Las sucesiones son secuencias ordenadas de términos que siguen una determinada regla de recurrencia o patrón. Estas pueden ser aritméticas o geométricas. Las aritméticas tienen una diferencia con el término anterior en una cantidad constante, por ejemplo, 2, 4, 6, 8,… En cambio, en las geométricas cada término (excepto el primero) es múltiplo del término anterior de la sucesión, por ejemplo, 2, 4, 8, 16, 32,… Las sucesiones se utilizan en las matemáticas, en entidades financieras, en ciencias naturales, en informática y hasta en el arte.
LA RECTA NUMÉRICA
La recta numérica es una representación gráfica unidimensional que nos permite ubicar los números reales (), lo cual resulta de gran utilidad para comparar valores o indicar soluciones de intervalos en las inecuaciones. Se caracteriza por poseer el cero centrado y se considera el origen de la recta; hacia la izquierda se ubican los números negativos y a la derecha los positivos. Entre dos números, será mayor el que esté más a la derecha. Existen métodos para representar con precisión algunos números radicales sobre la recta.
PLANO CARTESIANO
Es un sistema de representación bidimensional muy utilizado en matemática y otras áreas para la ubicación de puntos en el plano. Su nombre se debe al filósofo y matemático René Descartes, quien propuso su aplicación en el siglo XVII como una base del sistema de coordenadas rectangulares. Está formado por un eje horizontal denominado eje de las abscisas, que tradicionalmente denotamos con la letra x; y un eje vertical llamado eje de las ordenadas, que por lo general representamos con la letra y. Cada eje se comporta como una recta numérica que se prolonga hasta el infinito.
FUNCIONES
Son expresiones matemáticas que indican una relación de correspondencia entre un conjunto de partida y un conjunto de llegada. Para que una relación sea considerada función, debe cumplirse que cada elemento del dominio tenga una sola imagen en el conjunto de llegada. Las funciones pueden ser inyectivas, sobreyectivas o biyectivas.
FUNCIÓN LINEAL
La función lineal es un tipo de funciónpolinómica cuyo mayor grado de exponente es 1. Su representación gráfica es una línea recta que puede ser descrita a partir de la ecuación explícita: y = mx + b, donde m es la pendiente de la recta y b es su ordenada al origen. Si conocemos la función de la recta podemos graficarla por medio una tabla de valores que cumpla con las soluciones de la función.
PROPORCIONES
Las proporciones son una medida que relaciona a dos razones mediante una constante. El cociente que resulta de dividir una razón de proporción se conoce como constante de proporcionalidad. Dos magnitudes son directamente proporcionales si al aumentar una cantidad, la otra también aumenta; o si al disminuir una cantidad, la otra también disminuye. En cambio, dos magnitudes son inversamente proporcionales si al incrementar el valor de una, el valor de la otra disminuye; o si al disminuir el valor de una, la otra aumenta.
Cuando dos magnitudes se relacionan de manera directamente proporcional pueden representarse como una función de expresión algebraica y = mx + b. Estas funciones pueden identificarse rápidamente por medio de su gráfica, pues en el plano cartesiano siempre estarán representadas con una línea recta ascendente o descendente.
GRÁFICA DE UNA FUNCIÓN
Si conocemos la función matemática que relaciona a dos variables, podemos construir su gráfica, o al menos una aproximación de ella. Para esta tarea solo calculamos, a partir de la función, una serie de puntos que cumplan con la solución. Debemos tener en cuenta que cuantos más puntos utilicemos para graficar una función, mayor precisión obtendremos.
Algunas funciones matemáticas tienen gráficas características en el plano cartesiano, por ejemplo:
Funciones lineales
f(x) = mx + b
Funciones potenciales
f(x) = x2
Funciones exponenciales
f(x) = 2x
Funciones irracionales
f(x) = √x
Funciones racionales
f(x) = 1/x
Funciones trigonométricas
f(x) = sen x
¿Qué es una función lineal?
Una función lineal es una función cuya gráfica es igual a una línea recta que pasa por el origen de coordenadas. Su expresión algebraica es la siguiente:
f(x) = mx
Donde:
m = constante de proporcionalidad o pendiente de la recta
¿Sabías qué?
Las funciones lineales también son llamadas “funciones de proporcionalidad directa”.
– Ejemplo:
Un tren tiene una velocidad media de 160 km/h. La relación entre la distancia y el tiempo se puede observa en la siguiente tabla:
Tiempo (h) = x
0
1
2
3
4
Distancia (km) = y
0
160
320
480
640
Por medio de esta tabla vemos que las dos magnitudes (tiempo y distancia) son directamente proporcionales porque a medida que una aumenta, la otra también lo hace. Si realizamos una gráfica entre estas dos magnitudes nos resulta una línea recta como esta:
Nota que la recta pasa por el origen (0, 0) y va en aumento, por lo tanto, la recta es continua y creciente. La constante de proporcionalidad es 160, así que la expresión algebraica de esta función es:
f(x) = 160x
Función afín
Una función afín es un tipo de función lineal que no pasa por el origen de coordenadas. Su expresión algebraica es:
f(x) = mx + b
Donde:
m = pendiente de la recta
b = ordenada en el origen: la recta corta al eje de ordenada en el punto (0, n)
– Ejemplo:
Se ha determinado el pago de agua en una casa. Cada recibo indica que por cada metro cúbico de agua consumida se pagan $ 5, mientras que por la distribución y depuración se pagan $ 10. Con estos datos elaboramos la siguiente tabla:
Agua consumida (m3) = x
0
1
2
3
4
Pago ($) = y
10
15
20
25
30
La expresión algebraica de esta función es f(x) = 5x + 10, cuya gráfica se muestra a continuación:
Observa que la línea recta no pasa por el origen, sino que corta en el punto (0, 10).
ecuación de la recta
La ecuación de la recta es una expresión algebraica que describe una línea recta y relaciona la variación de y con respecto a x, la cual se puede graficar en el plano cartesiano según los componentes en cada uno de los ejes. De manera general la ecuación de una recta se representa así:
y = mx + b
Donde:
y = eje de las ordenadas
x = eje de las abscisas
m = pendiente de la recta
b = punto de intersección de la recta con el eje y
Para determinar la pendiente de la recta usamos la fórmula:
– Ejemplo:
Hallemos la pendiente de la recta que pasa por los puntos A (−1, 1) y B (1, 7).
