CAPÍTULO 1 / TEMA 3

CONJUNTO DE LOS NÚMEROS RACIONALES

El conjunto de los números racionales está conformado por todos aquellos números que pueden ser expresados como una división. Entran en este grupo algunos números decimales y las fracciones. Tienen gran aplicación cotidiana para representar partes de un entero o porciones de una totalidad.

No podemos usar los números enteros para resolver todas las operaciones entre ellos. Por ejemplo, si cortamos una tabla de 1 metro en 2 partes iguales, ¿cuánto mide cada pedazo? La división 1 ÷ 2 no tiene solución dentro de los números enteros, por tal motivo, usamos el conjunto de los números racionales, en el que esta división se representa como 1/2.

¿Sabías qué?
La primera civilización en utilizar los números racionales fueron los egipcios.

¿QUÉ SON LOS NÚMEROS RACIONALES?

Son todos aquellos números que pueden representarse a través de una fracción. De ahí su nombre “racionales”, pues a las fracciones también se las conocen como “razones”.

El conjunto de los números racionales se denota con la letra \mathbb{Q}, que alude al término quotient que significa “cociente”, ya que todo número racional puede ser representado como una fracción con cociente igual a un número decimal.

VER INFOGRAFÍA

Los números racionales como subconjunto de los números reales

Los números racionales (\mathbb{Q}), en conjunto con los números enteros (\mathbb{Z}) y los irracionales (\mathbb{I}), conforman el conjunto de los números reales (\mathbb{R}), donde se encuentran todos los números naturales y decimales.

ELEMENTOS DE LOS NÚMEROS RACIONALES

Los números racionales se forman al dividir dos números enteros que dan como resultado un número decimal. Los números racionales son todos los números del tipo \frac{a}{b} donde a es el numerador y b es el denominador. Ambos elementos, a y b, son número enteros y b es distinto de cero.

Número irracionales

Toda fracción es un número racional. Sin embargo, no todo número decimal pertenece al conjunto de los números racionales, porque no todos tienen una fracción equivalente. Tal es el caso de los decimales no periódicos, los cuales pertenecen al conjunto de los números irracionales, denotados con la letra \mathbb{I}. En esta categoría se encuentran, por ejemplo, \sqrt{7}, \pi o cualquier número con decimales infinitos.

orden de los números racionales

Comparar racionales permite establecer una relación de orden en \mathbb{Q}. Cuando los racionales tienen igual denominador, será mayor aquel con mayor numerador. Por ejemplo, entre \frac{8}{3} y \frac{2}{3}\frac{8}{3} es mayor porque 8 > 2.

Cuando los racionales tienen denominadores diferentes tenemos que convertirlos en fracciones equivalentes de igual denominador y luego comparar. También podemos usar la siguiente regla:

Si \frac{a}{b} y \frac{c}{d} ∈ \mathbb{Q}, con b y d positivos

Se cumple que:

Si  a\times d> b\times c,  entonces   \frac{a}{b}> \frac{c}{d}

Si  a\times d< b\times c,  entonces   \frac{a}{b}< \frac{c}{d}

– Ejemplo:

\frac{8}{5}> \frac{6}{7}   porque  8\times 7> 5\times 6

\frac{4}{7}< \frac{3}{5}  porque  4\times 5< 7\times 3

Fracciones negativas

Si el numerador o el denominador de una fracción es un número negativo podemos escribir el signo “−” antes de la fracción.

\frac{-a}{b}=-\frac{a}{b}

\frac{a}{-b}=-\frac{a}{b}

Las fracciones negativas, al estar más a la izquierda en la recta numérica, son menores que las fracciones positivas.

REPRESENTACIÓN GRÁFICA

Los números racionales se suelen utilizar para expresar partes de una totalidad. Por ejemplo, “un 1/4 de la población mundial utiliza Internet” o “un 1/3 de la población vive en situación de pobreza”, o bien “un 1/2 de los habitantes del planeta son mujeres”. En general, resulta más representativo hablar de fracciones de un total que solo indicar la cantidad de personas.

Para graficar números racionales tenemos que identificar primero qué tipo de fracción es. Si la fracción es propia, es decir, si tiene el numerador menor al denominador, basta con dividir una figura geométrica en tantas partes como indique el denominador y colorear las partes que indique el denominador. Por ejemplo:

\boldsymbol{1=}

\boldsymbol{\frac{2}{2}=}

\boldsymbol{\frac{2}{3}=}

\boldsymbol{\frac{2}{4}=}

\boldsymbol{\frac{2}{5}=}

 

\boldsymbol{\frac{2}{6}=}

\boldsymbol{\frac{2}{7}=}

\boldsymbol{\frac{2}{8}=}

\boldsymbol{\frac{2}{9}=}

\boldsymbol{\frac{2}{10}=}

 

Si la fracción es impropia tenemos que dividir la figura en tantas partes como muestre el denominador y repetirla hasta que se coloreen todas las partes que señale el numerador. Estas fracciones siempre tendrán más de un entero, así que también podemos convertir la fracción impropia en número mixto y seguir los pasos anteriores. Por ejemplo:

\frac{20}{9}=2\frac{2}{9}=

\frac{10}{8}=1\frac{2}{8}=

Fracciones y porcentajes

Los gráficos circulares o de sectores son ampliamente utilizados en estadística y otras áreas en las que son una herramienta de gran utilidad para expresar partes de un todo, por lo que las fracciones son necesarias para determinar las porciones de colores. No obstante, es mucho más práctico hacer estos gráficos con datos mostrados en porcentajes: una forma de representar a una fracción decimal, cuyo denominador es 100.

Convertir fracciones en porcentajes es muy sencillo, solo tenemos que dividir el numerador entre el denominador y después multiplicar por 100 %. Por ejemplo, 1/4 es igual a 25 % porque 1 ÷ 4 = 0,25 y 0,25 × 100 % = 25 %.

¡A practicar!

1. Señala cuáles números son racionales y cuáles son irracionales.

  • \frac{4}{5}
Solución
Es un número racional.
  • \sqrt{2}
Solución
Es un número irracional.
  • \frac{\pi }{3}
Solución
Es un número irracional.
  • \frac{1}{4}
Solución
Es un número racional.

2. Ordena de menor a mayor los siguientes número racionales.

  • \frac{8}{5}\frac{6}{7}\frac{2}{9}\frac{1}{2}
Solución
\frac{2}{9} < \frac{1}{2} < \frac{6}{7} < \frac{8}{5}
  • \frac{10}{3}\frac{6}{8}\frac{2}{3}\frac{5}{2}
Solución
\frac{2}{3} < \frac{6}{8} < \frac{5}{2} < \frac{10}{3}

  • -\frac{8}{4}\frac{3}{7}1\frac{2}{5}
Solución
-\frac{8}{4} < \frac{2}{5} < \frac{3}{7} < 1

3. ¿Qué fracción representan estos gráficos?

Solución
\frac{7}{3}
Solución
\frac{2}{9}
Solución
\frac{8}{5}
Solución
\frac{4}{10}
RECURSOS PARA DOCENTES

Artículo “¿Cómo transformar un número decimal a fracción?”

En este artículo hallará el método y la explicación para obtener la fracción generatriz de un número decimal.

VER

Artículo “La recta numérica”

En este recurso encontrará un método para representar números racionales en la recta real.

VER

Artículo “La clasificación de los números”

En este artículo encontrará la clasificación de los diferentes conjuntos numéricos, a fin de identificar en qué categoría o a qué subconjunto pertenecen los números racionales.

VER

CAPÍTULO 5 / TEMA 3

FRACCIONES Y SUS GRÁFICAS

CUANDO CONTAMOS NUESTROS JUGUETES O LÁPICES USAMOS LOS NÚMEROS NATURALES: 1, 2, 3, … PERO ¿QUÉ SUCEDE SI SOLO TENEMOS LA MITAD DE UN LÁPIZ? EN ESTOS CASOS USAMOS UN TIPO DE NÚMEROS LLAMADO FRACCIÓN. LAS FRACCIONES REPRESENTAN UNA PARTE DE UN ENTERO, ESTÁN FORMADAS POR DOS NÚMEROS NATURALES Y SON MÁS COMUNES DE LOS QUE CREES. ¡APRENDAMOS A GRAFICARLAS!

