El cálculo de áreas y perímetros de figuras geométricas se hace a partir de la longitud de sus lados. El área de los rectángulos se calcula como la multiplicación de la base por la altura, y la de los triángulos se define como la multiplicación de la base por la altura dividido por dos. Cuando se calculan los perímetros se recurre a la sumatoria de la longitud de los lados, independientemente de la figura que sea.
triángulos
Los triángulos son clasificados respecto a sus lados como equiláteros, isósceles y escalenos; y respecto a sus ángulos como acutángulos, rectángulos y obtusángulos. La suma de los ángulos internos de un triángulo es siempre igual a 180º. Los triángulos congruentes son aquellos que son isométricos entre sí, es decir, poseen las mismas dimensiones.
plano, punto y segmento
Un plano es un conjunto infinito de puntos y segmentos dispuestos de manera bidimensional. Para formar un plano se precisan tres puntos, una recta y un punto o dos rectas no coincidentes. Para ubicar un punto se utiliza un sistema de coordenadas denominado eje cartesiano, en el cual se deben considerar los valores de X e Y. En el sistema de coordenadas, se pueden distinguir cuatro cuadrantes delimitados por los ejes.
Circunferencia
La circunferencia es una figura geométrica que mantiene todos sus puntos equidistantes de su centro. Para calcular el área de una circunferencia se recurre a la siguiente fórmula . Donde r es el radio, y π corresponde al número pi. Para la construcción de circunferencias se utiliza un compás: se realiza un segmento con la longitud del radio y a partir de allí se genera el arco completo.
Transformaciones isométricas
La ampliación y la reducción son transformaciones en las dimensiones de las figuras geométricas sin alterar las propiedades de la figura original. Las transformaciones isométricas como la rotación y la traslación permiten variar la posición de la figura en el plano sin alterar sus dimensiones. Hay figuras geométricas que poseen uno o más ejes de simetría en donde cada uno de sus puntos opuestos se encuentran a una misma distancia entre sí.
PRISMAS Y PIRÁMIDES
Los prismas son figuras geométricas tridimensionales formadas por dos caras o bases iguales y paralelas que se encuentran unidas por paralelogramos. Las pirámides presentan una base en la que todas sus caras son triángulos que se encuentran unidos en un vértice. Para su construcción se realiza primero la base y luego la base paralela (en el caso de un prisma) o el vértice (en el caso de una pirámide) a una determinada altura. Por último, se unen las bases por paralelogramos o triángulos según corresponda al tipo de figura.
La geometría es una rama de la matemática que estudia las formas de diferentes figuras como triángulos, cuadrados, y rectángulos, entre otras. Una parte de su estudio consta de la mediciones de áreas y perímetros. A continuación, trabajaremos sobre estos cálculos en algunas figuras geométricas.
cálculo de áreas en figuras geométricas
Las figuras geométricas comparten entre sí ciertas características que son de interés para la geometría. Entre esas características se encuentra el cálculo de áreas. El área es la extensión de la superficie de una figura, y para calcularla primero se debe saber ante qué tipo de figura nos encontramos. En esta sección, trabajaremos con rectángulos y triángulos.
Para calcular el área de un rectángulo se debe conocer su base y su altura. En la siguiente figura se muestran dichos valores.
El área se calculará entonces como la multiplicación de la longitud de sus lados:
Área de un triángulo:
Para calcular el área de un triángulo, debemos imaginarlo como la mitad de un rectángulo. En la siguiente figura se puede ver tal afirmación.
El área se calculará entonces como la multiplicación de la longitud de sus lados pero dividido por dos (porque hablamos de la mitad de un rectángulo):
Teorema de Pitágoras
Los triángulos rectángulos son aquellos que poseen un ángulo interno igual a 90º. Los catetos en este caso son la base (b) y la altura (h), y el lado de mayor longitud recibe el nombre de hipotenusa.
El teorema de Pitágoras dice que: “La hipotenusa al cuadrado es igual a la suma de los catetos al cuadrado“.
Si consideramos ambos catetos como C1 y C2, y la hipotenusa como H, el teorema de Pitágoras queda expresado de la siguiente manera:
Cálculo de área de un rectángulo
Se tiene una pieza de madera en forma de rectángulo que mide 1 metro de base y 3 metros de alto. ¿Cuál es el área de esta pieza?
La pieza tiene un área de 3 m2.
Cálculo de área de un triángulo
Se tiene un triángulo rectángulo de 2 centímetros de base y 4 centímetros de altura. ¿Cuál es su área?
El triángulo tiene un área de 4 cm2.
¿Sabías qué?
Según sus ángulos, los triángulos pueden clasificarse en agudos, rectángulos y obtusos.
unidades usadas para medir superficie o área
En los ejemplos anteriores, se observa que cuando se calcula un área el resultado tiene una unidad de longitud elevada al cuadrado. Las unidades sirven para poder expresar el tamaño de determinadas mediciones. En este caso, se trata del área de una figura geométrica.
Tipos de unidades
Las unidades más comunes para expresar áreas de figuras geométricas son los metros cuadrados (m2) y los centímetros cuadrados (cm2). Sin embargo, cualquier unidad de longitud puede ser utilizada para el cálculo de un área.
Existen otras unidades de área como la hectárea que equivale a la superficie de un cuadrado de 100 m en cada lado. Es decir, 1 hectárea equivale a 10.000 m2.
Ejemplo de cálculo de área con diferentes unidades
Se tiene el siguiente cuadrado (un rectángulo donde sus cuatro lados son iguales) con el valor de sus lados expresados en diferentes unidades.
El área del cuadrado se puede calcular de la siguiente manera:
Donde:
A = área.
L = longitud de uno de los lados del cuadrado.
