CAPÍTULO 5 / TEMA 4

la circunferencia

La circunferencia es una línea curva, plana y cerrada que representa el perímetro de un círculo. Unas de sus características es que todos sus puntos se encuentran a una misma distancia de otro denominado origen. Sin importar su tamaño, siempre que se divida su longitud entre su diámetro da como resultado al número pi.

elementos de la circunferencia

La circunferencia es la forma geométrica en la cual todos sus puntos se encuentran equidistantes del centro, también conocido como origen. Eso quiere decir que todos los puntos están a la misma distancia de ese punto.

La circunferencia y sus elementos

  • Centro: es el punto interior que se encuentra a la misma distancia de todos los puntos de la circunferencia.

  • Radio: es la línea recta que une el centro con cualquier punto de la circunferencia.

  • Diámetro: es la mayor linea recta que puede unir dos puntos de la circunferencia. Es el doble del valor del radio y siempre pasa por el origen.

  • Arco: es un segmento curvilíneo de puntos pertenecientes a la circunferencia.

  • Cuerda: es el segmento de recta que une dos puntos de la circunferencia sin pasar por el origen.
  • Secante: es una recta que intersecta la circunferencia en dos puntos.

  • Tangente: es una recta que intersecta la circunferencia en un solo punto.

La circunferencia es una figura única. Sus puntos equidistantes entre sí respecto al centro han permitido resolver diversos problemas, desde cálculos matemáticos hasta problemas tan cotidianos como el transporte. Y es que aunque parezca sencilla, la rueda ha sido uno de los inventos que cambió definitivamente la vida del ser humano hasta la actualidad.

El número pi

Su nombre proviene de la letra griega pi (π) que se usa para expresarlo. Es un número irracional, es decir; un número decimal infinito, cuyos decimales no siguen un patrón que se repite. En la geometría y otras áreas ha tenido un fuerte impacto en la manera de resolver problemas porque relaciona la longitud de una circunferencia con su diámetro. La fórmula para calcular el número pi es π = C/D, donde C es la longitud de la circunferencia y D es el diámetro de la misma. El valor de este número con sus primeras 5 cifras decimales es: 3,14159…

¿Sabías qué?
Para simplificar los cálculos, el número pi suele escribirse como 3,14 para obtener resultados aproximados.

área de un Círculo

El círculo es la figura geométrica que se encuentra delimitada por una circunferencia; es decir, la circunferencia representa su perímetro. Para resolver el área de un círculo simplemente debemos multiplicar el cuadrado de su radio por el número pi.

A = \pi \times r^{2}

Dónde:

A = área del círculo.
π = número pi.
r = longitud del radio de la circunferencia.

Ejemplos de cálculos de área de un círculo

1. Calcular el área de una circunferencia cuyo radio mide 3 cm.

En este caso simplemente tenemos que sustituir el valor del diámetro y del número pi en la ecuación de área:

A = \pi \times r^{2}

A = 3,14 \times (3\, cm)^{2}

Luego se resuelve la potencia. Recuerda que en este caso la unidad es centímetro y al resolver la potencia dicha unidad quedara expresada en centímetros cuadrados (cm2).

A = 3,14 \times 9\, cm^{2}

Al resolver el producto se obtiene que el área de la circunferencia es la siguiente:

A = 28,26\, cm^{2}

Recordemos que el valor de pi que usamos para los cálculos es un aproximado porque 3,14 tiene dos decimales pero ¡pi en realidad tiene infinitos decimales! Como resultará lógico pensar, es imposible multiplicar el valor de pi con todos sus decimales, por esta razón en ejercicios cotidianos se emplean únicamente dos para obtener un resultado que, aunque no corresponde al valor exacto, si se encuentra cercano a este.

2. Calcular el área de un círculo con diámetro igual a 4 cm.

En este caso, el dato que nos proporciona el problema es el diámetro. Para aplicar la fórmula necesitamos el valor del radio. Lo único que debemos hacer es dividir el diámetro entre 2 (porque el diámetro corresponde al doble del valor del radio).

r = \frac{D}{2}=\frac{4\, cm}{2}= \mathbf{2\, cm}

Luego se reemplaza en la ecuación y se resuelve de la misma forma que en el ejercicio anterior.