¿QUÉ ES UNA FRACCIÓN?

UNA FRACCIÓN REPRESENTA LA PARTE DE UN TODO O DE UNA UNIDAD DIVIDIDA EN PARTES IGUALES.

UNA NARANJA ENTERA ES IGUAL A UNA UNIDAD O EL “TODO”. OBSERVA LA IMAGEN, ¿LA NARANJA ESTÁ ENTERA? ¡NO! ESTÁ PICADA A LA MITAD Y HAY DOS MITADES. SI COMEMOS UNA DE ESTAS PARTES, DECIMOS QUE COMIMOS “MEDIA NARANJA”. ESTO ES UN EJEMPLO DE FRACCIÓN PORQUE COMIMOS UNA PARTE DE UN TODO. PIENSA: ¿EN QUÉ OTRA OCASIÓN USAMOS FRACCIONES?

VER INFOGRAFÍA

ELEMENTOS DE UNA FRACCIÓN

LA FRACCIÓN TIENE DOS ELEMENTOS SEPARADOS POR UNA RAYA: EL NÚMERO DE ARRIBA SE LLAMA NUMERADOR Y EL DE ABAJO SE LLAMA DENOMINADOR.

  • EL NUMERADOR ES IGUAL A LA CANTIDAD DE PARTES QUE SE HAN TOMADO DEL ENTERO.
  • EL DENOMINADOR ES IGUAL A LA CANTIDAD DE PARTES EN LAS QUE SE HA DIVIDIDO AL ENTERO.

TIPOS DE FRACCIONES

LAS FRACCIONES PUEDEN SER PROPIAS O IMPROPIAS.

  • LAS FRACCIONES PROPIAS TIENEN EL NUMERADOR MENOR AL DENOMINADOR.

POR EJEMPLO: \frac{1}{2}\frac{3}{5} Y \frac{8}{10}.

  • LAS FRACCIONES IMPROPIAS TIENEN EL NUMERADOR MAYOR AL DENOMINADOR.

POR EJEMPLO: \frac{7}{5}\frac{10}{4} Y \frac{5}{3}.

¿SABÍAS QUÉ?
LAS FRACCIONES TAMBIÉN SE PUEDEN EXPRESAR CON UNA DIAGONAL, POR EJEMPLO,\frac{1}{2} ES IGUAL A 1/2.

¿CÓMO GRAFICAR FRACCIONES?

AL SER LAS PARTES DE UN TODO O UNIDAD, PODEMOS DIBUJAR FRACCIONES POR MEDIO DE GRÁFICOS CON FIGURAS GEOMÉTRICAS.

SI QUEREMOS GRAFICAR LA FRACCIÓN \boldsymbol{\frac{1}{2}} LOS PASOS SON LOS SIGUIENTES:

1. DIBUJAMOS CUALQUIER FIGURA GEOMÉTRICA. EN ESTE CASO DIBUJAMOS UN RECTÁNGULO.

2. VEMOS EL DENOMINADOR DE LA FRACCIÓN. EL DENOMINADOR DE LA FRACCIÓN \boldsymbol{\frac{1}{{\color{Red} 2}}} ES 2, ASÍ QUE DIVIDIMOS EL RECTÁNGULO EN 2 PARTES IGUALES.

3. VEMOS EL NUMERADOR DE LA FRACCIÓN. EL NUMERADOR DE LA FRACCIÓN \boldsymbol{\frac{{\color{Red} 1}}{2}} ES 1, ASÍ QUE COLOREAMOS UNA SOLA PARTE DEL RECTÁNGULO.

 

– OTRO EJEMPLO:

GRAFIQUEMOS LA FRACCIÓN \boldsymbol{\frac{3}{4}}.

PRIMERO DIBUJAMOS LA FIGURA GEOMÉTRICA QUE REPRESENTA AL “TODO”.

¿CUÁL ES EL DE DENOMINADOR? EL DENOMINADOR ES 4. ASÍ QUE DIVIDIMOS LA FIGURA EN 4 PARTES IGUALES.

¿CUÁL ES EL NUMERADOR? EL NUMERADOR ES 3. ENTONCES, COLOREAMOS 3 PARTES DE LA FIGURA.

¡ES TU TURNO!

REALIZA EL GRÁFICO DE ESTAS FRACCIONES:

  • \boldsymbol{\frac{2}{5}}
SOLUCIÓN

  • \boldsymbol{\frac{2}{3}}
SOLUCIÓN

LAS FRACCIONES SON UN TIPO ESPECIAL DE NÚMEROS Y SE LEEN DE UNA MANERA DIFERENTE A LOS DEMÁS. PRIMERO LEEMOS EL NUMERADOR COMO CUALQUIER NÚMERO NATURAL. EL DENOMINADOR CAMBIA SEGÚN EL NÚMERO, SI ES 2 SE LEE “MEDIOS”, SI ES 3 SE LEE “TERCIOS” Y SI ES 4 SE LEE “CUARTOS”. ASÍ, LA FRACCIÓN 1/2 SE LEE “UN MEDIO” Y LA FRACCIÓN 1/3 SE LEE “UN TERCIO”.

FRACCIONES EN LA VIDA COTIDIANA

LAS FRACCIONES FORMAN PARTE DE NUESTRO DÍA A DÍA. USAMOS FRACCIONES CADA VEZ QUE COMPRAMOS PAN, FRUTAS O VEGETALES, PUES PODEMOS PEDIR MEDIO KILOGRAMO DE ALGO. TAMBIÉN USAMOS FRACCIONES CUANDO DAMOS LA HORA Y DECIMOS, POR EJEMPLO, “SON LAS DOS Y CUARTO” LO QUE SIGNIFICA QUE HA PASADO 1/4 DE HORA DESPUÉS DE LAS 2.

– OTRAS SITUACIONES:

  • AL CORTAR UNA FRUTA EN DOS PARTES Y COMER UNA: 
  • AL CORTAR UNA PIZZA EN 4 PARTES Y COMER 2: 
  • AL COMPRAR PRODUCTOS:  KILO DE HARINA.
  • AL REALIZAR UNA PARTE DE UN RECORRIDO. LAURA RECORRIÓ  DE UNA CARRERA.
EN VARIAS SITUACIONES DE NUESTRA VIDA ENCONTRAMOS FRACCIONES DE FORMA GRÁFICA. UN EJEMPLO COMÚN DE FRACCIONES ES CUANDO REPARTIMOS UN PASTEL. EN LA IMAGEN VEMOS UNO CORTADO EN 8 PARTES IGUALES, ES DECIR, EL DENOMINADOR ES 8. TAMBIÉN VEMOS QUE SE TOMA 1 PARTE, ASÍ QUE EL NUMERADOR ES 1 Y LA FRACCIÓN DE ESE PEDAZO ES 1/8. LA TORTA TIENE FORMA DE CÍRCULO Y ES SIMILAR AL GRÁFICO DE LA FRACCIÓN.

¡A PRACTICAR!

ESCRIBE LA FRACCIÓN PARA CADA GRÁFICO:

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 2

PARTES COLOREADAS: 1

FRACCIÓN: \boldsymbol{\frac{1}{2}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 5

PARTES COLOREADAS: 1

FRACCIÓN: \boldsymbol{\frac{1}{5}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 3

PARTES COLOREADAS: 2

FRACCIÓN: \boldsymbol{\frac{2}{3}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 4

PARTES COLOREADAS: 3

FRACCIÓN: \boldsymbol{\frac{3}{4}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 4

PARTES COLOREADAS: 2

FRACCIÓN: \boldsymbol{\frac{2}{4}}

RECURSOS PARA DOCENTES

Artículo “Fracciones”

Este recurso cuenta con ejemplos didáctico sobre los tipos de fracciones y cómo graficarlos.

VER

CAPÍTULO 5 / TEMA 7 (REVISIÓN)

Geometría | ¿Qué aprendimos?