De acuerdo al valor del número que se reemplace en la ecuación, el área será diferente numéricamente, pero las diferentes unidades de longitud permiten correlacionar todos los valores. De esta forma, representan al mismo valor de área pero con diferente unidad:
Área (m2) = (0,5 m)2 = 0,25 m2
Área (cm2) = (50 cm)2 = 2.500 cm2
Área (mm2)= (500 mm)2 = 250.000 mm2
Sin embargo, cualquiera de las tres opciones son el mismo resultado. Solo que con unidades diferentes. La diferencia es solo numérica.
Por lo tanto:
0,25 m2 = 2.500 cm2 = 250.000 mm2
cálculo de perímetro de figuras geométricas simples y compuestas
El cálculo del perímetro se realiza de modo similar al cálculo del área. El perímetro es el contorno de la figura, por lo tanto, para calcularlo se recurrirá simplemente a la suma de la longitud de sus lados.
Perímetro de figuras
A continuación, se mostrarán las fórmulas de cálculo de perímetro de triángulos, cuadrados y rectángulos.
Perímetro de un triángulo = cateto + cateto + hipotenusa
Perímetro de un cuadrado = lado + lado + lado + lado
Perímetro de un rectángulo = base + altura + base + altura
El cálculo del perímetro puede realizarse en figuras simples, como es el caso de los tres ejemplos anteriormente mencionados, o en figuras compuestas, cuando se combinan dos o más de estas figuras.
Ejemplo de cálculo de perímetro de una figura compuesta:
Para calcular el perímetro de la figura compuesta debe sumarse las longitudes de todo el contorno de esta. Por lo tanto:
El perímetro se calculará como la suma de los siguientes contornos:
2 lados del cuadrado de 45 cm
2 lados del rectángulo de 10 cm
1 lado del rectángulo de 45 cm
1 lado del triángulo de 45 cm
1 lado (la hipotenusa) del triángulo de 63,6 cm
Perímetro = (2 × 45 cm) + (2 × 10 cm) + 45 cm + 45 cm + 63,6 cm = 263,6 cm
Prestar atención a las unidades: en esta caso, como simplemente se calculó una longitud, la unidad del perímetro es en cm.
¡A practicar!
1. ¿Cuál es el área y el perímetro del siguiente triángulo?
RESPUESTAS
El área del triángulo es de 24 cm2.
El perímetro del triángulo es de 24 cm.
2. ¿Cuál es el área y el perímetro del siguiente rectángulo?
RESPUESTAS
El área del rectángulo es de 35 cm2.
El perímetro del rectángulo es de 24 cm.
3. ¿Cuál es el perímetro de la siguiente figura?
RESPUESTAS
3 lados del cuadrado de 7 cm
1 lado del rectángulo de 7 cm
1 lado del rectángulo de 6 cm
1 lado del triángulo de 5 cm
1 lado (la hipotenusa) del triángulo de 7,8 cm
El perímetro de la figura es de 46,8 cm.
RECURSOS PARA DOCENTES
Artículo “Teorema de Pitágoras”
En este artículo se explica en qué consiste el teorema de Pitágoras, sus aplicaciones, y presenta distintos ejercicios.
El punto, la recta y el plano se denominan entes fundamentales de la geometría porque no tienen definición y su comprensión depende de comparaciones con elementos similares. El punto es adimensional y se nombra con letras mayúsculas del alfabeto. La recta está formada por infinitos puntos que se extienden en una misma dirección. Las rectas pueden ser paralelas, secantes o perpendiculares. El plano es un ente bidimensional, es decir, posee dos dimensiones y se suele nombrar con letras del alfabeto griego.
Ángulos
La región del plano comprendida entre dos semirrectas se denomina ángulo. De acuerdo a su medida pueden ser nulos (cuando miden 0°), agudos (cuando no son nulos y miden menos de 90°), rectos (cuando miden 90°), obtusos (cuando son menores a 180° y mayores a 90°) y llanos (cuando miden 180°). Se habla de dos ángulos complementarios cuando la suma de estos es igual a 90°, por otra parte, dos ángulos son suplementarios si la suma de ambos es igual a 180°. La sumatoria de los ángulos internos de un triángulo da 180°, mientras que en un cuadrilátero da 360°.
Polígonos
Los polígonos son figuras caracterizadas por estar delimitadas por segmentos finitos rectos denominados lados. Si todos sus lados tienen la misma longitud se denominan polígonos regulares, de lo contrario, se denominan polígonos irregulares. En el caso de los polígonos regulares se cumple que sus ángulos internos son iguales, lo mismo sucede con sus ángulos externos. Los polígonos regulares también se caracterizan por tener igual cantidad de ejes de simetrías que de lados y sus diagonales son todas internas y de la misma longitud.
Cuerpos geométricos
Los cuerpos geométricos pueden clasificarse en poliedros cuando todas sus caras son iguales y planas, y en cuerpos redondos cuando poseen al menos una cara curva. Sus elementos principales son las caras, las aristas y los vértices. Cada uno de los cuerpos geométricos posee su fórmula para determinar su volumen. De igual forma, cada uno de los cuerpos geométricos pueden representarse en construcciones de tres dimensiones.
Circunferencia y círculo
La circunferencia es una línea cerrada que sobresale por ser el perímetro del círculo. Por otra parte, el círculo es una figura geométrica que se encuentra delimitada por una circunferencia. Los elementos principales de una circunferencia son: centro, radio, cuerda, diámetro, semicircunferencia y arco. Entre una circunferencia y una recta pueden darse tres tipos diferentes de relación: recta exterior (cuando no toca ningún punto de la circunferencia), recta tangente (cuando toca un solo punto de la circunferencia) y recta secante (cuando atraviesa la circunferencia en dos puntos). El área de un círculo es igual al producto de el número pi por el radio de la circunferencia al cuadrado.