Primero identificamos los valores de los ejes. Como ya sabemos, los pares ordenados siempre tienen primero la coordenada del eje x y luego de la coma va la coordenada del eje y; entonces:
En el punto A (−1, 1), x1 = −1 y y1 = 1
En el punto B (1, 7), x2 = 1 y y2 = 7
Ahora solo sustituimos en la fórmula general:
Sabemos que la ecuación de esta recta es y = mx + b porque no pasa por el origen, es decir, representa una función afín. También sabemos que la pendiente (m) es 3, por lo tanto, y = 3x + b; así que faltaría hallar el valor de b.
Para calcula b podemos tomar cualquiera de los puntos A o B. Planteamos la ecuación y luego despejamos.
De este modo sabemos que la recta que pasa por los puntos A y B tiene por ecuación:
y = 3x + 4
Pendiente de la recta y = mx
Para un función lineal f(x) = mx, el coeficiente m se llama pendiente y representa el aumento o disminución de la variable dependiente en relación a la variable independiente.
– Ejemplo:
En la función f(x) = −3x, la pendiente es −3.
En la función f(x) = 5x, la pendiente es 5.
En una gráfica, la pendiente de una recta representa la inclinación de la misma respecto del eje x. La podemos hallar al dividir el valor de la variable dependiente entre el valor de la variable independiente.
– Ejemplo:
Esta gráfica muestra tres líneas rectas que pasan por el origen, así que cada una representa a un función lineal de forma f(x) = mx.
Para saber la pendiente de la recta solo debemos fijarnos en cualquiera de sus puntos y hallar su cociente.
Recta a
Recta b
Recta c
Valor de la pendiente
Si m es positiva, significa que la recta es creciente de izquierda a derecha.
Si m es negativa, significa que la recta es decreciente de izquierda a derecha.
Si m es cero, significa que la recta no posee inclinación respecto al eje horizontal, es decir, se trataría de una recta paralela al eje horizontal.
¿cómo Graficar una función lineal?
Dada la ecuación de la recta y = 2x + 3. La pendiente es 2 y el punto de intersección de la recta con el eje y es igual a 3. Para determinar el valor de y es necesario darle valores a x y efectuar la operación correspondiente, de la siguiente manera:
Si x = 1 y = 2(1) + 3 y = 2 + 3 y = 5
Si x = 2 y = 2(2) + 3 y = 4 + 3 y = 7
Si x = 3 y = 2(3) + 3 y = 6 + 3 y = 9
Si x = −1 y = 2(−1) + 3 y = −2 + 3 y = 1
Si x = −2 y = 2(−2) + 3 y = −4 + 3 y = −1
Si x = −3 y = 2(−3) + 3 y = −6 + 3 y = −3
Para obtener una recta bien definida es recomendable utilizar al menos tres puntos. Será de gran ayuda realizar una tabla de valores en la que observes las coordenadas de cada punto como esta:
x
y
Punto
−3
−3
(−3, −3)
−2
−1
(−2, −1)
−1
1
(−1, 1)
1
5
(1, 5)
2
7
(2, 7)
3
9
(3, 9)
Si usamos esta tabla como guía es más sencillo realizar la gráfica de la función.
Nota que la recta se corta en el punto (0, 3), pues b = 3.
¡A practicar!
1. Dadas las siguientes funciones, determina:
a. Pendiente (m)
b. Ordenada al origen (b)
f(x) = 2x − 6
Solución
b = −6
m = 2
f(x) = −x + 4
Solución
b = 4
m = −1
f(x) = 13/5x − 2
Solución
b = −2
m = 13/5
2. Construye una tabla con los siguientes valores de x para cada función.
x = −2, −1, 0, 1, 2, 3
f(x) = −x + 2
Solución
x
y
−2
4
−1
3
0
2
1
1
2
0
3
−1
f(x) = 5x − 3
Solución
x
y
−2
−13
−1
−8
0
−3
1
2
2
7
3
12
f(x) = 3x
Solución
x
y
−2
−6
−1
−3
0
0
1
3
2
6
3
9
f(x) = −2x + 1
Solución
x
y
−2
5
−1
3
0
1
1
−1
2
−3
3
−5
3. Realiza la gráfica de las siguientes funciones:
f(x) = −x + 2
f(x) = −2x + 1
Solución
f(x) = −x + 2
f(x) = −2x + 1
4. Dada la siguiente gráfica, determina:
a. Pendiente de la recta.
b. Ecuación de la recta.
Solución
a. m = −1
b. y = −x + 9
RECURSOS PARA DOCENTES
Artículo “Función Lineal”
En este artículo podrás encontrar ejercicios relacionados con la construcción de gráficas de funciones lineales a partir de su ecuación explícita, además de problemas de enunciados.