A = 3,14 \times (2\, cm)^{2}

A = 3,14 \times 4\, cm^{2}

A = 12,56\, cm^{2}

construcción de circunferencias

Para la construcción de las circunferencias, se emplea el compás y una regla o escuadra para medir. Debemos seguir los siguientes pasos:

  • Paso 1
    Trazar un segmento con la longitud del radio de la circunferencia que se desea construir.

  • Paso 2
    Ubicar la punta del compás en uno de los extremos del segmento y abrir la bisagra del mismo hasta que la otra punta con lápiz se encuentre a la misma distancia del otro extremo.
  • Paso 3
    Marcar firmemente la circunferencia con la punta que contiene el lápiz de marcado al tiempo que se mantiene en su lugar la otra punta.

Al momento de realizar los trazados de circunferencias, es importante que el área de trabajo esté limpia al igual que los instrumentos que vas a usar. En el caso del compás hay varios tipos que varían en la forma, lo importante en cualquier caso es verificar que el extremo que contenga al lápiz o punta de grafito se encuentre afilado para que pueda realizar trazos uniformes.

¡A practicar!

  1. ¿Cuál es el área de las siguientes circunferencias?

a)

Solución
 A = 3,14\, cm^{2} 

b)

Solución
A = 50,24\, cm^{2} 

c)

Solución
A = 200,96\, cm^{2} 

d)

Solución
A = 78,5\, cm^{2} 

e)

Solución
A = 113,04\, cm^{2} 

f)

Solución
A = 254,34\, cm^{2} 

g)

Solución
A = 314\, cm^{2} 

h)

Solución
A = 153,86\, cm^{2} 

RECURSOS PARA DOCENTES

Artículo “Circunferencia”

En este artículo se explican los elementos de la circunferencia y sus principales características.

VER

Artículo “Ángulos en una circunferencia”

En este artículo destacado se explican otros elementos de las circunferencias: los ángulos.

VER

CAPÍTULO 5 / TEMA 7 (REVISIÓN)

Geometría | ¿Qué aprendimos?

Elementos geométricos

El punto, la recta y el plano se denominan entes fundamentales de la geometría porque no tienen definición y su comprensión depende de comparaciones con elementos similares. El punto es adimensional y se nombra con letras mayúsculas del alfabeto. La recta está formada por infinitos puntos que se extienden en una misma dirección. Las rectas pueden ser paralelas, secantes o perpendiculares. El plano es un ente bidimensional, es decir, posee dos dimensiones y se suele nombrar con letras del alfabeto griego.

Un segmento es una parte de la recta que se encuentra ubicada entre dos puntos.

Ángulos

La región del plano comprendida entre dos semirrectas se denomina ángulo. De acuerdo a su medida pueden ser nulos (cuando miden 0°), agudos (cuando no son nulos y miden menos de 90°), rectos (cuando miden 90°), obtusos (cuando son menores a 180° y mayores a 90°) y llanos (cuando miden 180°). Se habla de dos ángulos complementarios cuando la suma de estos es igual a 90°, por otra parte, dos ángulos son suplementarios si la suma de ambos es igual a 180°. La sumatoria de los ángulos internos de un triángulo da 180°, mientras que en un cuadrilátero da 360°.

El transportador es uno de los instrumentos más usados en la lectura y construcción de ángulos.

Polígonos

Los polígonos son figuras caracterizadas por estar delimitadas por segmentos finitos rectos denominados lados. Si todos sus lados tienen la misma longitud se denominan polígonos regulares, de lo contrario, se denominan polígonos irregulares. En el caso de los polígonos regulares se cumple que sus ángulos internos son iguales, lo mismo sucede con sus ángulos externos. Los polígonos regulares también se caracterizan por tener igual cantidad de ejes de simetrías que de lados y sus diagonales son todas internas y de la misma longitud.

El rectángulo y el rombo son algunos ejemplos de polígonos irregulares.

Cuerpos geométricos

Los cuerpos geométricos pueden clasificarse en poliedros cuando todas sus caras son iguales y planas, y en cuerpos redondos cuando poseen al menos una cara curva. Sus elementos principales son las caras, las aristas y los vértices. Cada uno de los cuerpos geométricos posee su fórmula para determinar su volumen. De igual forma, cada uno de los cuerpos geométricos pueden representarse en construcciones de tres dimensiones.

La esfera es un cuerpo geométrico que no posee caras, aristas ni vértices.