Aplicación de la geometría
Incontables son las disciplinas y las situaciones en las que se emplea la geometría. Desde que apareció esta rama de la matemática ha permitido resolver infinidad de problemas. El cálculo de áreas de superficies planas puede extenderse a situaciones cotidianas como el cálculo de la extensión de un terreno, esto se debe a que cada figura posee su fórmula particular. Lo mismo sucede con el cálculo de volumen y los cuerpos geométricos.
La geometría se encuentra inmersa dentro de diferentes ciencias y situaciones de la vida. Muchos desarrollos de la actualidad no se habrían logrado sin los aportes de la geometría. La astronomía, la computación y la cartografía son algunos de los muchos campos donde la geometría es empleada.
Cálculo de área de una superficie
Para el cálculo de superficies usamos las fórmulas de área de las principales figuras geométricas. Las principales fórmulas son las siguientes:
Nombre
Figura
Área
Cuadrado
Donde:
A = área
l = lado
Rectángulo
Donde:
A = área
a = altura
b = base
Triángulo
Donde:
A = área
b = base
h = altura
Rombo
Donde:
A = área
D = diagonal mayor
d = diagonal menor
Paralelogramo
Donde:
A = área
b = base
h = altura
Trapecio
Donde:
a = base menor
b = base mayor
h = altura
Círculo
Donde:
A = área
π = número pi
r = radio
Polígono regular
Donde:
A = área
n = número de lados regulares
b = longitud de un lado
Ap = apotema
Las figuras compuestas
Una figura compuesta es aquella que está formada por dos o más figuras geométricas más simples. Para calcular el área de estas figuras se suelen calcular las áreas de las figuras más simples por separado y la sumatoria de estas será el área total de la figura. Por otra parte, para el cálculo de perímetro suelen usarse ecuaciones trigonométricas, y teoremas como el de Pitágoras para calcular las longitudes de los lados de la figura.
Ejercicios
– Una cancha de fútbol mide 105 metros de largo y 68 metros de ancho. ¿Cuántos metros cuadrados de césped artificial se necesitarían para cubrir toda la cancha?
Es un problema de área porque al calcular los metros cuadrados de césped artificial que se necesitan, se calcula la superficie. Como todos sabemos, una cancha de fútbol tiene una forma rectangular, por lo tanto se debe aplicar la fórmula del rectángulo:
Por lo tanto, para cubrir toda la cancha se necesitarían 7.140 m2 de césped artificial.
– La siguiente figura muestra el plano de una casa. ¿Cuántos metros cuadrados de cerámica se necesitan para cubrir el piso?
El piso de la casa forma una figura compuesta. Por lo tanto, antes de resolver el problema debemos separarlo en formas geométricas más simples:
La figura 1 corresponde a un rectángulo y la figura 2 a un cuadrado (ya que sus cuatro lados miden lo mismo). El área total del piso será igual a:
Donde:
At = área total del piso
A1 = área de la figura 1
A2 = área de la figura 2
Por lo tanto, para calcular el problema tenemos que resolver las áreas por separado:
En la figura 1 se cumple que:
En la figura 2 se cumple que:
Al reemplazar los valores de A1 y A2 se tiene que:
Por lo tanto, el piso de la casa necesita 165 m2 de cerámica para cubrirlo.
¿Sabías qué?
La hectárea (ha) es una medida de área que equivale a 10.000 m2.
Cálculo de volumen de un cuerpo
Todo cuerpo ocupa un lugar en el espacio. Se denomina volumen. Como ya sabemos, los principales cuerpos geométricos se calculan a través de fórmulas:
Nombre
Figura
Fórmula de volumen
Cubo
Donde:
V = volumen
l = lado
Prisma
Donde:
V = volumen
Ab = área basal
h = altura
Pirámide
Donde:
V = volumen
Ab = área basal
h = altura
Cilindro
Donde:
V = volumen
π = número pi (3,14…)
r = radio
h = altura
Cono
Donde:
V = volumen
π = número pi (3,14…)
r = radio
h = altura
Esfera
Donde:
V = volumen
π = número pi (3,14…)
r = radio
En el caso de las pirámides y los primas, las formas de sus bases pueden ser diferentes.
Estas ecuaciones pueden aplicarse a figuras similares para resolver diferentes problemas.
Ejercicios
– Calcula el volumen de la Gran Pirámide de Guiza, cuya base es un cuadrado de aproximadamente 230 m cada lado y de altura mide aproximadamente 186 m.
La fórmula para calcular el volumen de una pirámide es la siguiente:
Lo primero es calcular el valor de Ab que es el área de la base. En este caso, su base es un cuadrado de 230 metros de cada lado. Por lo tanto:
Reemplazamos el valor del área de la base y el de la altura (que es 186 m) en la fórmula:
El volumen aproximado de la pirámide de Guiza es de 3.279.800 m3 (si se considera la pirámide como un cuerpo rígido sin cámaras interiores).
– Calcula el volumen de una canica de 2 centímetros de diámetro.
La forma de una canica es igual a la de una esfera por lo tanto se utiliza la siguiente ecuación:
El problema nos dice que el diámetro de la canica es de 2 cm, pero la fórmula está expresada en función del radio. Como ya sabemos, el radio es la mitad del diámetro, por lo tanto, el radio de la canica es de 1 cm.