Elementos geométricos

El punto, la recta y el plano se denominan entes fundamentales de la geometría porque no tienen definición y su comprensión depende de comparaciones con elementos similares. El punto es adimensional y se nombra con letras mayúsculas del alfabeto. La recta está formada por infinitos puntos que se extienden en una misma dirección. Las rectas pueden ser paralelas, secantes o perpendiculares. El plano es un ente bidimensional, es decir, posee dos dimensiones y se suele nombrar con letras del alfabeto griego.

Un segmento es una parte de la recta que se encuentra ubicada entre dos puntos.

Ángulos

La región del plano comprendida entre dos semirrectas se denomina ángulo. De acuerdo a su medida pueden ser nulos (cuando miden 0°), agudos (cuando no son nulos y miden menos de 90°), rectos (cuando miden 90°), obtusos (cuando son menores a 180° y mayores a 90°) y llanos (cuando miden 180°). Se habla de dos ángulos complementarios cuando la suma de estos es igual a 90°, por otra parte, dos ángulos son suplementarios si la suma de ambos es igual a 180°. La sumatoria de los ángulos internos de un triángulo da 180°, mientras que en un cuadrilátero da 360°.

El transportador es uno de los instrumentos más usados en la lectura y construcción de ángulos.

Polígonos

Los polígonos son figuras caracterizadas por estar delimitadas por segmentos finitos rectos denominados lados. Si todos sus lados tienen la misma longitud se denominan polígonos regulares, de lo contrario, se denominan polígonos irregulares. En el caso de los polígonos regulares se cumple que sus ángulos internos son iguales, lo mismo sucede con sus ángulos externos. Los polígonos regulares también se caracterizan por tener igual cantidad de ejes de simetrías que de lados y sus diagonales son todas internas y de la misma longitud.

El rectángulo y el rombo son algunos ejemplos de polígonos irregulares.

Cuerpos geométricos

Los cuerpos geométricos pueden clasificarse en poliedros cuando todas sus caras son iguales y planas, y en cuerpos redondos cuando poseen al menos una cara curva. Sus elementos principales son las caras, las aristas y los vértices. Cada uno de los cuerpos geométricos posee su fórmula para determinar su volumen. De igual forma, cada uno de los cuerpos geométricos pueden representarse en construcciones de tres dimensiones.

La esfera es un cuerpo geométrico que no posee caras, aristas ni vértices.

Circunferencia y círculo

La circunferencia es una línea cerrada que sobresale por ser el perímetro del círculo. Por otra parte, el círculo es una figura geométrica que se encuentra delimitada por una circunferencia. Los elementos principales de una circunferencia son: centro, radio, cuerda, diámetro, semicircunferencia y arco. Entre una circunferencia y una recta pueden darse tres tipos diferentes de relación: recta exterior (cuando no toca ningún punto de la circunferencia), recta tangente (cuando toca un solo punto de la circunferencia) y recta secante (cuando atraviesa la circunferencia en dos puntos). El área de un círculo es igual al producto de el número pi por el radio de la circunferencia al cuadrado.

El matemático griego Eratóstenes fue la primera persona en calcular el diámetro de la Tierra en el 230 a. C.

Aplicación de la geometría

Incontables son las disciplinas y las situaciones en las que se emplea la geometría. Desde que apareció esta rama de la matemática ha permitido resolver infinidad de problemas. El cálculo de áreas de superficies planas puede extenderse a situaciones cotidianas como el cálculo de la extensión de un terreno, esto se debe a que cada figura posee su fórmula particular. Lo mismo sucede con el cálculo de volumen y los cuerpos geométricos.

La geometría ha permitido a la arquitectura realizar obras de singular belleza.

CAPÍTULO 4 / TEMA 5

CONSTRUCCIÓN DE FIGURAS GEOMÉTRICAS

¿QUÉ FORMA TIENE UNA HOJA DE TU CUADERNO? ¿Y UNA LATA DE GASEOSA? LA PRIMERA ES UN RECTÁNGULO Y LA SEGUNDA ES UN CILINDRO. AMBAS SON FIGURAS GEOMÉTRICAS Y PUEDES DIBUJARLAS O CONSTRUIRLAS SI UTILIZAS LOS INSTRUMENTOS ADECUADOS. ES MUY SENCILLO, LEE ESTE ARTÍCULO Y APRENDERÁS CÓMO HACERLO. 

¿QUÉ SON LAS FIGURAS GEOMÉTRICAS?

LAS FIGURAS GEOMÉTRICAS SON TODAS AQUELLAS QUE ESTÁN DEFINIDAS POR LÍNEAS RECTAS O CURVAS. PUEDEN TENER DOS O TRES DIMENSIONES Y ADEMÁS CONFORMAN LA SUPERFICIE DE LA MAYORÍA DE LOS OBJETOS QUE NOS RODEAN, POR EJEMPLO, LA PANTALLA DE UN TELÉFONO TIENE FORMA DE RECTÁNGULO Y UNA PELOTA TIENE FORMA DE ESFERA.

LAS FIGURAS GEOMÉTRICAS PLANAS O CON DOS DIMENSIONES SON:

CUADRADO

 

TRIÁNGULO

CÍRCULO

RECTÁNGULO

 

LAS FIGURAS GEOMÉTRICAS TRIDIMENSIONALES O CON TRES DIMENSIONES SON:

CUBO

PRISMA RECTANGULAR

PIRÁMIDE

CONO

CILINDRO

ESFERA

¿QUÉ ES UNA LÍNEA?

UNA LÍNEA ES LA UNIÓN DE MUCHOS PUNTOS CONTINUOS EN EL PLANO. PUEDEN SER ABIERTAS, CERRADAS, RECTAS O CURVAS.

  • LA LÍNEA DE COLOR AZUL ES RECTA Y ABIERTA.
  • LA LÍNEA DE COLOR AMARILLO ES CURVA Y ABIERTA.
  • LA LÍNEA DE COLOR VERDE ES RECTA Y CERRADA.
  • LA LÍNEA DE COLOR ROJO ES CURVA Y CERRADA.

¿SABÍAS QUÉ?
A LAS FIGURAS TRIDIMENSIONALES TAMBIÉN SE LAS CONOCE COMO SÓLIDOS GEOMÉTRICOS.

INSTRUMENTOS PARA CONSTRUIR FIGURAS GEOMÉTRICAS

REGLA

ES UN INSTRUMENTO PLANO Y LARGO QUE SIRVE PARA TRAZAR LÍNEAS RECTAS Y PARA MEDIR LONGITUDES. POR LO GENERAL VIENE CON MARCAS QUE REPRESENTAN LOS CENTÍMETROS. CON UNA REGLA PUEDES TRAZAR LAS RECTAS DE UN CUADRADO O UN RECTÁNGULO.

ESCUADRA Y CARTABÓN

LA ESCUADRA ES UNA PLANTILLA CON FORMA DE TRIÁNGULO RECTÁNGULO ISÓSCELES. SE USA PARA TRAZAR LÍNEAS PARALELAS O PERPENDICULARES JUNTO CON EL CARTABÓN O LA REGLA GRADUADA. EN LA IMAGEN, LA ESCUADRA ES LA DE COLOR ROJO Y EL CARTABÓN ES EL DE COLOR AZUL.

TRANSPORTADOR

ES UN INSTRUMENTO CIRCULAR O SEMICIRCULAR QUE SIRVE PARA MEDIR ÁNGULOS. ES DE MUCHA AYUDA CUANDO DIBUJAMOS TRIÁNGULOS SEGÚN SUS ÁNGULOS.

COMPÁS

ES UN INSTRUMENTO DE GRAN UTILIDAD PARA DIBUJAR CIRCUNFERENCIAS. TIENE DOS PARTES QUE SE UNEN POR UNA BISAGRA AJUSTABLE. UNA PUNTA TIENE UN EXTREMO DE METAL Y LA OTRA TIENE UN LÁPIZ CON EL CUAL SE HACE EL DIBUJO.

