color{Red} 2}}} se lee “cuatro al cuadrado”.

\boldsymbol{9^{{\color{Red} 5}}} se lee “nueve a la quinta”.

¿Sabías qué?
René Descartes (1596-1650) realizó contribuciones importantes a la matemática y popularizó la notación para la potenciación. 

VER INFOGRAFÍA

¡A practicar!

¿Cómo se leen estas potencias?

\boldsymbol{4^{3}}

Solución

Cuatro al cubo.

\boldsymbol{25^{6}}

Solución

Veinticinco a la sexta.

\boldsymbol{64^{9}}

Solución

Sesenta y cuatro a la novena.

PROPIEDADES DE LA POTENCIA

Potencia de un exponente 0

Todo número elevado a la potencia cero es igual a 1.

\boldsymbol{a^{0}=1}

– Ejemplo:

\boldsymbol{5^{0}=1}

\boldsymbol{\left ( -3 \right )^{0} = 1}

Potencia de un exponente 1

Todo número elevado a la potencia 1 es igual al mismo número.

\boldsymbol{a^{1}=a}

– Ejemplo:

\boldsymbol{5^{1}=5}

\boldsymbol{\left ( -3 \right )^{1} = -3}

Potencia de un exponente negativo

Todo número elevado a la potencia negativa es igual a la fracción de uno sobre la misma base con potencia positiva.

\boldsymbol{a^{-n}=\frac{1}{a^{n}}}

– Ejemplo:

\boldsymbol{5^{-1}=\frac{1}{5^{1}}=\frac{1}{5}}

\boldsymbol{(-3)^{-2}=\frac{1}{(-3)^{2}} = \frac{1}{9}}

Multiplicación de potencias de igual base

En la multiplicación de potencias de igual base se coloca la misma base y se suman los exponentes.

\boldsymbol{a^{n}\times a^{m}=a^{n + m}}

– Ejemplo:

\boldsymbol{3^{2}\times 3^{4}=3^{2 + 4}=3^{6}}

\boldsymbol{(-7)^{5}\times (-7)^{-3}=(-7)^{5+( - 3)}=(-7)^{2}}

División de potencias de igual base

En la división de potencias se coloca la misma base y se restan los exponentes.

\boldsymbol{\frac{a^{n}}{a^{m}}=a^{n-m}}

– Ejemplo:

\boldsymbol{\frac{4^{6}}{4^{2}}=4^{6-2}=4^{4}}

\boldsymbol{\frac{(-3)^{-2}}{(-3)^{4}}=(-3)^{-2-4}= (-3)^{-6}}

Potencia de una potencia

En toda potencia elevada a otra potencia se coloca la misma base y se multiplican los exponentes.

\boldsymbol{(a^{n})^{m}=a^{n \times m}}

– Ejemplo:

\boldsymbol{(9^{2})^{3}=9^{2 \times 3}=9^{6}}

\boldsymbol{((-8)^{2})^{3}=(-8)^{2\times 3}=(-8)^{6}}

Potencia de un exponente racional

En una potencia con exponente fraccionario se extrae el denominador del exponente en forma de raíz y el numerador queda como exponente de la potencia.

\boldsymbol{a^{\frac{n}{m}}= \sqrt[m]{a^{n}}}

– Ejemplo:

\boldsymbol{5^{\frac{7}{3}}= \sqrt[3]{5^{7}}}

\boldsymbol{(-2)^{\frac{4}{5}}= \sqrt[5]{(-2)^{4}}}

Multiplicación de potencias con el mismo exponente

En la multiplicación de potencias de igual exponente se multiplican las bases y se coloca el mismo exponente.

\boldsymbol{a^{n}\times b^{n}=(a\times b)^{n}}

– Ejemplo:

\boldsymbol{5^{3}\times 4^{3}=(5\times 4)^{3}=(20)^{3}}

\boldsymbol{(-3)^{3}\times (-6)^{3}=((-3)\times (-6))^{3}=(18)^{3}}

División de potencias con el mismo exponente

En la división de potencias de igual exponente se coloca el mismo exponente y se dividen las bases.

\boldsymbol{\frac{a^{n}}{b^{n}}=(\frac{a}{b})^{n}}

– Ejemplo:

\boldsymbol{\frac{8^{2}}{4^{2}}=(\frac{8}{4})^{2}=2^{2}}

\boldsymbol{\frac{(-6)^{3}}{(-3)^{3}}=(\frac{(-6)}{(-3)})^{3}=2^{2}}

¿Resultado par o impar?

Toda potencia de base negativa con exponente par da como resultado un número positivo. Por ejemplo:

\boldsymbol{\left ( -3 \right )^{4} = (-3)\times (-3)\times (-3)\times (-3)=81}

Toda potencia de base negativa con exponente impar da como resultado un número negativo. Por ejemplo:

\boldsymbol{\left ( -2 \right )^{5} = (-2)\times (-2)\times (-2)\times (-2)\times (-2)=-32}

Potencias de base 10

Las potencias de base 10 son fáciles de calcular porque el valor es igual a la base seguida de tantos ceros como indica el exponente. Estas son muy útiles para escribir de forma polinómica un número, es decir, permiten escribir números muy grandes de forma reducida.