La leyenda de la corona
Hay una leyenda popular que cuenta cómo el rey Hieron II de Siracusa le encomendó al reconocido matemático griego Arquímedes que comprobara si la corona que había mandado a hacer era de oro puro o no. Arquímedes pasó mucho tiempo sin resolver el misterio y estaba frustrado hasta que un día, al meterse a la bañera, se percató que el agua que se desplazaba tenía el mismo volumen de su cuerpo. Enseguida dio un salto al tiempo que decía la frase “¡Eureka!”.
Posteriormente le demostró al rey que el volumen desplazado por la corona debía ser el mismo que el desplazado por un lingote de oro puro de la misma masa. Cuando realizó el experimento, la cantidad de agua desplazada no fue la misma y concluyó que la corona no era de oro puro.
Otros usos
Desde su aparición, la geometría ha permitido al ser humano destacarse en varios campos como la arquitectura, la escultura, la pintura y, por su puesto, en las ciencias aplicadas como la física o la química. Disciplinas como la ingeniería aplican la geometría para el cálculo de ángulo y otras medidas. La química emplea la geometría para entender las estructuras moleculares, la agrupación de los átomos y la forma de los cristales de algunos compuestos, entre otros usos.
En el ámbito de la cartografía y la agronomía, se aplica la geometría para determinar áreas, calcular perímetros y planos de terrenos. La astronomía y la computación son otras áreas que emplean conocimientos geométricos.
La geometría y la arquitectura
La arquitectura clásica no habría podido lograr obras de singular belleza o armonía sin hacer uso de conocimientos geométricos. En la actualidad, los arquitectos emplean la geometría para lograr estructuras que se vean bien estéticamente, que permitan un ahorro de materiales y un mejor aprovechamiento de los espacios.
¡A practicar!
1. Una fábrica de quesos compró una granja de 14.300 m2. ¿Cuáles son las medidas de la granja?
a) 150 m × 100 m
b) 130 m × 110 m
c) 40 m × 10 m
d) 280 m × 100 m
Solución
b) 130 m × 110 m
2. Un tablero de ajedrez mide 44 cm de alto y 44 cm de ancho, ¿cuál es el área del tablero?
a) 88 cm2
b) 1.936 cm2
c) 4.404 cm2
d) 3.854 cm2
Solución
b) 1.936 cm2
3. Una empresa inmobiliaria trabaja con propiedades que no superan los 20.000 m2. ¿Cuál de las siguientes propiedades no cumple con este requisito de la empresa inmobiliaria?
a) Casa de playa de 155 m de ancho por 84 m de alto.
b) Departamento en la ciudad de 18 m de ancho por 14 m de alto.
c) Cabaña en la montaña de 320 m de ancho por 124 m de alto.
d) Chalet de 24 m de ancho por 20 m de alto.
Solución
c) Cabaña en la montaña de 320 m de ancho por 124 m de alto. El área de esta propiedad es de 39.680 m2, por lo tanto, supera los 20.000 m2 aceptados por la inmobiliaria.
4. Una pelota de fútbol tiene 22 cm de diámetro, ¿cuál es su volumen?
a) 2026,34 cm3
b) 44 cm3
c) 220 cm3
d) 5.572,45 cm3
Solución
d) 5.572,45 cm3
5. Una lata de tomates es cilíndrica y tiene una altura de 9 cm y un radio de 3 cm, ¿cuál es su volumen?
a) 384,35 cm3
b) 127,17 cm3
c) 954.44 cm3
d) 506,58 cm3
Solución
c) 254.34 cm3
RECURSOS PARA DOCENTES
Artículo “Los números ocultos en el universo”
El artículo trata de mostrar cómo la mayoría de los fenómenos del universo pueden explicarse a través de los números. También explica algunas formas geométricas que podemos encontrar en nuestro planeta.
Enciclopedia “Nana y Enriqueta en el país de las matemáticas”
En este tomo, se platean los principales elementos de la geometría de una manera didáctica y sencilla. También se dan ejemplos y aplicaciones de la geometría.
El artículo plantea el cálculo de superficie de las principales figuras geométricas. También resuelve una serie de ejercicios y muestra al final algunos problemas propuestos.
El círculo es la superficie contenida dentro de una circunferencia. En algunas ocasiones suelen confundirse estos términos por error, pero lo cierto es que gozan de características únicas que desde tiempos antiguos han cautivado a los matemáticos. Su conocimiento es importante para entender conceptos como el número pi.
Diferencia entre la circunferencia y el círculo
Aunque son conceptos que están estrechamente relacionados, circunferencia y círculo son dos cosas geométricamente diferentes. La circunferencia es la línea o perímetro que bordea y delimita la superficie de un círculo. Todos los puntos de la circunferencia se encuentran a una misma distancia del centro. El círculo, por otra parte, es una figura geométrica que está delimitada por una circunferencia.
¿Sabías qué?
El matemático griego Eratóstenes de Cirene fue la primera persona en calcular la circunferencia de la Tierra en el 230 a. C.
En este sentido, cuando hablamos de circunferencia nos referimos a una curva cerrada y cuando hablamos de círculo nos referimos a una superficie o área que está contenida dentro de una circunferencia.
Instrumento muy útil
Desde su invención en el año 200 a. C. por parte de los chinos, el compás ha sido uno de los inventos más usados en la geometría y en otras áreas. Su utilidad ha ido más allá del trazado de arcos y circunferencias, también permite transportar medidas y puede emplearse en la construcción de polígonos y en el cálculo de distancias empleado por la navegación.
Elementos de la circunferencia
Los elementos principales de una circunferencia se detallan a continuación:
Centro: es el punto que se ubica a la misma distancia de todos los puntos que conforman la circunferencia.
Radio: es el segmento de recta que une al centro con cualquiera de los puntos de la circunferencia.
Cuerda: es la recta que une dos puntos de la circunferencia.