CONSTRUCCIÓN DE FIGURAS EN LO COTIDIANO

LA CONSTRUCCIÓN DE FIGURAS GEOMÉTRICAS ES FUNDAMENTAL PARA LOS ARQUITECTOS E INGENIEROS, QUIENES ELABORAN PLANOS QUE MUESTRAN LOS DETALLES DE UNA OBRA EN UN PAPEL. ASIMISMO, GRANDES ARTISTAS DE LA HISTORIA HAN PRODUCIDO INCREÍBLES CREACIONES EN LAS QUE TOMAN LAS FIGURAS GEOMÉTRICAS COMO BASE.

KANDINSKI FUE UN PINTOR RUSO DESTACADO EN EL ARTE ABSTRACTO. EN SU TRABAJO RESALTAN LOS COLORES VIVOS Y LA ABUNDANCIA DE FIGURAS GEOMÉTRICAS COMO LOS TRIÁNGULOS, CUADRADOS Y CÍRCULOS. EN 1913 CREÓ ESTA OBRA LLAMADA ESTUDIO DE COLOR CON CUADROS EN LA QUE PUEDES VER CÍRCULOS UNO DENTRO DE OTRO, CADA UNO DE UN COLOR DIFERENTE.

¡CONSTRUYE TUS PROPIAS FIGURAS!

CON ESTAS PLANTILLAS PUEDES CREAR FIGURAS TRIDIMENSIONALES. SOLO TIENES QUE COPIAR LA PLANTILLA, CORTAR Y PEGAR SUS LADOS. ¡INTÉNTALO!

CILINDRO

CONO

CUBO

PIRÁMIDE

PRISMA RECTANGULAR

 

¡A PRACTICAR!

1. ¿CÓMO SE LLAMAN ESTOS INSTRUMENTOS?

SOLUCIÓN
TRANSPORTADOR.

SOLUCIÓN
REGLA.

SOLUCIÓN
ESCUADRA.

SOLUCIÓN
COMPÁS.

SOLUCIÓN
CARTABÓN.

 

2. UNE LOS PUNTOS DEL MISMO COLOR EN ESTA CUADRÍCULA. UTILIZA TU REGLA O COMPÁS PARA CREAR LAS FIGURAS.

  • LOS PUNTOS VERDES FORMAN UN TRIÁNGULO.
  • LOS PUNTOS ROJOS FORMAN UN CUADRADO.
  • LOS PUNTOS AZULES FORMAN UN RECTÁNGULO.
  • EL PUNTO AMARILLO ES EL CENTRO DE UN CÍRCULO.

SOLUCIÓN

 

CAPÍTULO 5 / TEMA 4

Cuerpos geométricos

Uno de los objetos de estudio de la geometría son los cuerpos geométricos. Una pelota de fútbol, un cono de helado o un dado son algunos objetos cotidianos que podemos asociar con estos cuerpos, los cuales se caracterizan por ocupar volumen en el espacio y estar formados con figuras geométricas.

Principales cuerpos geométricos

Los cuerpos geométricos son infinitos y cada uno posee características propias. Los más comunes son el cubo, el prisma, la pirámide, el cilindro, el cono y la esfera. Ellos se clasifican en poliedros y cuerpos redondos.

  • Los poliedros son cuerpos geométricos. Todas sus caras son planas. Estos, a su vez, pueden ser regulares si sus caras son todas iguales o irregulares cuando son diferentes. Un ejemplo de poliedro es el cubo.
  • Los cuerpos redondos son cuerpos geométricos con al menos una cara curva, como sucede con el cilindro.

VER INFOGRAFÍA

¿Sabías qué?
Al cubo también se lo denomina hexaedro regular.

Elementos de los cuerpos geométricos

En la mayoría de los cuerpos geométricos se pueden identificar los siguientes elementos.

  • Cara: corresponde a cada una de las superficies planas que delimitan al cuerpo geométrico. Pueden ser caras basales, las que sirven de apoyo (base) al cuerpo en el plano, o caras laterales, que corresponden a las de los costados.
  • Vértice: es el punto en el que se juntan tres o más caras.
  • Arista: es el segmento de línea que se forma cuando dos caras se juntan.
La esfera y sus curiosidades

La esfera es un cuerpo geométrico que no posee ni caras, ni aristas ni vértice. Y se caracteriza porque todos los puntos de su superficie están a la misma distancia del centro.

Volumen de cuerpos geométricos

De acuerdo a su tipo, cada cuerpo geométrico tiene características propias que permiten calcular su volumen a través de fórmulas.

Nombre Figura Fórmula de volumen
Cubo \boldsymbol{V=l^{3}}

 

Donde:

V = volumen

l = lado

Prisma \boldsymbol{V = A_{b}\times h}

 

Donde:

V = volumen
Ab = área basal

h = altura

Pirámide \boldsymbol{V = \frac{A_{b}\times h}{3}}

 

Donde:

V = volumen

Ab = área basal

h = altura

Cilindro \boldsymbol{V =\pi \times r^{2}\times h}

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Cono \boldsymbol{V =\frac{\pi \times r^{2}\times h}{3}}

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

Esfera \boldsymbol{V =\frac{4}{3}\times \pi \times r^{3}}

 

Donde:

V = volumen

π = número pi (3,14…)

r = radio

h = altura

VER INFOGRAFÍA

– Calcula el volumen de este cubo.

Un cubo se caracteriza porque todos sus lados miden lo mismo, de manera que al conocer solo la medida de un lado se puede aplicar la fórmula:

V=l^{3}

V=(3\, cm)^{3}

V=\mathbf{27\, cm^{3}}

Calcula el volumen del siguiente cilindro.

Según la fórmula, los únicos datos que se necesitan son el radio del cilindro y su altura. De la imagen se obtienen los datos:

V =\pi \times r^{2}\times h

V =\pi \times (2\, cm)^{2}\times 6\, cm

En este caso observa que el radio está elevado al cuadrado, por lo tanto, al resolver esa potencia las unidades también se verán afectadas, por lo que quedarán centímetros cuadrados:

V =\pi \times 4\, cm^{2}\times 6\, cm

El número pi (π) es un número irracional, por lo cual es infinito. Para efectos de estos cálculos, usaremos solamente 2 de sus decimales, es decir, lo aproximamos a 3,14.

V =3,14 \times 4\, cm^{2}\times 6\, cm

Al resolver este producto se obtiene el volumen del cilindro.

V =\mathbf{75,36\, cm^{3}}

¿Sabías qué?
Cuando se usan múltiplos o submúltiplos del metro, el volumen siempre se expresa en unidades cúbicas: m3, cm3, mm3, km3, etc.
Los prismas son poliedros cuyos lados laterales son paralelogramos y con dos caras paralelas e iguales denominadas bases. Reciben su nombre de acuerdo a la forma de su base, por ejemplo, si su base es un triángulo, se denomina prisma triangular, si es un pentágono se denomina prisma pentagonal y así sucesivamente. Un paralelepípedo es un prisma cuya base es un paralelogramo.

Construcción de cuerpos geométricos

Los cuerpos geométricos tienen volumen y, por lo tanto, se pueden representar en tres dimensiones: largo, alto y ancho. Las imágenes a continuación son patrones que puedes usar para construir los cuerpos geométricos más comunes:

Cubo

Prisma rectangular

Pirámide

Cilindro

Cono

La construcción de cuerpos geométricos, además de su gran utilidad al momento de representar a estas figuras, permite trasladar estos conocimientos a otras áreas como la arquitectura y la ingeniería, en las cuales se realizan diseños a escalas. Conocer las diferentes fórmulas de cálculo y volumen de las figuras es fundamental para realizar operaciones más avanzadas.

¡A practicar!

1. Calcula el volumen de los siguientes cuerpos geométricos.

a)

      *La base es un rectángulo.

Solución
V = 133,33 cm3

b)

Solución
V = 64 cm3

c)

Solución
V = 904,32 cm3

d) 

Solución
V = 33,49 cm3

e)

Solución
V = 96 cm3

f)

Solución
V = 62,8 cm3

RECURSOS PARA DOCENTES

Artículo “Poliedros irregulares”

El artículo explica qué es un poliedro y qué caracteriza a los irregulares. También hace una breve explicación de los sólidos platónicos y muestra algunos ejemplos.