Circunferencia y círculo

La circunferencia es una línea cerrada que sobresale por ser el perímetro del círculo. Por otra parte, el círculo es una figura geométrica que se encuentra delimitada por una circunferencia. Los elementos principales de una circunferencia son: centro, radio, cuerda, diámetro, semicircunferencia y arco. Entre una circunferencia y una recta pueden darse tres tipos diferentes de relación: recta exterior (cuando no toca ningún punto de la circunferencia), recta tangente (cuando toca un solo punto de la circunferencia) y recta secante (cuando atraviesa la circunferencia en dos puntos). El área de un círculo es igual al producto de el número pi por el radio de la circunferencia al cuadrado.

El matemático griego Eratóstenes fue la primera persona en calcular el diámetro de la Tierra en el 230 a. C.

Aplicación de la geometría

Incontables son las disciplinas y las situaciones en las que se emplea la geometría. Desde que apareció esta rama de la matemática ha permitido resolver infinidad de problemas. El cálculo de áreas de superficies planas puede extenderse a situaciones cotidianas como el cálculo de la extensión de un terreno, esto se debe a que cada figura posee su fórmula particular. Lo mismo sucede con el cálculo de volumen y los cuerpos geométricos.

La geometría ha permitido a la arquitectura realizar obras de singular belleza.

CAPÍTULO 4 / TEMA 2

FIGURAS PLANAS

SI OBSERVAMOS DETENIDAMENTE EL LUGAR EN DONDE ESTAMOS PODEMOS ENCONTRAR INFINIDAD DE FIGURAS. LA UNIÓN DE DIFERENTES LÍNEAS HA FORMADO LAS FIGURAS Y LAS HAY DE DIFERENTES TIPOS. ES IMPOSIBLE NO ENCONTRAR EN NUESTRO ENTORNO CUADRADOS, RECTÁNGULOS Y CÍRCULOS. TODOS SON PARTE DE LA FORMA QUE TIENEN LOS OBJETOS QUE UTILIZAMOS A DIARIO.

FIGURAS PLANAS Y SUS TIPOS

LAS FIGURAS PLANAS SON AQUELLAS QUE TIENEN DOS DIMENSIONES: ALTO Y ANCHO. ALGUNOS EJEMPLOS DE FIGURAS PLANAS SON LO CÍRCULOS, LOS TRIÁNGULOS Y LO CUADRILÁTEROS.

  • LA FIGURA VERDE ES UN CÍRCULO.
  • LA FIGURA AZUL ES UN TRIÁNGULO.
  • LA FIGURA ROJA ES UN CUADRILÁTERO.

¿QUÉ SON LOS TRIÁNGULOS?

SON LAS FIGURAS FORMADAS POR TRES SEGMENTOS.

ALGUNOS EJEMPLOS DE TRIÁNGULOS SON LOS SIGUIENTES:

¿QUÉ SON LOS CUADRILÁTEROS?

SON LAS FIGURAS FORMADAS POR CUATRO SEGMENTOS.

ALGUNOS EJEMPLOS DE CUADRILÁTEROS SON LOS SIGUIENTES:

¿QUÉ SON LOS CÍRCULOS?

SON FIGURAS CURVAS CON IGUAL DISTANCIA ENTRE UN PUNTO DE SU EXTREMO Y EL CENTRO.

ALGUNOS EJEMPLOS DE CÍRCULOS SON LOS SIGUIENTES:

LAS FIGURAS CIRCULARES ESTÁN FORMADAS POR UNA LÍNEA CURVA CERRADA Y TIENEN UNA CARACTERÍSTICA FUNDAMENTAL: TODOS LOS PUNTOS DE LA LÍNEA CURVA ESTÁN A LA MISMA DISTANCIA DEL CENTRO DE LA FIGURA. LA LÍNEA QUE BORDEA AL CÍRCULO SE LLAMA CIRCUNFERENCIA. EN LA IMAGEN VEMOS EL TRAZO DE UNA CIRCUNFERENCIA. PARA DIBUJAR CIRCUNFERENCIAS USAMOS UN COMPÁS.

ELEMENTOS DE Los triángulos y cuadriláteros

LADOS

CON CADA UNO DE LOS SEGMENTOS QUE FORMAN LA FIGURA.

TRIÁNGULOS CUADRILÁTEROS

LOS TRIÁNGULOS TIENEN 3 LADOS.

LOS CUADRILÁTEROS TIENEN 4 LADOS.

VÉRTICES

SON LOS PUNTOS DONDE SE UNEN DOS LADOS.