Diámetro: es el segmento de recta que une dos puntos de la circunferencia y pasa por el centro. Su longitud es igual al doble del radio.
Semicircunferencia: es la mitad de la circunferencia. El diámetro divide a la circunferencia en dos semicircunferencias.
Arco: es una porción de la circunferencia que se encuentra delimitada por una cuerda. Generalmente, a cada cuerda se le asocia el menor arco que delimita.
Relaciones entre rectas y circunferencias
Entre una circunferencia y una recta pueden darse tres tipos diferentes de relación:
Recta exterior: es aquella recta que nunca corta a la circunferencia.
Recta tangente: es aquella recta que corta a la circunferencia en uno de sus puntos.
Recta secante: es aquella recta que corta a la circunferencia en dos de sus puntos.
Para trazar circunferencias empleamos el compás y debemos seguir los siguientes pasos:
Conocer la distancia que hay desde el centro de la circunferencia hasta alguno de sus puntos (el radio). Para esto puedes usar una regla y abrir el compás a dicha distancia. Otra forma de hacerlo es trazar el segmento de recta igual a la longitud del radio deseado, colocar la aguja de acero sobre uno de los extremos y abrir el compás hasta que la mina de grafito toque el otro extremo.
Apretar con suavidad la aguja de acero contra el papel para que no se mueva y girar el otro brazo de forma firme para trazar la circunferencia.
Marcar el centro de la circunferencia que será el mismo punto donde se apoyó la aguja de acero durante el trazado de la circunferencia.
Área del círculo
Para calcular el área de un círculo simplemente necesitamos conocer la longitud de su radio. La fórmula es la siguiente:
Donde:
A = área del círculo π = número pi r = longitud del radio
Como el número pi (π) es un número irracional, sus decimales son infinitos (3,141592653589793238…), por lo tanto, para efectos de cálculo de área se suele aproximar a 3,14.
¿Sabías qué?
Existe otra fórmula para calcular el área del círculo en función de su diámetro: .
– Calcula el área del siguiente círculo.
De acuerdo a la figura, la longitud del radio es 5 cm, por lo tanto, podemos aplicar la fórmula de área.
¡A practicar!
1. Calcula el área de los siguientes círculos.
a)
Solución
A = 50,24 cm2
b)
Solución
A = 254,34 cm2
c)
Solución
A = 12,56 m2
d)
Solución
A = 314 mm2
e)
Solución
A =153,86 cm2
2. ¿Cuánto debe medir el radio de una circunferencia para que su área sea igual a 113,04 cm2? a) 5 cm
b) 3 cm
c) 6 cm
d) 11 cm
Solución
c) 6 cm
RECURSOS PARA DOCENTES
Artículo “Circunferencia”
El artículo explica los elementos principales de la circunferencia y la relación que tiene esta con el número pi. En el artículo también se explica como calcular la longitud de una circunferencia y determinar el área de un círculo.
El artículo plantea de forma resumida cada uno de los elementos de un círculo como el semicírculo y el segmento circular. También presenta ilustraciones de cada uno para explicar el concepto de manera más clara.
Podemos observar polígonos en múltiples objetos de nuestro alrededor. Estos son muy diversos y los hay con lados y ángulos iguales o desiguales entre sí. Son elementos fundamentales de la geometría y su conocimiento es esencial en diversos campos del conocimiento, como la ingeniería o la arquitectura.
¿Qué es un polígono?
En geometría, un polígono es una figura geométrica plana delimitada por un número finito de segmentos rectos.
¿Sabías qué?
La palabra “polígono” proviene del griego antiguo que quiere decir “muchos ángulos”.
Los polígonos presentan los siguientes elementos:
Lados: son los segmentos rectos que conforman al polígono.
Vértices: son los puntos en común entre dos lados consecutivos.
Diagonales: son los segmentos que unen a dos lados no consecutivos de un polígono.
Ángulos interiores: están formados por dos lados consecutivos en el interior del polígono.
Ángulos exteriores: están formados en el exterior del polígono entre un lado y la prolongación de otro lado consecutivo.
Polígonos regulares y sus tipos
Un polígono regular tiene lados con la misma longitud. Se caracterizan también porque sus ángulos internos y externos también son iguales. Otra característica es que poseen la misma cantidad de ejes de simetrías que de lados. Las diagonales en este tipo de polígonos tienen la misma longitud y siempre son interiores.
Todo polígono regular puede estar circunscrito en una circunferencia, lo que quiere decir que cada uno de sus vértices corresponde a un punto de la circunferencia. Mientras más lados tenga el polígono, más se va a aproximar a la forma de la circunferencia. Por esta razón, se asocia a la circunferencia (de forma informal) a un polígono de infinitos lados.
Área de polígonos regulares
Para medir el área de los polígonos es necesario conocer las definiciones de perímetro y apotema.
Perímetro: es la suma de los lados que forman una figura geométrica. En el caso de los polígonos regulares, se calcula al multiplicar el número de lados por la longitud de uno de sus lados.
Donde:
P: perímetro n: número de lados del polígono regular. L: longitud de uno de los lados del polígono.
Apotema: es la distancia perpendicular desde el centro de un polígono hasta uno de sus lados.
El área de un polígono regular se define como el producto de su perímetro por la apotema (a) dividido entre dos.
Donde:
A: área
P: perímetro
a: apotema
– Ejemplo:
Calcular el área de un pentágono cuyos lados miden 6 cm y su apotema es de 4,13 cm.
Lo que debemos hacer es calcular primero el perímetro para luego sustituir en la fórmula junto con la apotema para calcular el área.
El perímetro del apotema es 30 cm, al sustituir en la fórmula de área nos queda:
El área del pentágono es de 61,95 cm2.