VER

Infografía “Cuerpos redondos”

La infografía explica de manera sencilla qué es un cuerpo redondo, sus características y su presencia en la vida cotidiana.

VER

Artículo “Volumen de figuras geométricas”

En este artículo destacado se explica qué es el volumen y cómo calcularlo en los diferentes cuerpos geométricos. También se plantean una serie de problemas resueltos y de ejercicios planteados.

VER

CAPÍTULO 5 / TEMA 6

POLIEDROS

La palabra “poliedro” proviene del griego y significa “que tiene muchas caras o planos”. Con este nombre se designa a aquellos cuerpos geométricos que están formados por polígonos y encierran un volumen. Cada una de las caras de un poliedro es un polígono (un triángulo, un cuadrado, un rombo, etc.) y se caracterizan por tener un mínimo de cuatro caras.

Solemos pensar que un balón de fútbol es una esfera, sin embargo, esto no es así. Un balón de fútbol es un poliedro que al ser hinchado con aire adopta una forma cercana a la esfera. A este tipo de poliedro se lo conoce como icosaedro truncado y combina 20 hexágonos regulares y 12 pentágonos regulares. Tiene 32 caras, 90 aristas y 60 vértices.

ELEMENTOS DE LOS POLIEDROS

Los poliedros son cuerpos geométricos tridimensionales con caras planas y que encierran un volumen. Es decir que un poliedro es una porción acotada de espacio limitada por distintos polígonos, a diferencia de los polígonos, que son porciones del plano limitadas por segmentos.

Los poliedros están constituidos por los siguientes elementos:

Bases Caras Aristas Vértices
Son las caras sobre las cuales se apoya el poliedro. Son las superficies planas que delimitan el espacio interno del poliedro. Son las líneas que componen el cuerpo de un poliedro. Son los puntos de encuentro entre tres o más aristas del poliedro.

TIPOS DE POLIEDROS

Poliedros regulares

Los poliedros regulares son aquellos cuyas caras están compuestas por el mismo polígono regular. Estos son conocidos también como sólidos platónicos.

Nombre del poliedro Forma del poliedro Número de caras Polígonos que forman sus caras
Tetraedro 4 Triángulos equiláteros
Cubo 6 Cuadrados
Octaedro 8 Triángulos equiláteros
Dodecaedro 12 Pentágonos regulares
Icosaedro 20 Triángulos equiláteros

¿Sabías qué?
Se les llama sólidos platónicos porque Platón, filósofo griego del siglo IV a. C., en su diálogo el Timeo explicó la construcción del universo por asociación de cada uno de los poliedros regulares con los elementos fundamentales: agua, aire, tierra y fuego.
El nombre que recibe cada poliedro depende del número de caras que presente. Se utilizan para ello prefijos numerales de origen griego y la terminación –aedro (que significa “plano o cara”). Por ejemplo, el cubo también se llama hexaedro porque tiene 6 caras. No obstante, muchos poliedros tienen sus nombres propios, como el prisma o la pirámide.

Poliedros irregulares

Los poliedros irregulares pueden presentar diferentes formas. En estos poliedros, el número de caras no presenta límites como ocurre con los poliedros regulares. Los poliedros irregulares más comunes son los prismas, las pirámides y todas sus variedades

  • Prismas: son poliedros limitados por dos bases que son polígonos iguales y por caras laterales que son paralelogramos. Ellos se nombran de acuerdo al polígono de la base. Así puedes encontrar:
Prisma triangular Prisma cuadrangular Prisma pentagonal Prisma hexagonal
Triángulos como bases. Cuadrados como bases. Pentágonos como bases. Hexágonos como bases.

VER INFOGRAFÍA

  • Pirámides: son poliedros que tienen una sola base conformada por un polígono y por caras laterales de triángulos con un vértice común. Al igual que los prismas, se nombran por el polígono de la base.
Pirámide triangular Pirámide cuadrangular Pirámide pentagonal Pirámide hexagonal
Triángulo como base. Cuadrado como base. Pentágono como base. Hexágono como base.

¡Construyamos poliedros!

Los poliedros son cuerpos geométricos, esto quiere decir que son tridimensionales y puedes construirlos fácilmente con pocos materiales.

Para construir un cubo necesitarás:

  • Tijeras.
  • Regla.
  • Cartón o un papel duro.
  • Pegamento.

Copia esta plantilla en el papel. Luego recortalo y realizar pliegues en las líneas. Los cuadrados quedarán como caras del poliedro y las pequeñas solapas servirán para unir la figura. En esas solapas debes colocar pegamento, para unirlas con las caras correspondientes. Quedará formado un cubo, similar al de la imagen. Será útil, por ejemplo, para hacer tus propios dados.

Para construir un tetraedro sigue los mismos pasos. Esta es la plantilla:

 

Para construir un octaedro sigue los mismos pasos. Esta es la plantilla:

 

Para construir un dodecaedro sigue los mismos pasos. Esta es la plantilla:

 

Para construir un icosaedro sigue los mismos pasos. Esta es la plantilla:

Poliedros en la vida cotidiana

En la vida cotidiana puedes encontrar continuamente poliedros. A lo largo de la historia, dos ejemplos de ellos se han vuelto mundialmente reconocidos: el cubo de Rubik y las pirámides de Egipto. Estas últimas son poliedros piramidales triangulares, cuya base es un polígono cualquiera y sus caras son triángulos con un vértice común.

RECURSOS PARA DOCENTES

Artículo “Poliedro irregulares”

En este artículo encontrarás el desarrollo teórico para ahondar en las características propias de los poliedros irregulares.

VER 

 

CAPÍTULO 4 / TEMA 4

Figuras tridimensionales

UNA HOJA DE PAPEL O UNA REGLA GRADUADA SON OBJETOS PLANOS QUE SOLO TIENEN DOS DIMENSIONES: ALTO Y ANCHO. PERO TAMBIÉN HAY OBJETOS QUE TIENEN PROFUNDIDAD, COMO UNA CAJA DE ZAPATOS O UN VASO. ESTOS OBJETOS TIENEN UNA FORMA TRIDIMENSIONAL, ES DECIR, TIENEN TRES DIMENSIONES. SON MÁS COMUNES DE LOS QUE CREES Y PUEDES VERLOS EN MUCHOS OBJETOS.

¿QUÉ ES UNA FIGURA TRIDIMENSIONAL?

ES UNA FIGURA QUE TIENE TRES DIMENSIONES: ALTO, ANCHO Y LARGO.

¿SABÍAS QUÉ?
LAS FIGURAS TRIDIMENSIONALES TAMBIÉN SON CONOCIDAS COMO CUERPOS GEOMÉTRICOS.

HAY MUCHAS FIGURAS TRIDIMENSIONALES, LAS MÁS COMUNES SON:

ELEMENTOS DE LAS FIGURAS TRIDIMENSIONALES

LAS FIGURAS TRIDIMENSIONALES TIENEN CARAS, ARISTAS Y VÉRTICES.

  • CARAS: SON LOS LADOS PLANOS O CURVOS.
  • ARISTAS: SON LAS LÍNEAS RECTAS QUE UNEN LAS CARAS.
  • VÉRTICES: SON LOS PUNTOS QUE UNEN DOS O MÁS CARAS.

POR EJEMPLO, ESTE CUBO TIENE 6 CARAS, 12 ARISTAS Y 8 VÉRTICES.

MUCHOS DE NUESTROS JUGUETES TIENEN FORMAS TRIDIMENSIONALES. OBSERVA ESTA IMAGEN. ¿PUEDES IDENTIFICAR ALGUNA DE ESAS FORMAS? ¡CLARO! LOS OBJETOS DE COLOR ROJOS SON CILINDROS, LOS OBJETOS DE COLOR AMARILLOS SON CUBOS Y PRISMAS RECTANGULARES; Y EL OBJETO AZUL UBICADO EN LA PARTE DE ARRIBA ES UNA PIRÁMIDE. TODOS SON CUERPOS GEOMÉTRICOS.