El cálculo de áreas y perímetros de figuras geométricas se hace a partir de la longitud de sus lados. El área de los rectángulos se calcula como la multiplicación de la base por la altura, y la de los triángulos se define como la multiplicación de la base por la altura dividido por dos. Cuando se calculan los perímetros se recurre a la sumatoria de la longitud de los lados, independientemente de la figura que sea.
triángulos
Los triángulos son clasificados respecto a sus lados como equiláteros, isósceles y escalenos; y respecto a sus ángulos como acutángulos, rectángulos y obtusángulos. La suma de los ángulos internos de un triángulo es siempre igual a 180º. Los triángulos congruentes son aquellos que son isométricos entre sí, es decir, poseen las mismas dimensiones.
plano, punto y segmento
Un plano es un conjunto infinito de puntos y segmentos dispuestos de manera bidimensional. Para formar un plano se precisan tres puntos, una recta y un punto o dos rectas no coincidentes. Para ubicar un punto se utiliza un sistema de coordenadas denominado eje cartesiano, en el cual se deben considerar los valores de X e Y. En el sistema de coordenadas, se pueden distinguir cuatro cuadrantes delimitados por los ejes.
Circunferencia
La circunferencia es una figura geométrica que mantiene todos sus puntos equidistantes de su centro. Para calcular el área de una circunferencia se recurre a la siguiente fórmula . Donde r es el radio, y π corresponde al número pi. Para la construcción de circunferencias se utiliza un compás: se realiza un segmento con la longitud del radio y a partir de allí se genera el arco completo.
Transformaciones isométricas
La ampliación y la reducción son transformaciones en las dimensiones de las figuras geométricas sin alterar las propiedades de la figura original. Las transformaciones isométricas como la rotación y la traslación permiten variar la posición de la figura en el plano sin alterar sus dimensiones. Hay figuras geométricas que poseen uno o más ejes de simetría en donde cada uno de sus puntos opuestos se encuentran a una misma distancia entre sí.
PRISMAS Y PIRÁMIDES
Los prismas son figuras geométricas tridimensionales formadas por dos caras o bases iguales y paralelas que se encuentran unidas por paralelogramos. Las pirámides presentan una base en la que todas sus caras son triángulos que se encuentran unidos en un vértice. Para su construcción se realiza primero la base y luego la base paralela (en el caso de un prisma) o el vértice (en el caso de una pirámide) a una determinada altura. Por último, se unen las bases por paralelogramos o triángulos según corresponda al tipo de figura.
El plano, el punto y la recta son conceptos abstractos, lo que quiere decir que no se definen; sin embargo, son los pilares fundamentales de la geometría. Un segmento es un fragmento de recta que se encuentra delimitadas entre dos puntos. Todos estos sistemas pueden representarse en sistemas de coordenadas que tienen diferentes aplicaciones.
¿qué es un plano?
Un plano es un conjunto infinito de puntos y rectas expresado en dos dimensiones. Por lo tanto, no tiene volumen ya que es una superficie bidimensional.
¿Cuándo se puede definir un plano?
Para definir un plano se necesita de alguno de los siguientes elementos geométricos:
Tres puntos no alineados.
Una recta y un punto exterior a ella.
Dos rectas no coincidentes.
sistema de coordenadas
Un sistema de coordenadas es la utilización de dos ejes cartesianos coincidentes en un punto denominado origen (0;0). Esta representación sirve para poder ubicar un punto o representación geométrica. Los ejes se representan como X, al eje de las abscisas, y como Y, al eje de las ordenadas.
Este sistema de coordenadas es uno de los más usados hoy en día y fue inventado el el siglo XVII por el filósofo y matemático francés René Descartes. En este sistema se emplea un plano cartesiano que funciona como un mapa en el cuál cada punto está relacionado a las coordenadas determinadas por dos rectas numéricas perpendiculares denominadas ejes.
¿Sabías qué?
En la astronomía se utilizan los sistemas de coordenadas para expresar la ubicación de forma correcta de planetas y estrellas.
Para ubicar un punto en el sistema de coordenadas se debe especificar tanto la coordenada X como la Y. Un punto se representa con una letra mayúscula y presenta la siguiente estructura P(x;y). Para que se pueda ubicar en el sistema de coordenadas se utilizan los valores correspondientes a cada una de estas.
Los cuadrantes
En el sistema de coordenadas se puede hacer una distinción entre cuatro cuadrantes como se ve en la imagen. Ahí también se ven representados ambos ejes de coordenadas.
Los cuadrantes son utilizados comúnmente en la geometría para diferenciar la ubicación de diferentes ángulos:
El primer cuadrante estará comprendido entre 0º y 90º. Está formado por las cordenadas X positivas y las coordenadas Y positivas. Por ejemplo, el punto P(3;5) corresponde a este cuadrante.
El segundo cuadrante estará comprendido entre 90º y 180º. Está formado por las coordenadas X negativas y las coordenadas Y positivas. Por ejemplo, el punto F(−3;5) corresponde a este cuadrante.
El tercer cuadrante estará comprendido entre 180º y 270º. Está formado por las coordenadas X negativas y las coordenadas Y negativas. Por ejemplo, el punto H(−3;−5) corresponde a este cuadrante.
El cuarto cuadrante estará comprendido entre 270º y 360º. Está formado por las coordenadas X positivas y las coordenadas Y negativas. Por ejemplo, el punto M(3;−5) corresponde a este cuadrante.
Ejemplo de ubicación de puntos en el sistema de coordenadas
Ubicar en el sistema de coordenadas el punto P(3;5).
Para hacerlo se debe indicar primero cuál es el valor correspondiente a X y cuál es el valor correspondiente a Y:
X = 3, trazamos una línea vertical en el valor de 3 en el eje X.
Y = 5, trazamos una línea horizontal en el valor de 5 del eje Y.
La intersección de las dos rectas será el punto correspondiente.
aplicación de los sistemas de coordenadas
Los sistemas de coordenadas tienen una gran cantidad de aplicaciones, no solo matemáticas. Estos se encuentran como representaciones de movimiento en física, como funciones de ingreso y egreso en contabilidad, o para representaciones de vida media en biología, entre otras cosas.