TRIÁNGULOS CUADRILÁTEROS

LOS TRIÁNGULOS TIENEN 3 VÉRTICES.

LOS CUADRILÁTEROS TIENEN 4 VÉRTICES.

ÁNGULOS

SON LAS ABERTURAS QUE SE FORMAN ENTRE DOS LADOS.

TRIÁNGULOS CUADRILÁTEROS

LOS TRIÁNGULOS TIENEN 3 ÁNGULOS.

LO CUADRILÁTEROS TIENEN 4 ÁNGULOS.

ELEMENTOS DEL CÍRCULO

CIRCUNFERENCIA

ES EL LÍNEA CURVA CERRADA.

CENTRO

ES EL PUNTO CENTRAL QUE TIENE LA MISMA DISTANCIA A CUALQUIER PUNTO DE LA CIRCUNFERENCIA.

DIÁMETRO

ES LA DISTANCIA DE UN PUNTO DE LA CIRCUNFERENCIA A OTRO QUE PASA POR EL CENTRO.

RADIO

ES LA DISTANCIA DESDE EL CENTRO DE LA FIGURA HASTA CUALQUIER PUNTO DE LA CIRCUNFERENCIA. EL RADIO ES IGUAL A LA MITAD DEL DIÁMETRO.

AVISOS Y GEOMETRÍA

LA MAYORÍA DE LOS AVISOS COMERCIALES Y DE TRÁNSITO SON FIGURAS PLANAS. POR EJEMPLO, ESTA SEÑAL NOS INDICA QUE PRONTO SE ACERCA UNA CURVA. LA SEÑAL TIENE FORMA DE CUADRILÁTERO PORQUE TIENE 4 LADOS, 4 VÉRTICES Y 4 ÁNGULOS.

TIPOS DE ÁNGULOS

EXISTEN VARIOS TIPOS DE ÁNGULOS Y SU CLASIFICACIÓN DEPENDE DE SU ABERTURA.

ÁNGULO ABERTURA REPRESENTACIÓN
RECTO 90°
AGUDO MENOS DE 90° Y MÁS DE 0°
OBTUSO MENOS DE 180° Y MÁS DE 90°
LLANO 180°

¿SABÍAS QUÉ?
LOS ÁNGULOS SE MIDEN EN GRADOS. EL SÍMBOLO DE LOS GRADOS ES °. 

EL ÁREA Y SUPERFICIE

SI QUEREMOS SABER LA MEDIDA DE LA PARTES EXTERNA DE UN OBJETOS O DE UN TERRENO, TENEMOS QUE CALCULAR SU ÁREA.

LA SUPERFICIE ES LA PARTE EXTERNA DE UN OBJETO Y EL ÁREA ES LA MEDIDA DE LA SUPERFICIE. LA UNIDAD DE MEDIDA ES EL CENTÍMETRO CUADRADO (cm2).

EN LOS RECTÁNGULOS SOLO TENEMOS QUE MULTIPLICAR LA MEDIDA DE LA ALTURA POR LA DEL ANCHO.

ÁREA DE RECTÁNGULO = ALTO × ANCHO

– EJEMPLO:

OBSERVA ESTE RECTÁNGULO. ESTÁ FORMADO POR CUADRADOS MÁS PEQUEÑOS. SI CADA CUADRADO MIDE 1 CENTÍMETRO DE ALTO Y 1 CENTÍMETRO DE ANCHO. RESPONDE:

  1. ¿CUÁNTOS CENTÍMETROS DE LARGO MIDE ESTE RECTÁNGULO?
  2. ¿CUÁNTOS CENTÍMETROS DE ANCHO MIDE ESTE RECTÁNGULO?
  3. ¿CUÁL ES EL ÁREA DEL RECTÁNGULO?

A. EL RECTÁNGULO TIENE 4 cm DE ALTO.

B. EL RECTÁNGULO TIENE 5 cm DE ANCHO.

C. EL ÁREA DEL RECTÁNGULO ES DE 20 cm2 PORQUE 4 cm × 5 cm = 20 cm2.


– EJEMPLO 2:

¿CUÁL ES EL ÁREA DE ESTE RECTÁNGULO?

EL RECTÁNGULO TIENE 3 cm DE ALTO Y 4 cm DE ANCHO. POR LO TANTO:

ÁREA = 3 cm × 4 cm = 12 cm2

EL RECTÁNGULO TIENE UN ÁREA DE 12 cm2.