\boldsymbol{10^{2} = 10 \times 10 = 100}

\boldsymbol{10^{3} = 10 \times 10\times 10 = 1.000}

\boldsymbol{10^{4} = 10 \times 10\times 10\times 10 = 10.000}

\boldsymbol{10^{5} = 10 \times 10 \times 10\times 10\times 10 = 100.000}

\boldsymbol{10^{6} = 10 \times 10\times 10\times 10\times 10\times 10 = 1.000.000}

APLICACIONES DE LAS POTENCIAS

Debido a las diversas propiedades que estas poseen pueden utilizarse para:

  • Aplicar el teorema de Pitágoras
Uno de los teoremas más famosos de la geometría es el teorema de Pitágoras. Este emplea potencias para expresar su fórmula, la cual dice que la hipotenusa al cuadrado de un triángulo rectángulo es igual a la suma de sus catetos al cuadrado, es decir, C= A+ B2.
  • Emplear la notación científica

La notación científica utiliza potencias de base 10 para expresar números muy grandes o muy pequeños en forma reducida. Observa cómo algunos números pueden ser expresados de forma simplificada:

\boldsymbol{0,00000465 = 465\times 10^{-8}}

\boldsymbol{0,00000465 = 46,5\times 10^{-7}}

\boldsymbol{0,00000465 = 4,65\times 10^{-6}}

  • Expresar sucesiones matemáticas y progresiones geométricas

Existen series matemáticas que requieren el uso de las potencias para expresar su forma general o enésima.

Uno de los campos o áreas que usan la potenciación es la biología, específicamente en el estudio de la reproducción de virus y bacterias. Allí, para poder expresar su rápido crecimiento, es necesario emplear este tipo de operación matemática.

¡A practicar!

1. Resuelve las siguientes potencias y aplica las propiedades necesarias:

\boldsymbol{4^{3}+5^{2}=}

Solución

\boldsymbol{4^{3}+5^{2}= 4\times 4\times 4+5\times 5=64+25 = 89}

\boldsymbol{3^{3}\times 9^{3}=}

Solución

\boldsymbol{3^{3}\times 9^{3}= (3\times 9)^{3}= (27)^{3}=27\times 27\times 27=19.683}

\boldsymbol{\frac{8^{5}}{8^{3}}=}

Solución

\boldsymbol{\frac{8^{5}}{8^{3}}= 8^{5-3}=8^{2}= 8\times 8=64}

\boldsymbol{(\frac{4^{3}}{4^{2}})^{2}+\frac{5^{6}\times4^{3}}{5^{5}\times4^{2}}-\frac{2^{0}\times1^{9}}{5^{0}}}

Solución

\boldsymbol{(\frac{4^{3}}{4^{2}})^{2}+\frac{5^{6}\times4^{3}}{5^{5}\times4^{2}}-\frac{2^{0}\times1^{9}}{5^{0}}= 4^{6-4}+5^{6-5}\times4^{3-2}-\frac{1\times1}{1}}

\boldsymbol{4^{2}+5^{1}\times4^{1}-\frac{1\times1}{1}=4\times4+20-1=16+19=35}

2. Expresa los siguientes números en notación científica.

  • \boldsymbol{1.320.000}
Solución

\boldsymbol{1.320.000=1,32\times 10^{6}=13,2\times 10^{5}=132\times 10^{4}}

  • \boldsymbol{0,000968}
Solución

\boldsymbol{0,000968 = 968\times 10^{-6}}

RECURSOS PARA DOCENTES

Artículo “Propiedades de potencias”

En el siguiente artículo hay más estrategias para ampliar los conocimientos acerca de las propiedades de las potencias.

VER

Artículo “Ejercicios de propiedades de la potencia”

El siguiente recurso le brindará apoyo con ejercicios de potencias, con sus resultados y explicaciones.

VER

CAPÍTULO 4 / TEMA 3

El tiempo

El tiempo es una magnitud física que permite llevar un orden de los sucesos. En otras palabras, gracias al tiempo podemos distinguir lo que pasó la semana pasada, ayer u hoy. En la actualidad, para determinar el tiempo usamos sistemas que dividen los días en 24 horas. Por medio de los relojes podemos conocer en qué hora del día estamos.

Lectura del tiempo

El ser humano siempre ha sentido la necesidad de medir el tiempo, ya sea para la duración de acontecimientos o para establecer separaciones de sucesos. Por eso, a lo largo de la historia han existido una serie de calendarios basados principalmente en ciclos lunares o solares.

Algunos calendarios son más precisos que otros, pero todos buscan una sola cosa: tener noción del tiempo.

VER INFOGRAFÍA

Unidades de tiempo

Las unidades de tiempo más comunes son la hora, el minuto y el segundo, donde se cumple que:

  • 1 hora = 60 minutos
  • 1 minuto = 60 segundos

Sin embargo, existen otras unidades para medir el tiempo:

  • 1 día = 24 horas
  • 1 semana = 7 días
  • 1 año común = 365 días
  • 1 año bisiesto = 366 días
  • 1 lustro = 5 años
  • 1 década = 10 años
  • 1 siglo = 100 años
  • 1 milenio = 1.000 años

Los relojes

Son instrumentos usados para medir el tiempo. A lo largo de la historia han pasado de ser relojes solares y de arena, a relojes cada vez más sofisticados como los relojes inteligentes de hoy en día. Los más usados en la actualidad son los relojes analógicos y los digitales.

¿Cómo leer la hora en relojes analógicos?

Una reloj analógico se caracteriza por tener agujas o manecillas que indican las horas, los minutos y los segundos a través de ciertos marcadores y números. Los elementos de un reloj analógico son los siguientes:

  • Las manecillas: son las agujas que marcan las horas, minutos y segundos. La más chica de ellas indica la hora y se denomina horario; la aguja grande más larga indica los minutos y se denomina minutero; la aguja más fina y que va más rápido indica los segundos y se denomina segundero.
  • Marcadores: son las doce partes en las que está dividida la circunferencia del reloj. Estas partes están rotuladas con los números del 1 al 12 y cada una, a su vez, está dividida en cinco subdivisiones más pequeñas marcadas con segmentos de rectas.