Funciones en sistemas de coordenadas
Una de las principales aplicaciones de los sistemas de coordenadas es la representación de funciones matemáticas. Estas son representaciones de Y en función de X. En la siguiente imagen, se muestran ejemplos de gráficas de funciones cuadráticas.
¡A practicar!
1. ¿A qué cuadrante corresponde cada uno de los siguientes puntos.
a) S(4;3)
Solución
Primer cuadrante.
b) T(1;−5)
Solución
Cuarto cuadrante.
c) D(−2;−8)
Solución
Tercer cuadrante.
d) R(−1;7)
Solución
Segundo cuadrante.
2. ¿Cuántas coordenadas se necesitan para representar un punto?
Solución
Dos
3. ¿Quién inventó el sistema de coordenadas?
Solución
René Descartes
4. ¿Cómo se denominan a los ejes de coordenadas cartesianas?
Solución
Eje X y eje Y.
5.Ubicar en el mismo sistema de coordenadas los siguientes puntos
a) A(−2;3) b) B(0;1) c) C(4;-2)
RESPUESTAS
RECURSOS PARA DOCENTES
Artículo “Ejes cartesianos”
En este artículo se explica de manera muy didáctica la forma de ubicar puntos en el sistema de coordenadas. Además hay un complemento teórico sobre los ejes cartesianos, así como también ejercicios para practicar.
El plano cartesiano fue propuesto por René Descartes en el siglo XVII y desde entonces ha sido una herramienta empleada en múltiples áreas del conocimiento. Su uso radica principalmente en la ubicación de puntos en el plano y en el análisis de figuras geométricas.
¿QUÉ ES EL PLANO CARTESIANO?
El plano cartesiano es una representación gráfica de dos rectas numéricas que se intersecan de forma perpendicular, por lo que forman cuatro cuadrantes como se muestra:
En cada cuadrante del plano cartesiano podemos ubicar infinitos puntos, los cuales se definen mediante un par ordenado expresado de esta manera: (coordenada en x, coordenada en y).
El plano cartesiano está formado por un eje horizontal denominado eje de las abscisas, que tradicionalmente denotamos con la letra x; y un eje vertical llamado eje de las ordenadas, que por lo general representamos con la letra y. Cada eje se comporta como una recta numérica que se prolonga hasta el infinito.
Ambos ejes se intersecan a 90 grados en el origen (0, 0). Hacia la derecha del eje x están las coordenadas positivas y a la izquierda, las negativas. En el eje y tenemos las coordenadas positivas hacia arriba y las negativas hacia abajo. Además, debemos mostrar una escala sobre los ejes como se muestra a continuación.
UBICACIÓN DE PUNTOS EN EL PLANO
Los puntos a ubicar en el plano cartesiano deben venir expresados en pares ordenados, es decir, un valor que indique las coordenadas en x e y que tendrá dicho punto. Convencionalmente, el primer valor corresponde al eje x y el segundo al eje y. Por ejemplo, el par ordenado (−6, 5) significa que el punto se encuentra a 6 unidades a la izquierda del origen (0) y 5 unidades por encima del origen. Vemos los siguientes ejemplos:
Ubiquemos el punto (4, −3)
Al igual que en la recta numérica, podemos representar la escala de los números enteros de uno en uno. Ubicamos el primer valor que se indica en el par ordenado sobre el eje x, es decir, 4. Luego localizamos el segundo número del par ordenado, o sea, −3 en el eje y.
A continuación, trazamos dos líneas guías: una vertical que pase por la coordenada de x, y una horizontal que pase por la coordenada de y. A estas líneas se les conocen como proyecciones ortogonales. El lugar donde ambas líneas se intersecan es la ubicación del punto. Sin embargo, es frecuente que el plano cartesiano se dibuje sobre una hoja cuadriculada o papel milimetrado, de modo que ya se tengan todas las líneas guías y sea más fácil la ubicación del punto.
Uso de la escala
Puedes seleccionar una escala conveniente en los ejes para que puedas ubicar de manera sencilla los puntos; por ejemplo, si deseas ubicar el punto de coordenadas (1.500, −4.500), no resulta práctico que hagamos un plano y que contemos de 1 en 1 hasta 4.500 divisiones. En ese caso, podemos tomar cada división equivalente a 500 unidades.
Ubiquemos el punto (−1,5, 2)
El procedimiento a seguir para ubicar número decimales es el mismo que en el ejemplo anterior, sin embargo, tomaremos una escala diferente. Como las coordenadas a ubicar en el plano son −1,5 y 2; podemos asignarle a cada división un valor de 0,5 unidades como se muestra a continuación:
¿Sabías qué?
Se dice que las primeras ideas del plano cartesiano le surgieron a René Descartes a muy temprana edad mientras observaba una mosca en el techo y se preguntaba cómo podía indicar su posición en el plano a partir de dos coordenadas.
Ubiquemos el punto (8, 4)
Aplicamos de nuevo el mismo procedimiento, pero en esta ocasión, como se trata de números más elevados, tomaremos la escala de 2 en 2 unidades; es decir, que cada división, equivale a 2 unidades.
EMPLEO DEL PLANO CARTESIANO
Aunque en matemática es común que utilicemos el plano cartesiano para representar puntos, vectores o funciones al relacionar dos variables espaciales (posición en x y posición en y), el empleo del plano cartesiano no se limita solo a eso. En física, por ejemplo, se suele utilizar para relacionar la posición y el tiempo, o el comportamiento del voltaje en función de la resistencia. En geografía, puede ser aplicado para observar el crecimiento demográfico a lo largo del tiempo. En finanzas, por otra parte, es de utilidad para representar las ganancias de una empresa en función de sus ventas.