¿Sabías qué?
El Departamento de Defensa de los Estados Unidos es un edificio en forma de Pentágono que mide 140.000 metros cuadrados aproximadamente.
Polígonos irregulares y sus tipos
En los polígonos irregulares se pueden cumplir algunas de estas condiciones:
– Tener sus lados con igual longitud pero sus ángulos internos diferentes.
– Tener sus ángulos de igual medida pero sus lados con diferente longitud.
– Tener sus lados con diferente longitud y sus ángulos internos con diferente medida.
Ejemplos de polígonos irregulares
Rombo
El rombo tiene los cuatro lados con igual longitud pero sus cuatro ángulos internos son diferentes: solo los ángulos opuestos de este polígono son iguales. Por eso se trata de un polígono irregular.
Rectángulo (no cuadrado)
Es un cuadrilátero con sus cuatro ángulos iguales (90°), pero sus lados tienen diferente longitud entre sí. Solo los lados paralelos comparten la misma longitud.
Triángulo (no equilátero)
Todo triángulo con un ángulo interior diferente de 60 grados es un polígono irregular.
Triángulos regulares e irregulares
Según sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos. Los equiláteros son los únicos triángulos que cumplen con las características de un polígono regular. Los triángulos escalenos son aquellos en los que las longitudes de sus lados y la medida de sus ángulos internos son diferentes, por lo tanto no son polígonos regulares. Por otra parte, los triángulos isósceles al contar solo con dos lados y dos ángulos iguales tampoco son considerados como polígonos regulares.
Perímetro de polígonos
Calculamos el perímetro de los polígonos regulares a través de la fórmula planteada anteriormente:
En cambio, en los polígonos irregulares, cuyos lados generalmente son diferentes, esta ecuación no siempre aplica. Para lo cual debemos sumar de forma separada las longitudes de cada uno de los lados.
Por ejemplo, para calcular el perímetro del siguiente triángulo isósceles simplemente sumamos cada una de las longitudes de sus lados.
El perímetro de este triángulo irregular es de 160 cm.
¡A practicar!
1. Determina el perímetro y el área de los siguientes polígonos regulares según los datos mostrados.
a) Un eneágono regular cuyos lados miden 7 cm y su apotema 9,62 cm.
Solución
P = 63 cm
A = 303,03 cm2
b) Un pentágono regular cuyos lados miden 6 cm y su apotema 4,13 cm.
Solución
P = 30 cm
A = 61,95 cm2
c) Un heptágono regular cuyos lados miden 8 cm y su apotema 8,31.
Solución
P = 56 cm
A = 232,68 cm2
d) Un triángulo regular (equilátero) cuyos lados miden 5 cm y su apotema 1,44 cm.
Solución
P= 15 cm
A = 10,8 cm2
e) Un decágono regular cuyos lados miden 3 cm y su apotema 4,62 cm.
Solución
P= 30 cm
A = 69,3 cm2
f) Un dodecágono regular cuyos lados miden 4 cm y su apotema 7,46 cm.
Solución
P= 48 cm
A = 179,04 cm2
g) Un hexágono regular cuyos lados miden 7 cm y su apotema 6,06 cm.
Solución
P= 42 cm
A = 127,26 cm2
h) Un octágono regular cuyos lados miden 2 cm y su apotema 2,41 cm.
Solución
P= 16 cm
A = 19,28 cm2
i) Un endecágono regular cuyos lados miden 3 cm y su apotema 5,11 cm.
Solución
P= 33 cm
A = 84,315 cm2
j) Un cuadrado cuyos lados miden 4 cm y su apotema 2 cm.
Solución
P= 16 cm
A = 16 cm2
2. ¿A qué polígono con una apotema de 4,33 cm le corresponde un área de 64,95 cm2.
a) Un decágono de 2 cm de lado.
b) Un hexágono de 5 cm de lado.
c) Un pentágono de 7 cm de lado.
d) Un octágono de 4 cm de lado.
Solución
b) Un hexágono de 5 cm de lado.
3. ¿Qué polígono irregular tiene sus lados de igual longitud pero sus ángulos internos son diferentes?
a) Círculo
b) Cuadrado
c) Rectángulo
d) Rombo
Solución
d) Rombo
RECURSOS PARA DOCENTES
Artículo “Perímetro de los polígonos”
Este artículo define qué es un polígono, cuáles son sus clasificaciones y cómo se calcula su el perímetro. También plantea una serie de ejercicios para resolver.
Micrositio “Tarjetas Educativas – Geometría y medidas”
En este micrositio se puede encontrar una serie de tarjetas interactivas que resumen los elementos principales de la geometría, como los polígonos y sus principales características.
Existen diferentes magnitudes físicas como la longitud, el área, el volumen y el tiempo que emplean unidades de medidas particulares. En el caso de la longitud, mide la distancia entre dos puntos; el área mide la superficie; el volumen mide el espacio y el tiempo mide la duración de un suceso. Desde 1960 se creó el Sistema Internacional de Unidades que busca que todos los países usen las mismas unidades de medición: el metro, el kilogramo, el metro cuadrado, el metro cúbico, el segundo, etc.
Instrumentos de medición
Medir es comparar con base en un patrón, de manera que para poder medir usamos instrumentos que se encuentran calibrados y presentan ciertas características como el rango de medición que soportan y que se indica en su cota superior e inferior. Algunos ejemplos de instrumentos que se usan en la escuela son la regla, la escuadra y el transportador. Los dos primeros miden longitudes y el último mide tamaños de ángulos.