¡A PRACTICAR!

1. COLOCAR EL TIPO DE ÁNGULO SEGÚN SU MEDIDA:

  • 160°
SOLUCIÓN
ÁNGULO OBTUSO.
  • 45°
SOLUCIÓN
ÁNGULO AGUDO.
  • 79°
SOLUCIÓN
ÁNGULO AGUDO.
  • 92°
SOLUCIÓN
ÁNGULO OBTUSO.
  • 180°
SOLUCIÓN
ÁNGULO LLANO.
  • 90°
SOLUCIÓN
ÁNGULO RECTO.

 

2. CALCULAR EL ÁREA DE LOS SIGUIENTES RECTÁNGULOS. CADA CUADRO MIDE 1 cm DE ALTO Y 1 cm DE ANCHO.

A. 

SOLUCIÓN

ÁREA = 9 cm x 5 cm

ÁREA = 45 cm2

B. 

SOLUCIÓN

ÁREA = 8 cm x 5 cm

ÁREA = 40 cm2

C. 

SOLUCIÓN

ÁREA = 5 cm × 2 cm

ÁREA = 10 cm2

RECURSOS PARA DOCENTES

Artículo “Área y perímetro de las figuras planas”

En el siguiente artículo se amplía la información sobre área con más tipos de figuras planas.

VER

CAPÍTULO 5 / TEMA 8 (REVISIÓN)

Geometría y mediciones | ¿Qué aprendimos?

Perímetro

El perímetro es el contorno de una figura geométrica. En el caso de los polígonos regulares, el perímetro lo calculamos al multiplicar la cantidad de sus lados por la longitud de uno de estos. Otra forma de calcular el perímetro es a través de la suma de cada uno de los lados de una figura. En cambio, el perímetro del círculo es igual a la multiplicación del número pi por el diámetro de la circunferencia. Existen también figuras compuestas que están formadas por dos o más figuras geométricas, para calcular su perímetro basta con sumar cada uno de los lados.

El perímetro tiene múltiples aplicaciones en disciplinas como la arquitectura y también se usa en el ámbito militar.

Ángulos

Uno de los elementos fundamentales para la geometría es el ángulo, el cual está formado por un par de semirrectas denominadas lados que tienen un origen común o vértice. Uno de los sistemas más usados para medir ángulos es el sistema sexagesimal, en el que medimos los ángulos en grados, minutos y segundos. De acuerdo a su tamaño, los ángulos pueden clasificarse en agudos, rectos, obtusos y llanos. Los agudos son mayores a 0° pero menores a 90°, los rectos miden 90°, los obtusos son mayores a 90° pero menores de 180° y los llanos miden siempre 180°.

El transportador es uno de los instrumentos más usados para medir ángulos.

Área

Para calcular superficies usamos el área, que es la extensión comprendida por una figura. Para cada figura plana existe una fórmula que permite determinar su área. En el Sistema Internacional de Unidades se emplea el metro cuadrado (m2) como unidad de medida de área, pero también podemos usar otras unidades derivadas, como el centímetro cuadrado (cm2) o el milímetro cuadrado (mm2). Podemos obtener el área de las figuras compuestas al descomponerlas en figuras geométricas más simples, para luego sumar las áreas de cada una.

El conocimiento del área puede ser aplicado para calcular cuántas baldosas son necesarias para cubrir una superficie.

Sistemas de referencia

Uno de los sistemas de referencias más usados es el sistema cartesiano, el cual está formado por dos ejes en el plano: uno horizontal denominado eje X o de las abscisas y otro vertical denominado eje Y o de las ordenadas. Para representar un punto en el plano cartesiano necesitamos sus coordenadas en el eje X y en el eje Y: la intersección de ambas coordenadas constituye su ubicación. Por otro lado, las figuras pueden experimentar transformaciones isométricas, es decir, cambios de posición y orientación que no afectan su forma. Estas transformaciones son: traslación, rotación y simetría.

Los sistemas de referencia son usados por el ser humano para medir las posiciones y las magnitudes de las cosas.

Cuadriláteros

Un cuadrilátero es un polígono de cuatro lados, y aunque se pueden clasificar en varios grupos, comparten elementos en común: tienen cuatro ángulos, la suma de estos es siempre igual 360° y tienen dos diagonales que dividen al cuadrado en triángulos. De manera general, los cuadriláteros son clasificados como paralelogramos, trapecios y trapezoides. Los paralelogramos tienen sus lados opuestos paralelos y pueden ser cuadrados, rombos y rectángulos. Los trapecios tienen dos de sus lados paralelos y los trapezoides no tienen ningún lado paralelo.