Diagramas en el plano
Estos diagramas pueden tener diversas aplicaciones, por ejemplo, de izquierda a derecha en la imagen observamos: 1) la representación de un número complejo como un par ordenado, 2) una campana gaussiana estudiada en estadística en distribuciones normales o 3) la superposición de tres gráficas que pueden ser ondas de vibraciones.
¡A practicar!
1. Ubica los siguientes puntos en el plano cartesiano:
a) (0,5, −2)
Solución
b) (5, −5)
Solución
c) (−12, 8)
Solución
d) Dada la siguiente gráfica, indica el par ordenado del siguiente punto en el plano cartesiano:
Solución
(10, −16)
RECURSOS PARA DOCENTES
Artículo “Plano cartesiano”:
Este artículo ofrece información sobre los elementos que conforman el plano cartesiano, así como también la explicación para ubicar puntos en coordenadas rectangulares.
En este artículo encontrarás el contenido relacionado con la representación puntos en el plano cartesiano, así como actividades lúdicas con aplicaciones del plano cartesiano.
El punto, la recta y el plano se denominan entes fundamentales de la geometría porque no tienen definición y su comprensión depende de comparaciones con elementos similares. El punto es adimensional y se nombra con letras mayúsculas del alfabeto. La recta está formada por infinitos puntos que se extienden en una misma dirección. Las rectas pueden ser paralelas, secantes o perpendiculares. El plano es un ente bidimensional, es decir, posee dos dimensiones y se suele nombrar con letras del alfabeto griego.
Ángulos
La región del plano comprendida entre dos semirrectas se denomina ángulo. De acuerdo a su medida pueden ser nulos (cuando miden 0°), agudos (cuando no son nulos y miden menos de 90°), rectos (cuando miden 90°), obtusos (cuando son menores a 180° y mayores a 90°) y llanos (cuando miden 180°). Se habla de dos ángulos complementarios cuando la suma de estos es igual a 90°, por otra parte, dos ángulos son suplementarios si la suma de ambos es igual a 180°. La sumatoria de los ángulos internos de un triángulo da 180°, mientras que en un cuadrilátero da 360°.
Polígonos
Los polígonos son figuras caracterizadas por estar delimitadas por segmentos finitos rectos denominados lados. Si todos sus lados tienen la misma longitud se denominan polígonos regulares, de lo contrario, se denominan polígonos irregulares. En el caso de los polígonos regulares se cumple que sus ángulos internos son iguales, lo mismo sucede con sus ángulos externos. Los polígonos regulares también se caracterizan por tener igual cantidad de ejes de simetrías que de lados y sus diagonales son todas internas y de la misma longitud.
Cuerpos geométricos
Los cuerpos geométricos pueden clasificarse en poliedros cuando todas sus caras son iguales y planas, y en cuerpos redondos cuando poseen al menos una cara curva. Sus elementos principales son las caras, las aristas y los vértices. Cada uno de los cuerpos geométricos posee su fórmula para determinar su volumen. De igual forma, cada uno de los cuerpos geométricos pueden representarse en construcciones de tres dimensiones.
Circunferencia y círculo
La circunferencia es una línea cerrada que sobresale por ser el perímetro del círculo. Por otra parte, el círculo es una figura geométrica que se encuentra delimitada por una circunferencia. Los elementos principales de una circunferencia son: centro, radio, cuerda, diámetro, semicircunferencia y arco. Entre una circunferencia y una recta pueden darse tres tipos diferentes de relación: recta exterior (cuando no toca ningún punto de la circunferencia), recta tangente (cuando toca un solo punto de la circunferencia) y recta secante (cuando atraviesa la circunferencia en dos puntos). El área de un círculo es igual al producto de el número pi por el radio de la circunferencia al cuadrado.
Aplicación de la geometría
Incontables son las disciplinas y las situaciones en las que se emplea la geometría. Desde que apareció esta rama de la matemática ha permitido resolver infinidad de problemas. El cálculo de áreas de superficies planas puede extenderse a situaciones cotidianas como el cálculo de la extensión de un terreno, esto se debe a que cada figura posee su fórmula particular. Lo mismo sucede con el cálculo de volumen y los cuerpos geométricos.
EL PUNTO ES EL ENTE FUNDAMENTAL DE LA GEOMETRÍA. UNA SUCESIÓN INFINITA DE PUNTOS FORMA UNA LÍNEA. SEGÚN LAS DIRECCIÓN QUE TENGAN ESTOS PUNTOS LAS LÍNEAS PUEDEN SER RECTAS, COMO LAS DEL BORDE DE UNA PANTALLA DE CELULAR; O PUEDEN SER CURVAS, COMO EL BORDE UN GLOBO. CUANDO EL PUNTO DE INICIO Y FIN SON EL MISMO EN UNA LÍNEA, DECIMOS QUE LA LÍNEA ES CERRADA, PERO SI ESTOS PUNTOS NO COINCIDEN, LA LÍNEA ES ABIERTA.
FIGURAS PLANAS
LAS FIGURAS PLANAS SOLO TIENEN DOS DIMENSIONES: ALTO Y ANCHO. EXISTEN DOS TIPOS DE FIGURAS PLANAS, LAS POLIGONALES Y LOS CÍRCULOS. LAS PRIMERAS ESTÁN FORMADAS POR LÍNEAS POLIGONALES CERRADAS, COMO UN CUADRADO O RECTÁNGULO. LAS SEGUNDAS ESTÁN FORMADAS POR LÍNEAS CURVAS CERRADAS, COMO EL CÍRCULO. TODOS LOS PUNTOS QUE CORRESPONDEN A LA LÍNEA CURVA SE ENCUENTRAN A LA MISMA DISTANCIA DEL CENTRO DE FIGURA. ESTA LÍNEA QUE DELIMITA AL CÍRCULO SE LLAMA CIRCUNFERENCIA.