El tiempo
Para medir el tiempo usamos los relojes y cronómetros. Los relojes pueden ser análogos cuando emplean manecillas o digitales cuando no las emplean. La lectura del tiempo en estos casos se realiza de diferente manera. En un reloj analógico, la esfera se encuentra dividida en 12 horas que a su vez también presenta su división en minutos. Por otro lado, el formato de 24 horas es un sistema de medición que divide el día en 24 horas y comienza a partir de la medianoche hasta la medianoche siguiente.
Conversión de unidades
En el mundo existen diferentes unidades de medidas que pueden estar o no relacionados. Esto sucede con el metro, unidad usada para medir longitudes. El metro presenta submúltiplos como el decímetro, el centímetro y el milímetro; y múltiplos como el kilómetro, el hectómetro y el decámetro. Por medio de diagramas podemos transformar unidades de acuerdo a la relación que existan entre ellas, por ejemplo, las unidades de longitud y de capacidad aumentan de 10 en 10 y las de tiempo (segundo, minuto y hora) aumentan de 60 en 60.
Podemos medir muchas cosas como la altura de un edificio, el tiempo que tardamos en llegar a un lugar o el volumen de una pelota. Todo esto es posible gracias a las unidades de medición, que son referencias convencionales de una magnitud física. Las magnitudes más comunes son la longitud, el área, el volumen y el tiempo.
Longitud
Es una magnitud física que permite medir la distancia entre dos puntos, como la distancia que hay entre la casa y la escuela. Una de las unidades de longitud más aceptada es el metro (m). El metro puede multiplicarse varias veces sobre sí mismo para formar unidades mayores o múltiplos y también puede dividirse varias veces en partes iguales para formar unidades más pequeñas de referencia denominadas submúltiplos. Por ejemplo:
El kilómetro (km) es un múltiplo del metro porque equivale a 1.000 veces su tamaño.
El centímetro (cm) es un submúltiplo porque equivale a la centésima parte de un metro.
No es tan reciente
El metro como unidad de medida de longitud se empezó a utilizar durante la Revolución francesa, a finales del siglo XVIII, sin embargo, se oficializó 100 años después cuando la Comisión Internacional de Pesos y Medidas lo definió como la distancia que existía entre dos marcas ubicadas en una barra de platino e iridio. Hoy día, el metro es definido como la distancia recorrida por la luz en el vacío durante 1/299792458 de segundo.
Área o superficie
Es una magnitud que mide la extensión o superficie de una figura, por ejemplo, la superficie total del piso de una casa o de un campo de fútbol. Mientras mayor sea la región encerrada por una figura mayor será su área. Las unidades de medida comúnmente se expresan elevadas al cuadrado como el metro cuadrado (m2), el kilómetro cuadrado (km2) o el centímetro cuadrado (cm2).
Volumen
Es un tipo de magnitud que mide el espacio que ocupa un cuerpo: a mayor volumen, mayor será el espacio que ocupe. Las unidades de medidas más usadas son las elevadas al cubo como el metro cúbico (m3) y el centímetro cúbico (cm3).
Se estima que el volumen total del agua en la Tierra es de 1.386 millones de kilómetros cúbicos (km3).
Tiempo
Es una magnitud física que permite medir la duración o separación de acontecimientos. Gracias al tiempo podemos medir cuánto dura un partido de fútbol o conocer qué pasó al comienzo o al final de una película.
Las medidas de tiempo más usadas son el segundo, el minuto y la hora.
Sistema Internacional de unidades (SI)
Es un sistema que busca la unificación de las unidades de medida usadas en diferentes países. A pesar de que la mayoría de ellos lo han adoptado como sistema de medida oficial, existen algunos que manejan sus propias unidades. Fue creado en 1960, en la XI Conferencia General de Pesas y Medidas celebrada en Francia.
Algunas unidades aceptadas por el Sistema Internacional de Medidas
Magnitud física
Unidad
Símbolo
Longitud
Metro
m
Volumen
Metro cúbico
m3
Área
Metro cuadrado
m2
Tiempo
Segundo
s
Masa
Kilogramo
kg
Temperatura
Kelvin
K
Unidades de medida extranjera
Muy pocos países no han adoptado al Sistema Internacional de Unidades como sistema de medida. De hecho, solo tres naciones no lo han declarado oficial en sus legislaciones: Estados Unidos, Liberia y Myammar.
Las unidades de medidas del Sistema Internacional no han sido las únicas empleadas en la medición. En la actualidad podemos usar otras, como las pulgadas, empleadas particularmente para identificar tornillos y medir pantallas de monitores y celulares.
El petróleo, por ejemplo, se suele medir en barriles y la mayoría de los biberones vienen graduados en onzas. Hay otras unidades de medidas usadas para fines específicos como la hectárea y el acre, empleadas para medir áreas de superficies.
Equivalencias de interés
1 pulgada = 2,54 centímetro
1 barril = 159 litros aproximadamente
1 onza = 28,35 gramos
1 hectárea = 10.000 metros cuadrados
1 acre = 4.046,86 metros cuadrados
Unidades de medidas usadas por los pueblos originarios
Nuestros pueblos originarios no eran la excepción si de medir las cosas se trataba. De hecho, cada una de las grandes civilizaciones precolombinas utilizaban unidades de medidas propias.
Los mayas tenían conocimientos avanzados en el campo de la astronomía, lo que les permitió elaborar su calendario por medio de medidas de tiempo propias. Gracias a esto, ellos podían calcular las estaciones y planificar el tiempo de las cosechas.
En el otro extremo del continente, los incas ya tenían un sistema de numeración propio: los quipus, que les permitieron realizar diversos cálculos matemáticos. En el campo de la medición, esta civilización también empleaba sus propias unidades: por ejemplo, para medir longitudes usaban partes del cuerpo como referencia, como la rikra, que consistía en la distancia de los dos dedos pulgares con los brazos extendidos en sentido horizontal.