El campo de fútbol tiene forma de rectángulo que es un tipo de cuadrilátero.

Capacidad y volumen

El volumen es el espacio que ocupa un objeto mientras que la capacidad indica la cantidad que un objeto puede contener dentro de él. Todos los objetos tienen volumen pero no todos tienen capacidad. En el caso de los sólidos y los líquidos mientras mayor sea su volumen, mayor espacio van a ocupar. No es lo mismo el volumen de un grano de arroz que el de un edificio. Algunas unidades de volumen son el metro cúbico (m3), el centímetro cúbico (cm3) y milímetro cúbico (mm3), entre otras. El litro es una medida de capacidad que equivale a 1.000 cm3.

A pesar de estar muy relacionadas, no se deben confundir las medidas de volumen con las de capacidad.

La circunferencia

La circunferencia es una curva plana con todos sus puntos ubicados a la misma distancia del origen o centro. No debe ser confundida con el círculo que corresponde al área contenida dentro de ella, es decir, la circunferencia es el perímetro del círculo. Presenta ciertos elementos como el radio, el diámetro, la tangente, la cuerda, el arco y la semicircunferencia. Uno de los instrumentos usados para su trazado es el compás.

Los antiguos griegos empleaban la recta y la circunferencia como figuras básicas en sus cálculos.

CAPÍTULO 4 / TEMA 3

FIGURAS PLANAS

TODOS LOS OBJETOS QUE NOS RODEAN TIENEN UNA FORMA Y MUCHOS DE ELLOS SON PLANOS, ES DECIR, SOLO TIENEN DOS DIMENSIONES Y NO TIENEN RELIEVE. LAS FIGURAS PLANAS MÁS COMUNES SON EL CÍRCULO, EL TRIÁNGULO EL CUADRADO Y EL RECTÁNGULO. CON ESTE ARTÍCULO APRENDERÁS A DIFERENCIAR ESTAS FIGURAS.

LAS FIGURAS PLANAS ESTÁN DELIMITADAS POR LÍNEAS RECTAS O CURVAS, ASÍ QUE MUCHOS DE LOS INSTRUMENTOS QUE USAMOS EN LA ESCUELA SIRVEN PARA DIBUJARLAS. POR EJEMPLO, CON LAS REGLAS Y ESCUADRAS PODEMOS DISEÑAR CUADRADOS, RECTÁNGULOS Y TRIÁNGULOS; MIENTRAS QUE CON EL COMPÁS PODEMOS HACER CÍRCULOS Y CIRCUNFERENCIAS CON PRECISIÓN. ¡INTÉNTALO!

¿QUÉ ES UNA FIGURA PLANA?

UNA FIGURA PLANA ES AQUELLA QUE ESTÁ DEFINIDA POR LÍNEAS RECTAS O CURVAS. ADEMÁS, SOLO TIENE DOS DIMENSIONES: ALTO Y ANCHO.

¿VES ALGUNA FIGURA?

ESTE DIBUJO ESTÁ ELABORADO SOLO CON FIGURAS PLANAS, ¿PUEDES RECONOCER ALGUNAS?

¿CUÁLES SON LAS FIGURAS PLANAS?

HAY MUCHOS TIPOS DE FIGURAS PLANAS, LAS MÁS COMUNES SON EL CÍRCULO, EL TRIÁNGULO, EL CUADRADO Y EL RECTÁNGULO.

OBSERVA ESTOS GRUPOS DE FIGURAS, ¿EN QUÉ SE PARECEN?

  • LAS FIGURAS DE COLOR ROJO SON CUADRADOS.
  • LAS FIGURAS DE COLOR AZUL SON CÍRCULOS.
  • LAS FIGURAS DE COLOR AMARILLO SON TRIÁNGULOS.
  • LAS FIGURAS DE COLOR VERDE SON RECTÁNGULOS.

¿CUÁLES SON LOS ELEMENTOS DE LAS FIGURAS?

CÍRCULO

UN CÍRCULO ES UNA FIGURA PLANA FORMADA POR UNA CURVA CERRADA Y REDONDA QUE SIEMPRE TIENE LA MISMA DISTANCIA DEL CENTRO.