¿Sabías qué?
Existen relojes digitales que imitan a los relojes analógicos por contener agujas en pantallas LCD. Debido a su formato también son considerados relojes analógicos.

El horario tarda 12 horas en dar la vuelta completa, de manera que en un día tiene que realizar dos vueltas completas. El minutero tarda 60 minutos que equivalen a 1 hora en dar la vuelta completa, y el segundero tarda 60 segundos en dar una vuelta completa que equivalen a 1 minuto.

Cuando el minutero se encuentra en el número 12 significa que han transcurrido 0 minutos de la hora que marca el horario, por lo tanto, al leer la hora indicada y agregamos la expresión “en punto“. Por ejemplo:

El reloj muestra las ocho en punto.

El reloj muestra las dos en punto.

Como ya vimos, el reloj está dividido en 12 secciones y cada una de ellas está subdivide en cinco, es decir, el reloj está dividido en 60 partes iguales que equivalen a cada minuto contenido en una hora. Quiere decir que si partimos del número 12 y miramos solamente los segmentos donde aparecen marcados los números, notaremos como los minutos se incrementan de cinco en cinco.

En este sentido, si el minutero se encuentra sobre el número 1, significa que han pasado 5 minutos; si se encuentra en el número 2 indica que pasaron 10 minutos y así sucesivamente hasta el número 12 que indica que no ha pasado ningún minuto aún. Para leer la hora en estos casos, decimos la hora marcada por el horario y luego leemos los minutos.

El reloj muestra las ocho y cinco minutos.

El reloj muestra las diez y veinticinco minutos.

¿Sabías qué?
Cuando el horario se encuentra entre dos números, la hora que indica corresponde al número menor de los dos.

Cuando el minutero está en el número 3, 6 y 9, la hora se suele mencionar de manera particular.

– Cuando el minutero está en el 3 indica que han transcurrido 15 minutos, es decir una cuarta parte de lo que dura una hora. Por eso, después de decir la hora agregamos la expresión “…y cuarto”.

El reloj muestra las once y cuarto.

– Cuando el minutero está en el 6 significa que han pasado 30 minutos, es decir, la mitad de una hora, por eso decimos “…y media”.

El reloj muestra las nueve y media.

– Cuando el minutero está en el 9 han pasado 45 minutos lo significa que falta un cuarto de hora (quince minutos) para la hora siguiente. Por eso decimos “un cuarto para…” y luego la hora próxima.

El reloj muestra un cuarto para las siete.

En algunos países en lugar de decir “un cuarto para” se lee la hora próxima y se agrega la expresión “menos cuarto”. En este sentido, el ejemplo anterior se leería como “las siete menos cuarto”.

Para otros casos, se lee la hora mostrada por el horario y luego los minutos indicados por el minutero.

 

¿Cómo leer la hora en relojes digitales?

En el reloj digital no se observan manecillas sino que expresa la hora y los minutos separados por dos puntos. Las primeras dos cifras corresponden a las horas y las dos cifras que se encuentran a la derecha de los dos puntos indican los minutos.

La lectura es similar a la de los relojes analógicos, la diferencia es que la hora y los minutos se observan de manera más directa. Primero leemos la hora y después los minutos

En los casos a los cuales aplique se agregan las expresiones “…en punto”, “…y cuarto”, “…y media” y “un cuarto para…”.

 Son las ocho en punto.

 Son las ocho y cuarto.

 Son las ocho y media.

 Son un cuarto para las nueve.

 Son las ocho y treinta y cinco minutos.

VER INFOGRAFÍA

Las abreviaturas a. m. y p. m.

Son abreviaturas que suelen aparecer en los relojes digitales. La abreviatura a. m. significa que la hora leída corresponde a antes del mediodía, mientras que p. m. se usa para indicar las horas después del mediodía.

Sistema horario de 24 horas

El sistema usado por los relojes analógicos es de 12 horas. Por lo tanto tiene que completar dos ciclos para cubrir un día. El sistema de 24 horas lleva este nombre porque divide al día en las 24 horas totales que lo conforman. Por eso no necesita de las siglas a. m. y p. m. En este sistema las 00:00 horas o 00:00 h corresponden a las 12 a. m., hora desde la cual se empiezan a contar las horas de manera ascendente. En esta convención de tiempo el día se mide de medianoche a medianoche.

Formato 24 horas Formato 12 horas
00:00 h 12:00 a. m.
01:00 h 01:00 a. m.
02:00 h 02:00 a. m.
03:00 h 03:00 a. m.
04:00 h 04:00 a. m.
05:00 h 05:00 a. m.
06:00 h 06:00 a. m.
07:00 h 07:00 a. m.
08:00 h 08:00 a. m.
09:00 h 09:00 a. m.
10:00 h 10:00 a. m.
11:00 h 11:00 a. m.
12:00 h 12:00 m.
13:00 h 01:00 p. m.
14:00 h 02:00 p. m.
15:00 h 03:00 p. m.
16:00 h 04:00 p. m.
17:00 h 05:00 p. m.
18:00 h 06:00 p. m.
19:00 h 07:00 p. m.
20:00 h 08:00 p. m.
21:00 h 09:00 p. m.
22:00 h 10:00 p. m.
23:00 h 11:00 p. m.
El sistema de 24 horas es usado en diversas áreas, de hecho, en algunos países se ha estandarizado como sistema de notación del tiempo. Es común su empleo en el área militar y en el de la astronomía. También suele usarse en áreas como la medicina para llevar registros de la historia clínica de los pacientes. Otros usos se dan en aeropuertos y otras terminales de transportes.