El área mide la extensión de una superficie, por eso permite saber información importante de las cosas, como el tamaño de un país o la cantidad de baldosas que se necesitan en el piso de una casa. De acuerdo al tipo de figura, el área puede calcularse a través de fórmulas o mediante la descomposición de las figuras en otras más sencillas.
Cálculo de áreas en figuras planas
El área es la superficie o extensión comprendida en una figura. En el caso de las figuras planas, para calcular su área es necesario reconocer cada figura, porque su cálculo es diferente en cada caso.
Triángulos
En los triángulos se cumple que su área es igual a la base por la altura y el resultado se divide entre dos:
– Calcula el área del siguiente triángulo:
Es importante tener en cuenta que al multiplicar dos unidades de longitud (en este caso centímetros) escribimos el producto al cuadrado; es decir, colocamos el exponente “2” arriba de la unidad de medida, por eso se escribe cm2, y se lee “centímetros cuadrados”.
El área y las unidades al cuadrado
En el Sistema Internacional de Unidades el área siempre se expresa en unidades de longitud elevadas al cuadrado, esto se debe a que el área es la medida de una superficie. Un área de 15 cm2 quiere decir que esa superficie está cubierta por 15 cuadrados que miden 1 cm en cada uno de sus lados. Otras unidades de área comunes son: mm2 (milímetros cuadrados), m2 (metro cuadrado) y km2 (kilómetro cuadrado).
El área de un cuadrado es igual a la multiplicación de dos de sus lados. Como los lados de un cuadrado son todos iguales, la fórmula también se puede expresar como la medida de un lado al cuadrado.
– Calcula el área del siguiente cuadrado
Es un cuadrado de nueve metros cuadrados de área.
Rectángulos y romboides
El área de los rectángulos y romboides es igual al producto de su base por su altura.
– Calcula el área del siguiente rectángulo:
Rombos
El área de un rombo es igual al producto de su diagonal mayor (D) y su diagonal menor (d) dividido entre 2.
– Calcula el área del siguiente rombo:
El área del rombo es de 22,5 centímetros cuadrados.
Trapecios
En el caso de los trapecios el área es igual a la suma de su base mayor y su base menor, el resultado se divide entre 2 y luego se multiplica por la altura.
– Calcula el área del siguiente trapecio:
El trapecio tiene un área de 48 milímetros cuadrados.
Polígonos regulares
Los polígonos regulares son figuras geométricas donde todos sus lados miden lo mismo. En todos los polígonos regulares se cumple que:
Donde:
N = número de lados del polígono regular.
L = longitud de uno de los lados.
ap = longitud de la apotema.
¿Sabías qué?
La apotema es la menor distancia que existe entre el centro de un polígono y cualquiera de sus lados.
– Calcula el área del siguiente polígono regular:
Observa que en este caso como el polígono regular tiene seis lados (hexágono) se coloca el número 6. El área de este hexágono es de 40,8 centímetros cuadrados.
¿Cómo calcular el área de un círculo?
Para determinar el área de un círculo se debe multiplicar el número pi (que aunque es un número infinito se redondea a 3,14) por el radio de la circunferencia elevado al cuadrado, es decir; . El área para un círculo con un radio igual a 2 cm, por ejemplo; se calcularía como .
Cálculo de áreas en figuras compuestas
Las figuras compuestas se llaman así porque están formadas por dos o más figuras geométricas. Para calcular el área en estas figuras debemos “separar” las figuras geométricas presentes y calcular por separado el área de cada una. El área total de la figura compuesta será igual a la sumatoria de las áreas de las figuras geométricas que la conformen.
– Calcula el área de la siguiente figura compuesta:
Lo primero para resolver es identificar las figuras geométricas presentes, en este caso es un triángulo (figura 1) y un rectángulo (figura 2).
Calculamos las áreas de las figuras por separado.
– Área del triángulo:
La altura es un dato del problema y es 2 cm, la base del triángulo tiene la misma longitud que la base mayor del rectángulo, por lo tanto tiene el mismo valor que es 5 cm. Calculamos el área según la fórmula de área para el triángulo:
– Área del rectángulo:
Calculamos con la fórmula de área para rectángulos.
El área total es igual a la sumatoria de las áreas de las figuras geométricas calculadas:
Quiere decir que el área de la figura compuesta es de 25 centímetros cuadrados.
¿Por qué es útil conocer el área?
Conocer la superficie del área tiene múltiples usos desde los cotidianos hasta lo científico. Por ejemplo, gracias al área podemos saber cuánta tela necesita un vestido, o cuántas baldosas son necesarias en la construcción de un piso. También se usa para realizar comparaciones, por ejemplo, con el área podemos comparar países de acuerdo a su tamaño. O, también, podemos estimar la superficie de un planeta de acuerdo a su forma.
Además, el área es un parámetro usado en otras fórmulas más avanzadas como los cálculos de presiones. Por otra parte, las diferentes medidas permiten cuantificar desde áreas de tamaños microscópicos hasta áreas del tamaño de una estrella.
¡A practicar!
1. Calcular el área de las siguientes figuras:
a)
Solución
A = 6 cm2
b)
Solución
A = 20 m2
c)
Solución
A = 18 cm2
d)
Solución
A = 61,5 mm2
e)
Solución
A = 79 cm2
2. ¿A cuál de estas figuras corresponde la fórmula de área ?
a)
b)
c)
d)
e)
Solución
d) Es un romboide.
RECURSOS PARA DOCENTES
Video “Resolución del área”
En este video se explica cómo resolver cálculos de áreas en figuras compuestas y se muestran dos de las fórmulas de área más usadas.