 

EN ESTA TABLA MUESTRA LOS ELEMENTOS DE CADA FIGURA:

FIGURAS TRIDIMENSIONAL ELEMENTOS

CUBO

6 CARAS

8 VÉRTICES

12 ARISTAS

ESFERA

1 CARA

CILINDRO

3 CARAS

2 ARISTAS

CONO

 

2 CARAS

1 ARISTAS

 

PRISMA RECTANGULAR

6 CARAS

8 VÉRTICES

12 ARISTAS

PIRÁMIDE

5 CARAS

5 VÉRTICES

8 ARISTAS

¿CÓMO CONSTRUIR UN PRISMA RECTANGULAR?
CON ESTA PLANTILLA PODRÁS CONSTRUIR UN PRISMA RECTANGULAR. COMO VES, LA FIGURA ESTÁ FORMADA POR 6 CARAS: 4 CARAS CON FORMA DE RECTÁNGULO Y 2 CARAS CON FORMA DE CUADRADO. CON AYUDA DE UN ADULTO, COPIA ESTE PLANTILLA EN UNA CARTULINA, RECÓRTALA, DOBLA LAS LÍNEAS Y LUEGO PÉGALAS. CON ESTOS PASOS TENDRÁS LA FIGURA TRIDIMENSIONAL EN TUS MANOS.

TIPOS DE FIGURAS TRIDIMENSIONALES

LAS FIGURAS TRIDIMENSIONALES PUEDEN SER DE DOS TIPOS: POLIEDROS O CUERPOS REDONDOS.

POLIEDROS CUERPOS REDONDOS
SOLO TIENEN SUPERFICIES PLANAS Y NO PUEDEN RODAR. TIENEN AL MENOS UN SUPERFICIE CURVA Y SÍ PUEDEN RODAR.
EJEMPLO:

EJEMPLO:

VER INFOGRAFÍA

FIGURAS TRIDIMENSIONALES EN LA VIDA COTIDIANA

LA MAYORÍA DE LOS OBJETOS QUE NOS RODEAN TIENE TRES DIMENSIONES. ESTOS SON ALGUNOS EJEMPLOS:

 

¿QUÉ FORMA TIENEN?

OBSERVA LA IMAGEN ANTERIOR Y RESPONDE LAS PREGUNTAS:

  • ¿CUÁLES OBJETOS TIENEN FORMA DE CUBO?
SOLUCIÓN

  • ¿CUÁLES OBJETOS TIENEN FORMA DE ESFERA?
SOLUCIÓN

  • ¿CUÁLES OBJETOS TIENEN FORMA DE PRISMA RECTANGULAR?
SOLUCIÓN

  • ¿CUÁLES OBJETOS TIENEN FORMA DE CILINDRO?
SOLUCIÓN

  • ¿CUÁLES OBJETOS TIENEN FORMA DE CONO?
SOLUCIÓN

  • ¿CUÁLES OBJETOS TIENEN FORMA DE PIRÁMIDE?
SOLUCIÓN

EL CUBO DE RUBIK ES UNA ESPECIE DE ROMPECABEZAS MECÁNICO. CADA CARA DEL CUBO TIENE UN COLOR DIFERENTE: ROJO, AZUL, AMARILLO, VERDE, NARANJA Y BLANCO. EL JUGADOR TRATA DE MEZCLAR TODOS LOS COLORES Y LUEGO HACER QUE CADA CARA VUELVA A TENER TODAS SUS PARTES DEL COLOR ORIGINAL. ¿TÚ TIENES UNO? ¡INTENTA JUGAR!

 

¡A PRACTICAR!

1. COLOREA CON ROJO LOS CUERPOS REDONDOS.

SOLUCIÓN

 

2. RESPONDE LAS PREGUNTAS:

  • ¿CON CUÁL FIGURA HARÍAS UNA PELOTA DE FÚTBOL?

SOLUCIÓN
2. ESFERA.
  • ¿CON CUÁL FIGURA HARÍAS UNA CAJA DE ZAPATOS?

SOLUCIÓN
2. PRISMA RECTANGULAR.
  • ¿CON CUAL FIGURA HARÍAS UN DADO?

SOLUCIÓN
1. CUBO.

CAPÍTULO 5 / TEMA 3

LOS ÁNGULOS Y SUS TIPOS

Es posible que identifiques diversas figuras geométricas al observar el mundo que te rodea y los objetos presentes en él. La mayoría de estas figuras están compuestas por semirrectas unidas por un punto en común, es decir, un vértice. Esa porción del plano delimitada por dos semirrectas que nacen de un mismo punto se conoce como ángulo y según su medida puede ser de distintos tipos.

¿qué es un ángulo?

Es una porción del plano delimitada por dos semirrectas, las cuales también son llamadas lados. Ambos lados coinciden en un punto de origen o vértice. La abertura de un lado con respecto al otro es la que denominamos ángulo.

 

VER INFOGRAFÍA 

¿Cómo nombrar ángulos?

  • Con una letra griega, por ejemplo α y se lee “ángulo alpha”. En esta imagen vemos un ángulo α = 52,13°.

  • Con los puntos correspondientes a las semirrectas que lo constituyen y al vértice. Estos puntos se nombran mediante letras, por ejemplo, en la imagen vemos el ángulo AOB.

 

CLASIFICACIÓN DE LOS ÁNGULOS

Los ángulos se clasificar según tres criterios diferentes: su medida, su posición y la suma de sus medidas con otros ángulos.

¿Sabías qué?
Los ángulos se miden en grados (°).

Ángulos según su medida

  • Ángulo completo: tiene una amplitud de 360°, significa que es un giro completo.
  • Ángulo nulo: tiene una amplitud de 0°.
  • Ángulo llano: tiene una amplitud de 180°, podrás verlo representado como una línea recta.
  • Ángulo cóncavo: tiene una amplitud mayor que 180° pero menor que 360°.
  • Ángulo convexo: tiene una amplitud menor que 180°.

Dentro de los ángulos convexos encontramos otras clasificaciones:

  • Ángulos rectos: miden 90°.
  • Ángulos obtusos: miden más de 90°.
  • Ángulos agudos: miden menos de 90°.

 

Ángulos según su posición

Según su posición los ángulos pueden ser:

  • Adyacentes: son aquellos que tienen el vértice y un lado en común. Al sumar las amplitudes de cada uno de ellos el resultado será 180°.
  • Consecutivos: son aquellos que comparten tanto el vértice como uno de sus lados.
  • Opuestos por el vértice: son aquellos que solo tienen el vértice en común.

Ángulos según la suma de su medida con otros ángulos

Los ángulos también pueden clasificarse según el resultado obtenido al sumar la medida de la amplitud de un ángulo con la de otro ángulo, así sabrás que:

  • Un ángulo es suplementario con otro si la suma de sus amplitudes da como resultado un ángulo de 180°.
  • Un ángulo es complementario con otro si la suma de sus amplitudes da como resultado un ángulo de 90°.

MEDICIÓN DE ÁNGULOS

Por lo general, la medición de los ángulos se realiza por medio de un transportador.

¿Qué es un transportador?

Es un instrumento geométrico que puede tener una forma circular o semicircular y se utiliza para medir gráficamente un ángulo así como para construirlo. Cuenta con graduaciones o marcas iguales que sirven de escala para identificar la medida del ángulo. Los transportadores circulares están divididos en 360 partes iguales, mientras que los semicirculares están divididos en 180 partes iguales. Cada una de estas partes representa un grado (1°) .

Para medir un ángulo con transportador seguimos estos pasos:

1. Identificamos el vértice, es decir, el punto del que nacen las semirrectas y hacemos que coincida con el centro del transportador.

2. Verificamos que el cero (0) en el transportador esté justo sobre uno de los lados del ángulo.

3. Observamos el valor que marca el otro lado que pasa por la escala graduada. En este caso, la medida del ángulo â = 165°.

¿Sabías qué?
Los transportadores tienen escalas graduadas dobles: una va en sentido de las manecillas del reloj y las otra en sentido contrario. Siempre debes recordar comenzar a medir a partir del cero. 