¡A practicar!

1. ¿Qué hora indican los relojes?

a) 

Solución
Son las once y cinco minutos.

b)

Solución
Son las once y media.

c)

Solución
Son las ocho y cuarto.

c)

Solución
Son las tres y media

2. ¿Qué hora observas en estos relojes?

a)

Solución
Son las tres y veinte minutos.

b)

Solución
Son las diez en punto.

c)

Solución
Son las once y cuarto.

3. ¿A qué hora del sistema de 12 horas corresponde?

a) Las ocho y treinta y cinco minutos.

b) Las treinta y cinco para las diecinueve.

c) Las nueve y media.

d) Las seis y treinta y cinco minutos.

Solución
d) Las seis y treinta y cinco minutos.

RECURSOS PARA DOCENTES

Artículo “Medidas de tiempo”

Este artículo describe las principales unidades de tiempo y propone una serie de operaciones que se pueden realizar con unidades de tiempo.

VER

Artículo “Reloj de arena”

El presente artículo destacado describe a este sencillo pero asombroso invento que utilizaban nuestros antepasados para medir el tiempo.

VER

Artículo “Los calendarios”

Este artículo describe el origen de los calendarios y las característica del calendario gregoriano, uno de los más usados hoy en día. También explica otros tipos de calendarios que han sido utilizados por diversas culturas como la maya y la egipcia.

VER

CAPÍTULO 5 / TEMA 7

La circunferencia

Una de las curvas más estudiadas en la geometría es, sin duda, la circunferencia. Tiene características únicas y ha sido pieza fundamental en invenciones humanas como la rueda. Para trazar esta figura usamos el compás, y su longitud está determinada por un número muy particular: el número pi.

¿Qué es una circunferencia?

Es la curva plana y cerrada cuyos puntos equidistan del centro; es decir, están a la misma distancia del centro de la circunferencia.

Los griegos y la circunferencia

Sin lugar a duda, los antiguos griegos tuvieron una gran influencia en el perfeccionamiento de la geometría. Para ellos, la línea recta y la circunferencia eran muy importantes en sus construcciones matemáticas, lo que permitió que realizaran increíbles descubrimientos para su época. Por ejemplo, Eratóstene de Cirene, que vivió entre 276 y 194 a. C., fue la primera persona en calcular la circunferencia de la Tierra.

Elementos de la circunferencia

En la circunferencia se pueden observar los siguientes elementos:

Centro: es el punto en torno al cual equidistan todos los puntos de la curva.

Radio: es un segmento de recta que une el centro de la circunferencia con cualquiera de sus puntos.

Diámetro: es un segmento de recta que une a dos puntos de la circunferencia y pasa por el centro de la misma. Su longitud es igual al doble del radio.

Cuerda: es un segmento de recta que une a dos puntos de la circunferencia sin pasar por el centro.

Arco: es una porción de la circunferencia que se encuentra limitada por una cuerda.

Semicircunferencia: es la porción de circunferencia limitada por el diámetro. Equivale a la mitad de la circunferencia.

Posiciones de una recta en relación a la circunferencia

Recta tangente: es la recta que comparte un mismo y único punto con la circunferencia.

Recta secante: es la recta que comparte dos puntos con la circunferencia.

Recta exterior: es la recta que no comparte ningún punto con la circunferencia.

¿Sabías qué?
La circunferencia de la tierra mide cerca de 40.000 km de longitud.

Diferencia entre círculo y circunferencia

Es posible que confundamos los conceptos de círculo y circunferencia porque están muy relacionados entre sí, pero se trata de dos términos diferentes. El círculo es una figura plana que corresponde al área contenida dentro de una circunferencia. La circunferencia, por su parte, representa el perímetro del círculo, es decir, es la línea que forma el contorno de la figura.

VER INFOGRAFÍA

El círculo es una figura que presenta diferentes elementos, como el semicírculo, los sectores circulares y los segmentos circulares. El primero es el área comprendida entre el diámetro y una semicircunferencia; el segundo consiste en las regiones comprendidas entre dos radios y el arco que estos forman; y el tercero se trata de los segmentos que se forman entre una cuerda y su arco.

Trazado de circunferencias

El compás es el instrumento por excelencia para trazar circunferencias y su origen es muy antiguo. Un compás consta de los siguientes elementos principales:

  1. Un mango.
  2. Una punta metálica.
  3. Una punta trazadora.
  4. Dos brazos regulables.

El uso de esta herramienta es relativamente sencillo. Para trazar una circunferencia con un compás lo primero que debemos hacer es conocer el radio de la circunferencia y trazarlo con la ayuda de una regla. Luego posicionamos la punta metálica en uno de los extremos del segmento y luego abrimos los brazos hasta que la punta trazadora esté ubicada en el otro extremo del segmento. Finalmente, con ayuda del mango, trazamos la circunferencia.

Circunferencias a nuestro alrededor

Un anillo o un aro son ejemplos de circunferencias, pero hay muchos más. Al ser una circunferencia el contorno de un círculo, la observamos en los bordes de las ruedas de los autos, en un molde para hacer una torta o un pastel y hasta incluso en juguetes como los platos voladores.