FIGURAS TRIDIMENSIONALES
LAS FIGURAS TRIDIMENSIONALES OCUPAN UN LUGAR EN EL ESPACIO Y TIENEN TRES DIMENSIONES: ALTO, LARGO Y ANCHO. LAS FIGURAS TRIDIMENSIONALES TAMBIÉN SON LLAMADAS CUERPOS GEOMÉTRICOS Y EXISTEN DOS TIPOS: LOS POLIEDROS Y LOS CUERPOS REDONDOS. LOS PRIMEROS ESTÁN CONFORMADOS POR CARAS PLANAS COMO EL PRISMA Y LA PIRÁMIDE; Y LOS SEGUNDOS TIENEN SUPERFICIES CURVAS, COMO EL CILINDRO, LA ESFERA Y EL CONO.
POSICIÓN Y DESPLAZAMIENTO
LOS CUERPOS GEOMÉTRICOS, LOS PUNTOS, LAS FIGURAS Y LOS OBJETOS TIENEN UNA DETERMINADA POSICIÓN EN EL ESPACIO, PERO LA POSICIÓN NO SIEMPRE ES LA MISMA. DOS DE LOS MOVIMIENTOS MÁS COMUNES SON LA TRASLACIÓN Y LA ROTACIÓN. POR OTRO LADO, ES POSIBLE UBICAR CADA PUNTO EN EL ESPACIO GRACIAS A LOS EJES CARTESIANOS, UN CONJUNTO DE LÍNEAS QUE SE CRUZAN PARA DARNOS LAS COORDENADAS O POSICIÓN DE UN PUNTO.
OBSERVA LOS OBJETOS QUE TE RODEAN, ES PROBABLE QUE NO TE HAYAS DADO CUENTA PERO TODOS ESTÁN COMPUESTOS POR LÍNEAS, Y ESTAS, A SU VEZ, POR UNA SUCESIÓN DE PUNTOS. SEGÚN LA DIRECCIÓN QUE TOMEN ESTOS PUNTOS LAS LÍNEAS PUEDEN SER RECTAS O CURVAS.
¿QUÉ ES EL PUNTO?
EL PUNTO ES ENTE FUNDAMENTAL DE LA GEOMETRÍA, NO TIENE LONGITUD, NO TIENE ÁREA Y NO TIENE DIMENSIÓN. EL PUNTO ES SOLO UNA POSICIÓN EN EL ESPACIO. PODEMOS IDENTIFICAR LOS PUNTOS CON UNA LETRA MAYÚSCULA.
– EJEMPLO:
OBSERVA LA CUADRÍCULA, ¿CUÁNTOS PUNTOS HAY?
A, B, C, D, E, F Y G SON PUNTOS. HAY 7 PUNTOS.
LAS LÍNEAS Y SUS TIPOS
LA LÍNEA ES UNA SUCESIÓN DE INFINITOS PUNTOS. UNA LÍNEA SE ASEMEJA A UNA CUERDA QUE PUEDE SER RECTA O CURVA, ABIERTA O CERRADA PERO QUE ESTÁ FORMADA POR PUNTOS MUY PEQUEÑOS Y JUNTOS. LAS LÍNEAS TIENEN UNA DIMENSIÓN: LA LONGITUD.
SUCESIÓN DE PUNTOS
LÍNEA
TIPOS DE LÍNEAS
EXISTEN DOS TIPOS DE LÍNEAS QUE EXPRESAN SU FORMA:
LÍNEA RECTA: ES LA LÍNEA CUYOS PUNTOS ESTÁN ALINEADOS EN UNA MISMA DIRECCIÓN.
LÍNEA CURVA: ES LA LÍNEA CUYOS PUNTOS NO ESTÁN ALINEADOS EN UNA MISMA DIRECCIÓN. EXISTEN DOS TIPOS DE LÍNEAS CURVAS, LAS ABIERTAS, EN LAS QUE SU INICIO Y SU FINAL NO COINCIDEN, Y LAS CERRADAS, EN LAS QUE SU INICIO Y FINAL SÍ COINCIDEN.
ESTAS SON LÍNEAS CURVAS ABIERTAS.
ESTAS SON LÍNEAS CURVAS CERRADAS.
LÍNEA POLIGONAL: ES LA COMBINACIÓN DE LÍNEAS RECTAS QUE EN UN DETERMINADO PUNTO CAMBIAN DE DIRECCIÓN. EXISTEN DOS TIPOS DE LÍNEAS POLIGONALES, LAS ABIERTAS, EN LAS QUE SU INICIO Y SU FINAL NO COINCIDEN, Y LAS CERRADAS, EN LAS QUE SU INICIO Y FINAL SÍ COINCIDEN.
ESTAS SON LÍNEAS POLIGONALES ABIERTAS.
ESTAS SON LÍNEAS POLIGONALES CERRADAS.
¿SABÍAS QUÉ?
USAMOS UNA LÍNEA PARA REPRESENTAR LA DISTANCIA ENTRE DOS PUNTOS.
¿QUÉ ES UN SEGMENTO?
ES UNA LÍNEA RECTA LIMITADA POR DOS PUNTOS. EN LA IMAGEN HAY TRES SEGMENTOS: AB, CD Y FE.
¡IDENTIFIQUEMOS LÍNEAS!
OBSERVA ESTE DIBUJO, ¿QUÉ TIPO DE LÍNEAS PUEDES VER?
SOLUCIÓN
HAY MUCHAS LÍNEAS MÁS. ¡DESCÚBRELAS!