LOS ÁNGULOS EN LAS FIGURAS GEOMÉTRICAS

Las figuras geométricas planas poseen ángulos interiores, ubicados dentro de la figuras; y ángulos exteriores, ubicados entre un lado de la figura y el otro lado siguiente.

VER INFOGRAFÍA 

Ángulos interiores de los triángulos

Los ángulos interiores de los triángulos siempre suman 180°. Según sus ángulos los triángulos pueden ser:

Nombre Figura Características
Triángulo rectángulo Tiene un ángulo recto (90°).
Triángulo acutángulo Tiene todos sus ángulos agudos (menores a 90°).
Triángulo obtusángulo Tiene un ángulo obtuso (mayores a 90° pero menores a 180°).

 

Ángulos interiores de los cuadriláteros

En el caso de los cuadriláteros, la suma de sus cuatro ángulos internos siempre es igual a 360°. De acuerdo al tipo de cuadrilátero el valor del ángulo puede variar. Su clasificación es la siguiente:

Nombre Figura Característica
Cuadrado Tiene cuatro ángulos rectos (90°).
Rectángulo Tiene cuatro ángulos rectos (90°).
Rombo Tiene ángulos opuestos iguales.
Romboide Tiene ángulos opuestos iguales.
Trapecio rectángulo Tiene dos ángulos rectos (90°).
Trapecio isósceles Los dos ángulos de la base menor son iguales. Los dos ángulos de la base mayor son iguales.
Trapecio escaleno Todos sus ángulos son diferentes.

¿Sabías qué?
La palabra “geometría” viene de geo que significa “Tierra”, y de metría que significa “medir”.

Ángulos internos de polígonos regulares

Los polígonos regulares son aquellos que tienen todos sus ángulos internos iguales. Para calcular su valor se emplea la ecuación (n − 2) × 180°/n donde n es el número de lados que tiene el polígono. Por ejemplo, para un hexágono se sustituye la n por el número 6 que corresponde al número de sus lados y obtenemos que (6 − 2) × 180°/6 = 120°, lo que quiere decir que cada uno de los ángulos internos de un hexágono mide 120°.

¡A practicar!

1. Observa los ángulos entre estas rectas. Completa la tabla con los ángulos solicitados.

Tipo de ángulo Nombre del ángulo
Recto  Ángulo α
Agudo
Obtuso
Complementario
Suplementario
Adyacente
Solución
Tipo de ángulo Nombre del ángulo
Recto Ángulo α
Agudo Ángulo β
Obtuso Ángulo GOC
Complementario Ángulos BOE y EOC
Suplementario Ángulos EOG y GOF
Adyacente Ángulos AOC y COB

2. Calcula los ángulos complementarios y suplementarios para los siguientes ángulos:

  • β = 50°
Solución

Ángulo complementario = 40° porque 50° + 40° = 90°.

Ángulo suplementario = 130° porque 50° + 130° = 180°.

  • γ = 15°
Solución

Ángulo complementario = 75° porque 15° + 75° = 90°.

Ángulo suplementario = 165° porque 15° + 165° = 180°.

  • δ = 75°
Solución

Ángulo complementario = 15° porque 75° + 15 = 90°.

Ángulo suplementario = 105° porque 75° + 105° = 180°.

 

RECURSOS PARA DOCENTES

Artículo “Ángulos”

En el siguiente artículo encontrarás información sistematizada sobre las diferentes clasificaciones de los ángulos.

VER

Enciclopedia “Matemática Tomo I”.

En esta enciclopedia podrás encontrar las explicaciones necesarias para comprender la clasificación de los ángulos y su medición.

VER 

CAPÍTULO 1 / TEMA 5

SUCESIONES

Hacemos uso de las sucesiones al contar los días de la semana, del mes o del año. También al contar las horas del día o simplemente al contar los pasos para llegar a casa. Las sucesiones no son más que un conjunto de números organizados de un forma determinada. No solo las podemos encontrar con números, sino también con figuras.

Las primeras nociones sobre las sucesiones fueron propuestas por Fibonacci. A él se le ocurrió estudiar este concepto por medio de la relación que tenía con la reproducción de los conejos. ¡Sí! Los conejos se reproducen de forma sucesiva. Cada mes una hembra puede dar a luz, y por lo tanto, puede tener cientos de hijos al año.

¿QUÉ SON SUCESIONES?

Una sucesión es un conjunto de elementos ordenados de forma ascendente o descendente. Los elementos de este conjunto se denominan términos y estos siguen una regla, la cual permite calcular cada uno de ellos.

Las sucesiones pueden ser finitas o infinitas. Las sucesiones finitas tienen un número determinado de términos y las infinitas no tienen término final. Por ejemplo:

  • Sucesión finita = \boldsymbol{\left \{ 2,4,6,8,10 \right \}}
  • Sucesión infinita = \boldsymbol{\left \{ 3,6,9,12,15,18... \right \}}
¿Sabías qué?
Los puntos suspensivos (…) indican que la sucesión continua hasta el infinito.

Términos de una sucesión

Los términos de una sucesión se expresan con subíndices: a1, a2, a3, a4, a5, los cuales indican la posición de cada uno dentro de la secuencia, por ejemplo, el término a1 ocupa la primera posición de la secuencia, el término a2 corresponde al segundo lugar y así sucesivamente con cada uno.

Podemos calcular cada término de una sucesión de acuerdo a esta relación:

an = a0 + nr

Donde:

a0: término anterior al primero.

r: regla de la sucesión.

n: número de término.

– Ejemplo:

Podemos representar una sucesión por un término general o enésimo. En este caso su fórmula es:

an = −1 + n · (+3)

an = −1 + 3n

Observa que la regla de sucesión (r) es +3, por lo tanto, el término anterior al primero (t0) es igual a −1. Si queremos hallar el término a8 solo aplicamos la fórmula anterior:

a8 = −1 + 3 · 8 ⇒ a8 = −1 + 24 ⇒ a8 = 23

¿Cuáles son los términos?

Emplea la fórmula y determina cuáles son los términos a10, a12 y a15 de la secuencia anterior.

Solución

a10 = −1 + 3 · 10 ⇒ a10 = −1 + 30 ⇒ a10 = 29

a12 = −1 + 3 · 12 ⇒ a12 = −1 + 36 ⇒ a12 = 35

a15 = −1 + 3 · 15 ⇒ a15 = −1 + 45 ⇒ a15 = 44

Sucesión de Fibonacci

Una de las sucesiones conocidas más importantes es la de Fibonacci. Este tipo de secuencia lleva su nombre en honor al matemático italiano Leonardo Fibonacci y se caracteriza por el hecho de que cada número resulta de sumar los dos números anteriores a este. El término general de la misma es a_{n}= a_{n-1} + a_{n-2} y la forma más básica de este tipo de sucesión es: 1,1,2,3,5,8,13,21,34,55,89,144,233...

VER INFOGRAFÍA

SUCESIONES CON FIGURAS

No solo podemos encontrar sucesiones de números, también es posible encontrar sucesiones con diferentes figuras. Por ejemplo:

En ella se puede ver que las figuras están en orden ascendente con respecto a sus lados. Cada figura tiene un lado más que la anterior.

– Ejemplo 2:

También es posible conseguir sucesiones con figuras en distintas posiciones, como este ejemplo:

Como puedes ver en la imagen, todas las flechas tienen una dirección y sentido diferente, pero si te fijas con atención, el movimiento es igual al de las agujas del reloj, es decir, van en sentido horario. Este patrón nos permite saber cuál será la próxima figura en la sucesión:

Uno de los campeonatos más vistos es el Mundial de fútbol de la FIFA. En este, se clasifican 32 selecciones y, a medida que transcurre el torneo, se eliminan la mitad de los equipos en encuentros entre ellos. Así, comienzan 32, luego 16, 8, 4, 2, hasta que solo queda 1, el equipo campeón. Como ves, esta es una sucesión descendente en la que cada término es igual a la mitad del anterior.

SUCESIONES CON SUMAS Y RESTAS

Podemos construir sucesiones por medio de sumas, restas o la combinación de ambas operaciones. Por ejemplo:

– Otro ejemplo:

En la sucesión anterior, a medida que disminuye el número en cada término, la resta entre el término siguiente y el anterior aumenta.