Las circunferencias han sido elementos fundamentales en el desarrollo de la geometría y con ello también han permitido a los seres humanos realizar grandes invenciones como la rueda.

La circunferencia es el contorno de una de las figuras más comunes: el círculo. Es frecuente observarlas en platos, ruedas, pasteles, diseños y pinturas. Han permitido realizar cálculos y aproximaciones, como el descubrimiento del número pi que relaciona la longitud de la circunferencia con su radio y que ha tenido numerosas aplicaciones prácticas.

 

¡A practicar!

  1. Además del centro, ¿qué elementos de la circunferencia observas?

a) 

Solución
Diámetro.

b)

Solución
Arco.

c)

Solución
Cuerda.

d)

Solución
Radio.

2. ¿Cuál de las siguientes rectas es una tangente?

a) 

b) 

c) 

d) 

Solución
c)  Es tangente porque solo comparte un punto en común con la circunferencia.

 

RECURSOS PARA DOCENTES

Artículo “Circunferencia”

El siguiente artículo explica de forma resumida qué es una circunferencia y los diferentes elementos que la integran como el radio, la cuerda, el diámetro, etc.

VER

Artículo “Ángulos en la circunferencia”

Este artículo relaciona los conceptos de ángulo y circunferencia, así como también explica sus características.

VER

CAPÍTULO 5 / TEMA 1

Perímetro

El contorno de una figura geométrica se denomina perímetro. De acuerdo al tipo de figura, el contorno puede ser calculado por medio de la suma de sus lados o a través de diferentes fórmulas. Estas operaciones tienen muchas aplicaciones en la vida cotidiana: por ejemplo, sirven para determinar la longitud de la cerca de una casa.

Cálculo de perímetro en figuras planas

El perímetro es la longitud del contorno de una figura. Para calcular el perímetro de una figura, simplemente tenemos que sumar cada uno de sus lados.

Es importante tener presente que existen figuras con lados regulares como el cuadrado, y figuras con lados irregulares como en el caso de un rectángulo. Las figuras regulares son conocidas como polígonos regulares y los más comunes son:

POLÍGONO NÚMERO DE LADOS
Triángulo equilátero 3
Cuadrado 4
Pentágono 5
Hexágono 6
Heptágono 7
Octágono 8
Eneágono 9
Decágono 10

¿Sabías qué?
De acuerdo a sus lados, los triángulos son clasificados en: equiláteros (tres lados iguales), isósceles (dos lados iguales) y escalenos (ningún lado igual).

VER INFOGRAFÍA

La ventaja de los polígonos regulares es que al tener todos sus lados iguales su perímetro es igual a la longitud de uno de sus lados multiplicada por la cantidad de lados que este tiene. La fórmula sería:

 P=n\times L

Donde:
P = perímetro.
n = número de lados de la figura.
L = longitud de un lado de la figura.

Un ejemplo de cálculo de perímetro

– Calcula el perímetro de un cuadrado cuyos lados miden 5 cm:

El cuadrado es un polígono regular de cuatro lados iguales, por lo tanto, calculamos su perímetro de la siguiente forma:

P = 4 × 5 cm

Resolvemos la multiplicación y el resultado obtenido es:

P = 20 cm

Observa que al final añadimos la unidad de longitud inicial, que son centímetros (cm), pero puede ser cualquier otra unidad de medida, los pasos en estos casos siempre son los mismos.

Otro camino

Aunque las fórmulas permiten realizar cálculos más sencillos, el perímetro también puede determinarse a través de la suma de cada uno de los lados. En el caso del ejemplo anterior sabemos que cada lado mide 5 cm, de manera que tenemos que sumar los cuatro lados para obtener el perímetro:

P = 5 cm + 5 cm + 5 cm + 5 cm = 20 cm

Esta forma de calcular el perímetro suele aplicarse a figuras que tienen al menos un lado diferente, pues al no tener sus lados iguales, no es posible aplicar la fórmula de polígonos regulares. Un ejemplo sería:

– Calcula el perímetro del siguiente triángulo:

Al sumar cada uno de sus lados obtenemos que:

P = 6 cm + 7 cm + 5 cm = 18 cm

Este triángulo escaleno tiene un perímetro de 18 cm.

 

El perímetro de un círculo

El perímetro de un círculo se denomina circunferencia, y para calcularlo empleamos un número matemático muy particular: el número pi, llamado así porque se escribe con la letra π del alfabeto griego, que lleva ese mismo nombre. Este número es irracional, por lo tanto es infinito. Se obtiene al dividir la longitud de la circunferencia entre su diámetro. Los primeros 10 números decimales del número pi son 3,1415926535…

La fórmula para determinar el perímetro de un círculo es:

P = π × d

Donde:

π = número pi (en los cálculos generalmente se redondea hasta los dos decimales).

d = la longitud del diámetro de la circunferencia.

Perímetro de figuras compuestas

Primero que todo, es importante saber que una figura compuesta está formada por dos o más figuras geométricas, por lo que tienen un arreglo irregular de lados y ángulos. En el caso de estas figuras, realizamos el cálculo del perímetro de la misma forma que en el ejemplo anterior del triángulo.

Observemos esta figura:

Es una figura compuesta porque está formada por un cuadrado y un triángulo:

Determinamos el perímetro de esta figura al sumar solo los lados exteriores de la figura:

P = 5 cm + 5 cm + 1 cm + 7 cm + 9 cm = 27 cm

El perímetro de la figura es 27 cm.