CONSTRUCCIÓN DE LOS DIFERENTES TIPOS DE LÍNEAS
PARA EL TRAZADO Y CONSTRUCCIÓN DE LAS DIFERENTES LÍNEAS DEBEMOS UTILIZAR ELEMENTOS GEOMÉTRICOS, COMO POR EJEMPLO, UNA REGLA O UNA ESCUADRA.
¡A PRACTICAR!
1. IDENTIFICA LAS SIGUIENTES LÍNEAS:
SOLUCIÓN
LÍNEA POLIGONAL CERRADA.
LÍNEA RECTA.
LÍNEA CURVA CERRADA.
LÍNEA POLIGONAL ABIERTA.
LÍNEA CURVA ABIERTA.
2. TRAZA LAS SIGUIENTES LÍNEAS:
UNA LÍNEA ROJA RECTA.
UNA LÍNEA VERDE POLIGONAL ABIERTA,
UNA LÍNEA AMARILLA CURVA ABIERTA.
UNA LÍNEA MORADA POLIGONAL CERRADA.
SOLUCIÓN
3. OBSERVA LA IMAGEN, IDENTIFICA LAS LÍNEAS QUE VES.
RECURSOS PARA DOCENTES
Artículo “El punto, la recta y el plano”
En el siguiente artículo hay información extra para ampliar los conceptos principales de la geometría.
El perímetro es el contorno de una figura geométrica. En el caso de los polígonos regulares, el perímetro lo calculamos al multiplicar la cantidad de sus lados por la longitud de uno de estos. Otra forma de calcular el perímetro es a través de la suma de cada uno de los lados de una figura. En cambio, el perímetro del círculo es igual a la multiplicación del número pi por el diámetro de la circunferencia. Existen también figuras compuestas que están formadas por dos o más figuras geométricas, para calcular su perímetro basta con sumar cada uno de los lados.
Ángulos
Uno de los elementos fundamentales para la geometría es el ángulo, el cual está formado por un par de semirrectas denominadas lados que tienen un origen común o vértice. Uno de los sistemas más usados para medir ángulos es el sistema sexagesimal, en el que medimos los ángulos en grados, minutos y segundos. De acuerdo a su tamaño, los ángulos pueden clasificarse en agudos, rectos, obtusos y llanos. Los agudos son mayores a 0° pero menores a 90°, los rectos miden 90°, los obtusos son mayores a 90° pero menores de 180° y los llanos miden siempre 180°.
Área
Para calcular superficies usamos el área, que es la extensión comprendida por una figura. Para cada figura plana existe una fórmula que permite determinar su área. En el Sistema Internacional de Unidades se emplea el metro cuadrado (m2) como unidad de medida de área, pero también podemos usar otras unidades derivadas, como el centímetro cuadrado (cm2) o el milímetro cuadrado (mm2). Podemos obtener el área de las figuras compuestas al descomponerlas en figuras geométricas más simples, para luego sumar las áreas de cada una.
Sistemas de referencia
Uno de los sistemas de referencias más usados es el sistema cartesiano, el cual está formado por dos ejes en el plano: uno horizontal denominado eje X o de las abscisas y otro vertical denominado eje Y o de las ordenadas. Para representar un punto en el plano cartesiano necesitamos sus coordenadas en el eje X y en el eje Y: la intersección de ambas coordenadas constituye su ubicación. Por otro lado, las figuras pueden experimentar transformaciones isométricas, es decir, cambios de posición y orientación que no afectan su forma. Estas transformaciones son: traslación, rotación y simetría.
Cuadriláteros
Un cuadrilátero es un polígono de cuatro lados, y aunque se pueden clasificar en varios grupos, comparten elementos en común: tienen cuatro ángulos, la suma de estos es siempre igual 360° y tienen dos diagonales que dividen al cuadrado en triángulos. De manera general, los cuadriláteros son clasificados como paralelogramos, trapecios y trapezoides. Los paralelogramos tienen sus lados opuestos paralelos y pueden ser cuadrados, rombos y rectángulos. Los trapecios tienen dos de sus lados paralelos y los trapezoides no tienen ningún lado paralelo.
Capacidad y volumen
El volumen es el espacio que ocupa un objeto mientras que la capacidad indica la cantidad que un objeto puede contener dentro de él. Todos los objetos tienen volumen pero no todos tienen capacidad. En el caso de los sólidos y los líquidos mientras mayor sea su volumen, mayor espacio van a ocupar. No es lo mismo el volumen de un grano de arroz que el de un edificio. Algunas unidades de volumen son el metro cúbico (m3), el centímetro cúbico (cm3) y milímetro cúbico (mm3), entre otras. El litro es una medida de capacidad que equivale a 1.000 cm3.
La circunferencia
La circunferencia es una curva plana con todos sus puntos ubicados a la misma distancia del origen o centro. No debe ser confundida con el círculo que corresponde al área contenida dentro de ella, es decir, la circunferencia es el perímetro del círculo. Presenta ciertos elementos como el radio, el diámetro, la tangente, la cuerda, el arco y la semicircunferencia. Uno de los instrumentos usados para su trazado es el compás.
La ubicación espacial nos sirve para conocer dónde estamos con respecto a otras personas, objetos o lugares; de modo que podamos señalar con facilidad nuestra ubicación. Esta nos permite desarrollar el sentido de la orientación y nos ayuda a no perdernos, por ejemplo, cuando vamos a la escuela.
relaciones espaciales
Para decir dónde nos encontramos podemos utilizar términos como “arriba”, “abajo”, “delante”, “detrás”, “al lado”, “a la izquierda” y “a la derecha”. Si usamos este tipo de expresiones para comunicar nuestra ubicación o la de un objeto será mucho más fácil que nos encuentren a nosotros o al objeto.