Algunas aplicaciones

Debido a lo práctico que resulta expresar en forma general una secuencia ordenada de números, las sucesiones matemáticas han sido aplicadas en muchas disciplinas además de la matemática. Por ejemplo, la sucesión de Fibonacci se ha aplicado en la arquitectura, el arte y la informática.

Las progresiones son un tipo de sucesiones que se utilizan para realizar diversos cálculos como la determinación del interés compuesto. Las progresiones aritméticas también se usan en las interpolaciones, que consisten en calcular valores que se encuentran entre dos dados.

¡A practicar!

1. Consigue la regla de la sucesión en cada caso.

  • {2, 4, 6, 8, 10, 12, 14}
Solución

  • {45, 44, 42, 39, 35, 30, 24, 17, 9} 
Solución

2. ¿Cuál es la imagen que falta?

Solución

3. ¿Cuáles son las figuras que deben ir en los espacios en gris?

Solución

4. Selecciona cuál de las imágenes del segundo bloque es la que corresponde al cuadrado que falta en el primer bloque.

Solución

5. Calcula el término a25 de la siguiente sucesión:

{23, 27, 31, 35, 39}

Solución
  • Datos:

a0 = 19

r = +4

  • Término enésimo:

an = 19 + n · (+4)

an = 19 + 4n

  • Resultado:

a25 = 19 + 4 · 25

a25 = 19 + 100

a25 = 119  

RECURSOS PARA DOCENTES

Artículo “Sucesiones”

Este artículo lo ayudará a complementar la información sobre las sucesiones.

VER

Artículo “Sucesiones y series”

Con este artículo podrá ampliar los conocimiento sobre las series y sucesiones.

VER

 

CAPÍTULO 4 / TEMA 5

PERÍMETRO

Todas los objetos planos tienen un contorno o frontera que las delimita. Por ejemplo, un alambrado delimita una casa, o una acera delimita un parque. Este borde se llama perímetro y su cálculo es muy sencillo, solo tenemos que saber la cantidad de lados y la longitud de cada uno de ellos en la figura.

¿qué es el perímetro?

El perímetro es el contorno de una figura plana y permite conocer su medida. Para calcularlo sumamos todos los lados de la figura.

Si queremos decorar este portarretrato con un cordón dorado, ¿cuánto cordón debemos comprar? ¡Muy fácil! Tenemos que calcular el perímetro del objeto. Como tiene dos lados que miden 15 centímetros y dos lados que miden 10 cm, sumamos todas las medidas de cada lado: 15 cm + 15 cm + 10 cm + 10 cm = 50 cm. Tenemos que comprar 50 cm de cordón.

¿Cómo calcular el perímetro en polígonos regulares?

Una de las características de los polígonos regulares es que todos sus lados tienen la misma longitud. Entonces, para calcular su perímetro multiplicamos la cantidad de lados del polígono por la longitud de su lado.

Perímetro = número de lados × longitud del lado

– Ejemplo:

Un cuadrado tiene 4 lados iguales. Si cada lado mide 5 cm, ¿cuál es el perímetro de la figura?

Perímetro = 4 × 5 cm = 20 cm

 

– Ejemplo 2:

Los triángulos equiláteros tienen todos sus lados iguales. Si cada lado mide 8 cm, ¿cuál es el perímetro de la figura?

Perímetro = 3 × 8 cm = 24 cm

¿Sabías qué?
Todos los polígonos regulares tienen lados, vértices, centro y perímetro.

perímetros en otras figuras planas

Existen otras figuras como los polígonos no regulares que se caracterizan por no tener todos los lados iguales. Para calcular los perímetros de estas figuras sumamos cada una de las longitudes de sus lados.

– Ejemplo 1:

 

Perímetro = 10 cm + 6 cm + 10 cm + 6 cm = 32 cm

 

– Ejemplo 2:

Perímetro = 6 cm + 4 cm + 3 cm + 2 cm + 3 cm + 3 cm = 21 cm

– Ejemplo 3:

Cada cuadrado interno de la figura mide 1 cm. Si sumamos cada cuadro por lado podremos saber el perímetro de esta figura.

Perímetro = 4 cm + 1 cm + 2 cm + 2 cm + 4 cm + 1 cm + 1 cm + 1 cm + 1 cm + 1 cm = 18 cm

Palacio de la Alhambra

El palacio la Alhambra se encuentra en España. Las partes inferiores de sus paredes están cubiertas con azulejos diseñados con polígonos. Estas figuras se unieron para crear múltiples combinaciones. La belleza de estas paredes demuestra lo impresionante que es la geometría aplicada en el arte.

aplicación del perímetro

Como ya vimos, para determinar el perímetro tenemos que sumar la longitud de todos los lados de la figuras. Si la figura es regular, es decir, si tiene todos sus lados iguales, solo multiplicamos la cantidad de lados por la longitud de uno de ellos. En la vida cotidiana este cálculo tiene diversas aplicaciones. Por ejemplo:

1. Carla corre todas la mañanas en el parque. Si cada día da tres vueltas alrededor del parque, ¿cuánto metros corre?

Primero calculamos el perímetro del parque:

Perímetro = 30 m + 15 m + 30 m + 15 m = 90 m

Como da tres vueltas, multiplicamos el resultado del perímetro por 3.

90 m × 3 = 270 m

Por lo tanto, Carla corre 270 m en el parque cada mañana.


2. Una familia quiere colocar una cerca alrededor de la casa, ¿cuánto metros de material debe comprar?

Solo tenemos que calcular el perímetro de la región que se quiere cercar:

Perímetro = 20 m + 5 m + 12 m + 5 m + 20 m = 10 m = 72 m

Entonces, se necesitan 72 metros de cerca para la casa.


3. Un auto de carreras dio 5 vueltas alrededor de la pista. ¿Cuántos metros corrió?

Primero calculamos el perímetro de la pista de carreras:

Perímetro = 80 m + 25 m + 40 m + 35 m + 40 m = 220 m

Como dio 5 vueltas, multiplicamos el resultado del perímetro por 5.

220 m × 5 = 1.100 m

Por lo tanto, el auto corrió 1.100 metros.


Castillos amurallados

Las murallas se han usado desde la prehistoria y se hicieron populares en la Edad Media. Muchos castillos de todo el mundo fueron amurallados para proteger el perímetro que los rodea con el fin de frenar y alejar a los ejércitos que deseaban conquistar sus tierras. No solo se amurallaban castillos sino también ciudades enteras, como la ciudad de Quebec en Canadá para establecer un perímetro de defensa y proteger a los ciudadanos.

¡A practicar!

1. Observa las siguientes figuras regulares y responde las preguntas.

  • ¿Cuál es el perímetro del cuadrado morado?
    Solución
    El perímetro es de 16 cm.
  • ¿Cuál es el perímetro del pentágono naranja?
    Solución
    El perímetro es de 30 cm.
  • ¿Cuál es el perímetro del triángulo azul?
    Solución
    El perímetro es de 9 cm.
  • ¿Cuál es el perímetro del hexágono verde?
    Solución
    El perímetro es de 30 cm.

2. Observa las siguientes figuras no regulares y responde las preguntas.

  • ¿Cuál es el perímetro de la figura A?
    Solución
    El perímetro es 20 cm.
  • ¿Cuál es el perímetro de la figura B?
    Solución
    El perímetro es 19 cm.
  • ¿Cuál es el perímetro de la figura C?
    Solución
    El perímetro es 26 cm.
  • ¿Cuál es el perímetro de la figura D?
    Solución
    El perímetro es 25 cm.

3. Un granjero quiere separar las ovejas de las vacas con una cerca triangular en una parte de su granja. Cada lado de la cerca tiene 12 metros. ¿Cuál es el perímetro de la cerca?

Solución
El perímetro de la cerca es 36 metros.
RECURSOS PARA DOCENTES

Artículo “Perímetro de polígonos”

El siguiente artículo permitirá ampliar la información sobre el perímetro de polígonos.

VER