¿CUÁLES SON SUS ELEMENTOS?

EL CENTRO, LA CIRCUNFERENCIA, EL DIÁMETRO Y EL RADIO.

¿SABÍAS QUÉ?
LA LÍNEA QUE BORDEA AL CÍRCULO SE LLAMA CIRCUNFERENCIA.

TRIÁNGULO

UN TRIÁNGULO ES UNA FIGURA PLANA FORMADA POR TRES LADOS.

¿CUÁLES SON SUS ELEMENTOS?

LOS LADOS Y LOS VÉRTICES.

CLASIFICACIÓN DE LOS TRIÁNGULOS

SEGÚN SUS LADOS LOS TRIÁNGULOS PUEDEN SER EQUILÁTEROS, ISÓSCELES O ESCALENOS.

CUADRADO

UN CUADRADO ES UNA FIGURA PLANA CON CUATRO LADOS IGUALES.

¿CUÁLES SON SUS ELEMENTOS?

LOS LADOS Y LOS VÉRTICES.

RECTÁNGULO

UN RECTÁNGULO ES UNA FIGURA PLANA CON CUATRO RECTAS Y CON LADOS OPUESTOS PARALELOS.

¿CUÁLES SON SUS ELEMENTOS?

EL LARGO, EL ANCHO Y LOS VÉRTICES.

 

¿QUÉ ES EL TANGRAM?

ES UN JUEGO DE ORIGEN CHINO EN EL QUE PODEMOS FORMAR DIVERSAS FIGURAS CON SIETE PIEZAS BÁSICAS LLAMADAS “TANS”:

  • CINCO (5) TRIÁNGULOS.
  • UN (1) CUADRADO.
  • UN (1) PARALELOGRAMO.

ESTAS PIEZAS O “TANS” SE GUARDAN DE TAL MANERA QUE FORMAN UN CUADRADO.

FIGURAS PLANAS EN LOS OBJETOS

OBSERVA ESTOS OBJETOS, ¿A CUÁL FIGURA PLANA SE PARECEN?

RESPONDE:

  • ¿CUÁLES OBJETOS SE PARECEN A UN CÍRCULO?
SOLUCIÓN

  • ¿CUÁLES OBJETOS SE PARECEN A UN RECTÁNGULO?
SOLUCIÓN

  • ¿CUÁLES OBJETOS SE PARECEN A UN CUADRADO?
SOLUCIÓN

  • ¿CUÁLES OBJETOS SE PARECEN A UN TRIÁNGULO?
SOLUCIÓN

¡A PRACTICAR!

1. COLOREA LAS FIGURAS DE LA SIGUIENTE MANERA:

  • CÍRCULOS DE COLOR AZUL.
  • TRIÁNGULOS DE COLOR AMARILLO.
  • RECTÁNGULOS DE COLOR VERDE.
  • CUADRADO DE COLOR ROJO.

SOLUCIÓN

2. COLOREA DE ROJO LAS FIGURAS PLANAS FORMADAS POR TRES LADOS Y TRES VÉRTICES.

SOLUCIÓN

3. RESPONDE LAS PREGUNTAS.

  • ¿CUÁNTOS LADOS TIENE EL CUADRADO?
SOLUCIÓN
EL CUADRADO TIENE CUATRO (4) LADOS IGUALES.
  • ¿CUÁNTOS LADOS TIENE UN TRIÁNGULO?
SOLUCIÓN
EL TRIÁNGULO TIENE TRES LADOS.
  • ¿QUÉ ES UNA CIRCUNFERENCIA?
SOLUCIÓN
ES LA LÍNEA QUE BORDEA AL CÍRCULO.
  • ¿QUÉ ES UN TRIÁNGULO ISÓSCELES?
SOLUCIÓN
ES UNA TRIÁNGULO CON DOS LADOS IGUALES.
  • ¿LOS RECTÁNGULOS TIENEN CUATRO LADOS IGUALES?
SOLUCIÓN
NO. LOS RECTÁNGULOS TIENEN DOS LADOS MÁS LARGOS QUE LOS OTROS DOS.
RECURSOS PARA DOCENTES

Artículo “Clasificación de los triángulos”

Con este recurso podrá profundizar sobre los diversos tipos de triángulos, figura básica de la geometría plana.

VER

Artículo “Círculo”

Un círculo es una región plana encerrada por una circunferencia. Todos sus elementos podrá verlos en este artículo.

VER