Las figuras compuestas pueden estar formadas por triángulos, cuadrados, rectángulos, trapecios, círculos, etc. Conocer sus diferentes elementos es importante al momento de resolver problemas de perímetros y de áreas, ya que no se puede aplicar una fórmula en común: es necesario identificar las figuras geométricas que integran la figura compuesta.

Aplicaciones del perímetro

Debido a que el perímetro y el área representan las magnitudes fundamentales al momento de trabajar con figuras geométricas y polígonos, sus usos en la vida cotidiana son frecuentes.

En el caso del perímetro, disciplinas como la arquitectura lo emplean para determinar la frontera de un objeto como en el caso de la cerca de una edificación o la valla de un campo. Sus usos también se extiende al ámbito militar, donde permite delimitar las áreas de interés ofensivo o de defensa.

La geometría

Es una rama de la matemática encargada del estudio de las figuras, sus propiedades y medidas en el plano y en el espacio. Su origen no es reciente, de hecho, antiguas civilizaciones como las del Antiguo Egipto, Sumeria y Babilonia ya la empleaban en mediciones de terrenos y en la construcción de edificaciones. Mucho tiempo después, los antiguos griegos la empezaron a perfeccionar y hoy en día es una disciplina fundamental.

 

¡A practicar!

1. Calcular el perímetro de las siguientes figuras:

a)

Solución
P = 15 cm
b) 
Solución
P = 12 cm
c) 
Solución
P = 48 cm
d) 
Solución
P = 18 cm
e) 
Solución
P = 34 cm

2. ¿Cuál de las siguientes figuras es un polígono regular?

a) 

b) 

c) 

d) 

e) 

Solución
c) Es un polígono regular porque tiene 6 lados iguales y se denomina hexágono.

RECURSOS PARA DOCENTES

Artículo “Áreas y perímetro”

En este cuadro comparativo se muestra una tabla con las fórmulas de área y perímetro para las principales figuras geométricas.

VER

Artículo “Perímetro de polígonos”

En este artículo se explica cómo realizar el cálculo de perímetro en el caso específico de los diferentes tipos de polígonos.

VER

CAPÍTULO 5 / TEMA 3

Área

El área mide la extensión de una superficie, por eso permite saber información importante de las cosas, como el tamaño de un país o la cantidad de baldosas que se necesitan en el piso de una casa. De acuerdo al tipo de figura, el área puede calcularse a través de fórmulas o mediante la descomposición de las figuras en otras más sencillas.

Cálculo de áreas en figuras planas

El área es la superficie o extensión comprendida en una figura. En el caso de las figuras planas, para calcular su área es necesario reconocer cada figura, porque su cálculo es diferente en cada caso.

Triángulos

En los triángulos se cumple que su área es igual a la base por la altura y el resultado se divide entre dos:

A=\frac{b\times h}{2}

– Calcula el área del siguiente triángulo:

A=\frac{3 \, cm \times 4\, cm}{2} = \frac{12 \, cm^{2}}{2}=\mathbf{6\, cm^{2}}

Es importante tener en cuenta que al multiplicar dos unidades de longitud (en este caso centímetros) escribimos el producto al cuadrado; es decir, colocamos el exponente “2” arriba de la unidad de medida, por eso se escribe cm2, y se lee “centímetros cuadrados”.

El área y las unidades al cuadrado

En el Sistema Internacional de Unidades el área siempre se expresa en unidades de longitud elevadas al cuadrado, esto se debe a que el área es la medida de una superficie. Un área de 15 cm2 quiere decir que esa superficie está cubierta por 15 cuadrados que miden 1 cm en cada uno de sus lados. Otras unidades de área comunes son: mm2 (milímetros cuadrados), m2 (metro cuadrado) y km2 (kilómetro cuadrado).

VER INFOGRAFÍA

Cuadrados

El área de un cuadrado es igual a la multiplicación de dos de sus lados. Como los lados de un cuadrado son todos iguales, la fórmula también se puede expresar como la medida de un lado al cuadrado.

A = l\times l =l^{2}

– Calcula el área del siguiente cuadrado

A= 3\, m\times 3\,m = \mathbf{9\, m^{2}}

Es un cuadrado de nueve metros cuadrados de área.

Rectángulos y romboides

El área de los rectángulos y romboides es igual al producto de su base por su altura.

A=b\times h

 

 

– Calcula el área del siguiente rectángulo:

A=10\, mm\times 5\, mm =\mathbf{50\, mm^{2}}

Rombos

El área de un rombo es igual al producto de su diagonal mayor (D) y su diagonal menor (d) dividido entre 2.

A=\frac{D\times d}{2}

– Calcula el área del siguiente rombo:

A = \frac{9\, cm\times 5\, cm}{2}=\frac{45\, cm^{2}}{2}=\mathbf{22,5\, cm^{2}}

El área del rombo es de 22,5 centímetros cuadrados.

Trapecios

En el caso de los trapecios el área es igual a la suma de su base mayor y su base menor, el resultado se divide entre 2 y luego se multiplica por la altura.

A = \frac{B+ b}{2}\times h

– Calcula el área del siguiente trapecio:

\small A= \frac{9\, mm+ 15\, mm}{2}\times 4\, mm=\frac{24\, mm}{2}\times 4\, mm=12\, mm\times 4\, mm = \mathbf{48\, mm^{2}}

El trapecio tiene un área de 48 milímetros cuadrados.

Polígonos regulares

Los polígonos regulares son figuras geométricas donde todos sus lados miden lo mismo. En todos los polígonos regulares se cumple que:

A= \frac{N\times L\times ap}{2}

Donde:

N = número de lados del polígono regular.