Observa a los niños en el parque, ¿qué posición tienen respecto a los objetos?
ubicación en un plano
Para ubicar un punto en el plano nos podemos mover en cuatro direcciones: arriba (↑), abajo (↓), a la izquierda (←) y a la derecha (→). Veamos cómo funciona:
¡A practicar!
Observa el mapa anterior y responde las preguntas:
¿Cuál es el recorrido desde el punto C al punto D?
Solución
2 lugares hacia abajo y 4 lugares a la izquierda.
¿Cuál es el recorrido desde el punto E al punto F?
Solución
3 lugares hacia abajo y 2 lugares a la derecha.
¿Y del punto G al punto H?
Solución
3 lugares hacia arriba y 1 lugar a la derecha.
Si quisiera volver del punto D al punto al C, ¿cuál sería el recorrido?
Solución
4 lugares a la derecha y 2 lugares hacia arriba.
¿Y para volver del punto H al G?
Solución
1 lugar a la izquierda y 3 lugares hacia abajo.
¿El recorrido para volver del punto F al punto E es: 2 lugares a la derecha y 3 lugares hacia arriba?
Solución
No. El recorrido es: 2 lugares a la izquierda y 3 lugares hacia arriba.
¿Qué son las coordenadas?
Son las líneas horizontales y verticales que en conjunto dan conocer la posición de un punto en el plano. Estas líneas también se llaman ejes y un dato de cada una forma una coordenada. Observa cómo se escriben:
Si queremos ubicar el punto C en este plano seguimos los siguientes pasos:
Nos movemos 3 lugares hacia la derecha (→) en la línea horizontal (eje x ) a partir del 0.
Nos movemos 6 lugares hacia arriba (↑) en la línea vertical (eje y).
Por lo tanto, las coordenadas del punto C se escriben: (3,6).
¿Sabías qué?
Las coordenadas siempre se escriben con el mismo orden: primero el eje x (horizontal) y luego el eje y (vertical).
¡A practicar!
¿En qué coordenadas está el punto E?
Solución
(4,1)
¿En qué coordenadas está el punto B?
Solución
(1,4)
¿El punto D está en las coordenadas (1,0)?
Solución
No. El punto D está en las coordenadas (0,1).
¡Otros tipos de coordenadas!
Hallar puntos en un plano es una actividad recurrente en diversas ciencias y profesiones. Por ejemplo, los astrónomos usan este sistema para conocer la posición de las estrellas, planetas y otros cuerpos celestes; de la misma forma, los marinos lo emplean para conocer las coordenadas geográficas y así llegar de un punto a otro del planeta, también lo usan para comunicarse con los diferentes puertos.
Con los avances tecnológicos, las coordenadas de cualquier lugar son más fáciles de conocer, por eso, a través de aplicaciones en celulares, tabletas y computadoras miles de personas se localizan en todo el mundo.
¿Sabías qué?
René Descartes utilizó por primera vez los ejes de coordenadas. Los usó para saber las distintas posiciones en las que se iba a posar una mosca en el techo de la casa en la que vivía.
ubicación en una cuadrícula
Una cuadrícula puede estar formada por números o por letras y nos permite encontrar elementos que están en ella por medio de coordenadas.
La siguiente cuadrícula representa un barrio. En las coordenadas (D,4) está la casa.
¡A practicar!
Encuentra las coordenadas de los otros lugares del barrio.
¿En qué coordenadas está el parque?
Solución
(B,3)
¿En qué coordenadas está la escuela?
Solución
(C,2)
¿En qué coordenadas está el bombero?
Solución
(A,1)
¡Es tu turno!
Ubica en qué coordenadas te gustaría que hubiese un kiosco.
¡Juega la batalla naval con familia y amigos!
Con una cuadrícula como la que acabamos de conocer, pero con más filas y columnas, puedes jugar un juego llamado la batalla naval o hundir la flota. El objetivo del juego es hundir el barco del jugador contrario.
Cada jugador tendrá diez barcos en total: un barco que ocupe cuatro cuadrados, dos barcos que ocupen tres cuadrados, tres barcos que ocupen dos cuadrados y cuatro barcos que ocupen un cuadrado. Una vez que inicie el juego, cada jugador dará tres coordenadas como las que aprendimos anteriormente, por ejemplo (A,2), (C,5) y (E,7). Si en alguna de ellas no está el barco del jugador contrario este dirá “agua” y si está dirá “barco hundido”.
Ganará el jugador que hunda todos los barcos contrarios.
¡Practiquemos!
Observa con atención la siguiente cuadrícula llena de frutas y verduras. Responde las preguntas.
¿En qué posición se encuentran las bananas con respecto a los kiwis?
Solución
Las bananas se encuentran a la izquierda de los kiwis.
Las uvas se encuentran ________ del morrón.
Solución
arriba
¿En qué coordenadas está la sandía?
Solución
(C,1)
¿En qué posición se encuentra el durazno con respecto a los ajos?
Solución
El durazno se encuentra a la derecha de los ajos.
El coco se encuentra ________ de la sandía.
Solución
abajo
¿En qué coordenadas están las uvas?
Solución
(A,2)
¿En qué posición se encuentra el tomate con respecto a las bananas?
Solución
El tomate se encuentra arriba de las bananas.
Las frutillas se encuentran a la ________ del durazno.
Solución
derecha
¿En qué coordenadas están las bananas?
Solución
(B,3)
¿En qué coordenadas están las frutillas?
Solución
(C,4)
RECURSOS PARA DOCENTES
Artículo “Plano Cartesiano”
Este recurso le permitirá tener un conocimiento más amplio sobre los planos cartesianos: plano formado por dos rectas numéricas perpendiculares entre sí.