L = longitud de uno de los lados.

ap = longitud de la apotema.

¿Sabías qué?
La apotema es la menor distancia que existe entre el centro de un polígono y cualquiera de sus lados.

– Calcula el área del siguiente polígono regular:

A=\frac{6\times 4\, cm\times 3,4\, cm}{2}=\frac{24\, cm\times 3,4\, cm}{2}= \frac{81,6\, cm^{2}}{2}=\mathbf{40,8\, \mathbf{cm^{2}}}

Observa que en este caso como el polígono regular tiene seis lados (hexágono) se coloca el número 6. El área de este hexágono es de 40,8 centímetros cuadrados.

¿Cómo calcular el área de un círculo?

Para determinar el área de un círculo se debe multiplicar el número pi (que aunque es un número infinito se redondea a 3,14) por el radio de la circunferencia elevado al cuadrado, es decir;  \bg_white A = \pi \times r^{2}. El área para un círculo con un radio igual a 2 cm, por ejemplo; se calcularía como A = 3,14\times (2\, cm)^{2}=3,14\times4\, cm^{2} =\mathbf{12,56\, cm^{2}}.

 

Cálculo de áreas en figuras compuestas

Las figuras compuestas se llaman así porque están formadas por dos o más figuras geométricas. Para calcular el área en estas figuras debemos “separar” las figuras geométricas presentes y calcular por separado el área de cada una. El área total de la figura compuesta será igual a la sumatoria de las áreas de las figuras geométricas que la conformen.

– Calcula el área de la siguiente figura compuesta:

Lo primero para resolver es identificar las figuras geométricas presentes, en este caso es un triángulo (figura 1) y un rectángulo (figura 2).

Calculamos las áreas de las figuras por separado.

– Área del triángulo:

La altura es un dato del problema y es 2 cm, la base del triángulo tiene la misma longitud que la base mayor del rectángulo, por lo tanto tiene el mismo valor que es 5 cm. Calculamos el área según la fórmula de área para el triángulo:

A_{1} = \frac{b\times h}{2}=\frac{5\, cm\times 2\, cm}{2}=\frac{10\, cm^{2}}{2} = \mathbf{5\, cm^{2}}

– Área del rectángulo:

Calculamos con la fórmula de área para rectángulos.

A_{2} = b\times h=5\, cm\times 4\, cm = \mathbf{20\, }\mathbf{cm^{2}}

 

El área total es igual a la sumatoria de las áreas de las figuras geométricas calculadas:

A = A_{1}+A_{2}= 5\, cm^{2}+20\, cm^{2} =\mathbf{25\, cm^{2}}

Quiere decir que el área de la figura compuesta es de 25 centímetros cuadrados.

¿Por qué es útil conocer el área?

Conocer la superficie del área tiene múltiples usos desde los cotidianos hasta lo científico. Por ejemplo, gracias al área podemos saber cuánta tela necesita un vestido, o cuántas baldosas son necesarias en la construcción de un piso. También se usa para realizar comparaciones, por ejemplo, con el área podemos comparar países de acuerdo a su tamaño. O, también, podemos estimar la superficie de un planeta de acuerdo a su forma.

Además, el área es un parámetro usado en otras fórmulas más avanzadas como los cálculos de presiones. Por otra parte, las diferentes medidas permiten cuantificar desde áreas de tamaños microscópicos hasta áreas del tamaño de una estrella.

Aunque el Sistema Internacional de Unidades es el más extendido en el mundo, no todos los países emplean el metro cuadrado y sus múltiplos o submúltiplos para hablar de área. Hay países, como Estados Unidos, que emplea la yarda cuadrada (equivalente a 0,863 metros cuadrados), otras unidades usadas son la pulgada cuadrada, el pie cuadrado, la hectárea y el acre.
¡A practicar!

1. Calcular el área de las siguientes figuras:

a)

Solución
A = 6 cm2
b) 
Solución
A = 20 m2
c) 
Solución
A = 18 cm2
d) 
Solución
A = 61,5 mm2
e) 
Solución
A = 79 cm2

2. ¿A cuál de estas figuras corresponde la fórmula de área A = b\times h?

a) 

b) 

c) 

d) 

e) 

Solución
d) Es un romboide.

RECURSOS PARA DOCENTES

Video “Resolución del área”

En este video se explica cómo resolver cálculos de áreas en figuras compuestas y se muestran dos de las fórmulas de área más usadas.

VER

Artículo “Perímetro y área”

Este artículo explica ejercicios de perímetro y áreas. Toma como referencia diferentes unidades de medida y conversiones.

VER

Artículo “Cuerpos redondos. Áreas y volúmenes”

En el presente artículo se explica como realizar cálculos de área en cuerpos redondos, sí como las características de este tipo de figuras.

VER

 

CAPÍTULO 3 / TEMA 3

Gráficas de fracciones

Las gráficas son recursos visuales que permiten representar datos numéricos, como las fracciones. En este tipo de problemas podemos usar gran variedad de figuras para expresar una fracción de manera más sencilla, y así facilitar su interpretación. Los pasos para poder graficar una fracción dependen de su tipo.

Graficar una fracción propia

Podemos expresar fracciones a través de diagramas, pero para comprender cómo realizar un gráfico es importante recordar que una fracción es la representación de una o varias partes iguales de la unidad, donde:

El denominador representa el número de partes que se dividen de la unidad.

El numerador es el número de partes que se toman o se consideran de la unidad.

Toda fracción propia cumple una condición: el numerador siempre es menor que el denominador.

Pasos para graficar una fracción propia

  1. Elige la figura en la que se va a representar la fracción. Puede ser un triángulo, círculo, cuadrado, rectángulo, etc.
  2. Divide la figura elegida en tantas partes como indique el denominador de la fracción. Todas las partes deben ser iguales.
  3. Señala el número de partes que indique el numerador de la fracción.

– Grafica la fracción \frac{3}{4}

La figura que seleccionaremos en este caso será un triángulo, pero recuerda que puede ser cualquier figura. Como el denominador de la fracción es cuatro (4), la figura debe estar dividida en cuatro partes iguales:

Luego señalamos el número de partes que indique el numerador, en este caso serían tres (3) partes:

De manera gráfica es más fácil entender la representación de la fracción “tres cuartos”.

Otros ejemplos:

¿Sabías qué?
Las fracciones no solo pueden representarse con figuras geométricas, también lo pueden hacer en la recta numérica.

¿Cómo graficar fracciones cuyo numerador es igual al denominador?

A este tipo de fracción se lo denomina fracción igual la unidad porque, al ser iguales el numerador y el denominador, el cociente de ambos siempre va a ser uno (1). Por esta razón la representamos como toda la figura geométrica:

VER INFOGRAFÍA

Graficar una fracción impropia

En las fracciones impropias el numerador siempre es mayor al denominador y, como su resultado es mayor a la unidad, se requiere más de una figura geométrica para representarlas.

Pasos para graficar una fracción impropia

  1. Elige la figura en la que se va a representar la fracción.
  2. Divide la figura elegida en tantas partes como indique el denominador de la fracción. Todas las partes deben ser iguales.
  3. Señala el número de partes que indique el numerador de la fracción. Como es una fracción impropia van a faltar partes para señalar.
  4. Realiza tantas figuras geométricas hasta que el número de partes del numerador pueda ser señalado.

– Grafica la fracción \frac{10}{6}

Primero se divide la figura en 6 partes iguales:

Como el numerador es igual a 10, nos hace falta otra figura idéntica para completar las 10 partes que se van a seleccionar. Recuerda que se pueden agregar tantas figuras como sean necesarias hasta poder representar el número de partes del numerador.

Como las fracciones impropias tienen el numerador mayor al denominador, siempre van a estar representadas con más de una figura, porque representan a “algo” mayor que la unidad. Por esta razón, las fracciones de este tipo también pueden representarse como números mixtos. Por ejemplo la fracción 10/6 en número mixto se representa como 1 4/6.

 

Problemas cotidianos

Expresiones como “un cuarto de hora”, “media taza de té”, “tres cuartas partes de la población”, son algunos ejemplos en los que se emplean las fracciones dentro del lenguaje cotidiano. Por eso es común encontrarnos con fracciones y resolver problemas habituales. Algunos ejemplos son los siguientes:

– En una escuela solo la cuarta parte de los estudiantes practica fútbol, ¿cuál sería la representación gráfica de esa proporción?

Las expresión “cuarta parte” hace referencia a la fracción un cuarto: \frac{1}{4}. Entonces, lo que debemos hacer es graficar dicha fracción y responder así la interrogante del problema:

– En una fiesta compraron 3 pizzas del mismo tamaño que estaban cortadas en 4 partes iguales cada una. Uno de los invitados se comió una de las porciones, ¿cómo se puede expresar en forma de fracción al número de porciones de pizza que quedaron?

Lo primero que tenemos que hacer es imaginarnos las pizzas con el número total de porciones:

De la imagen determinamos que originalmente habían 12 porciones. Luego tenemos que imaginar cuántas porciones quedaron después de que el invitado se comiera una de ellas:

La imagen anterior representaría la gráfica del problema, ahora lo que debemos hacer es determinar la fracción de ella. Recordemos que el denominador es el número en el que se divide la unidad, en este caso la unidad es cada pizza y cada una de ellas está cortada o dividida en cuatro porciones, por lo tanto, el denominador es 4.

Como el numerador es el número de partes que se considera de la unidad, en este caso serían las porciones que quedaron, por lo tanto, el numerador es 11.

De esta manera se concluye que quedaron \frac{11}{4} de porciones de pizza.

Observa que \frac{11}{4} es una fracción impropia y por eso la unidad (la pizza) fue graficada más de una vez.

¡A practicar!

1. ¿Qué fracción representan las siguientes gráficas?

a)

Solución
\frac{2}{6}
b) 
Solución
\frac{3}{4}
c) 
Solución
\frac{5}{7}
d) 
Solución
\frac{2}{4}
e) 
Solución
\frac{7}{3}
e) 
Solución
\frac{2}{2}

2. ¿Cuál de las siguientes expresiones representa al siguiente gráfico?


a) Un quinto de taza de café.
b) Cinco medios de cucharadas de azúcar.
c) Tres medios de harina.
d) Tres quintas partes de agua.
e) Dos terceras partes de vinagre.

Solución
d) Tres quintas partes de agua \left ( \frac{3}{5} \right ).

RECURSOS PARA DOCENTES

Artículo “Fracciones”

El presente artículo destacado explica los elementos de una fracción y la forma de graficarlas de acuerdo a sus tipos. También presenta una serie de ejemplos que facilitan su comprensión.

VER

Enciclopedia “Recursos para docentes”

La enciclopedia muestra algunas herramientas para ayudar el proceso de aprendizaje de los estudiantes en todas las áreas de estudio.

VER