CAPÍTULO 5 / TEMA 7 (REVISIÓN)

Geometría | ¿Qué aprendimos?

Elementos geométricos

El punto, la recta y el plano se denominan entes fundamentales de la geometría porque no tienen definición y su comprensión depende de comparaciones con elementos similares. El punto es adimensional y se nombra con letras mayúsculas del alfabeto. La recta está formada por infinitos puntos que se extienden en una misma dirección. Las rectas pueden ser paralelas, secantes o perpendiculares. El plano es un ente bidimensional, es decir, posee dos dimensiones y se suele nombrar con letras del alfabeto griego.

Un segmento es una parte de la recta que se encuentra ubicada entre dos puntos.

Ángulos

La región del plano comprendida entre dos semirrectas se denomina ángulo. De acuerdo a su medida pueden ser nulos (cuando miden 0°), agudos (cuando no son nulos y miden menos de 90°), rectos (cuando miden 90°), obtusos (cuando son menores a 180° y mayores a 90°) y llanos (cuando miden 180°). Se habla de dos ángulos complementarios cuando la suma de estos es igual a 90°, por otra parte, dos ángulos son suplementarios si la suma de ambos es igual a 180°. La sumatoria de los ángulos internos de un triángulo da 180°, mientras que en un cuadrilátero da 360°.

El transportador es uno de los instrumentos más usados en la lectura y construcción de ángulos.

Polígonos

Los polígonos son figuras caracterizadas por estar delimitadas por segmentos finitos rectos denominados lados. Si todos sus lados tienen la misma longitud se denominan polígonos regulares, de lo contrario, se denominan polígonos irregulares. En el caso de los polígonos regulares se cumple que sus ángulos internos son iguales, lo mismo sucede con sus ángulos externos. Los polígonos regulares también se caracterizan por tener igual cantidad de ejes de simetrías que de lados y sus diagonales son todas internas y de la misma longitud.

El rectángulo y el rombo son algunos ejemplos de polígonos irregulares.

Cuerpos geométricos

Los cuerpos geométricos pueden clasificarse en poliedros cuando todas sus caras son iguales y planas, y en cuerpos redondos cuando poseen al menos una cara curva. Sus elementos principales son las caras, las aristas y los vértices. Cada uno de los cuerpos geométricos posee su fórmula para determinar su volumen. De igual forma, cada uno de los cuerpos geométricos pueden representarse en construcciones de tres dimensiones.

La esfera es un cuerpo geométrico que no posee caras, aristas ni vértices.

Circunferencia y círculo

La circunferencia es una línea cerrada que sobresale por ser el perímetro del círculo. Por otra parte, el círculo es una figura geométrica que se encuentra delimitada por una circunferencia. Los elementos principales de una circunferencia son: centro, radio, cuerda, diámetro, semicircunferencia y arco. Entre una circunferencia y una recta pueden darse tres tipos diferentes de relación: recta exterior (cuando no toca ningún punto de la circunferencia), recta tangente (cuando toca un solo punto de la circunferencia) y recta secante (cuando atraviesa la circunferencia en dos puntos). El área de un círculo es igual al producto de el número pi por el radio de la circunferencia al cuadrado.

El matemático griego Eratóstenes fue la primera persona en calcular el diámetro de la Tierra en el 230 a. C.

Aplicación de la geometría

Incontables son las disciplinas y las situaciones en las que se emplea la geometría. Desde que apareció esta rama de la matemática ha permitido resolver infinidad de problemas. El cálculo de áreas de superficies planas puede extenderse a situaciones cotidianas como el cálculo de la extensión de un terreno, esto se debe a que cada figura posee su fórmula particular. Lo mismo sucede con el cálculo de volumen y los cuerpos geométricos.

La geometría ha permitido a la arquitectura realizar obras de singular belleza.

CAPÍTULO 4 / TEMA 2

FIGURAS PLANAS

SI OBSERVAMOS DETENIDAMENTE EL LUGAR EN DONDE ESTAMOS PODEMOS ENCONTRAR INFINIDAD DE FIGURAS. LA UNIÓN DE DIFERENTES LÍNEAS HA FORMADO LAS FIGURAS Y LAS HAY DE DIFERENTES TIPOS. ES IMPOSIBLE NO ENCONTRAR EN NUESTRO ENTORNO CUADRADOS, RECTÁNGULOS Y CÍRCULOS. TODOS SON PARTE DE LA FORMA QUE TIENEN LOS OBJETOS QUE UTILIZAMOS A DIARIO.

FIGURAS PLANAS Y SUS TIPOS

LAS FIGURAS PLANAS SON AQUELLAS QUE TIENEN DOS DIMENSIONES: ALTO Y ANCHO. ALGUNOS EJEMPLOS DE FIGURAS PLANAS SON LO CÍRCULOS, LOS TRIÁNGULOS Y LO CUADRILÁTEROS.

  • LA FIGURA VERDE ES UN CÍRCULO.
  • LA FIGURA AZUL ES UN TRIÁNGULO.
  • LA FIGURA ROJA ES UN CUADRILÁTERO.

¿QUÉ SON LOS TRIÁNGULOS?

SON LAS FIGURAS FORMADAS POR TRES SEGMENTOS.

ALGUNOS EJEMPLOS DE TRIÁNGULOS SON LOS SIGUIENTES:

¿QUÉ SON LOS CUADRILÁTEROS?

SON LAS FIGURAS FORMADAS POR CUATRO SEGMENTOS.

ALGUNOS EJEMPLOS DE CUADRILÁTEROS SON LOS SIGUIENTES:

¿QUÉ SON LOS CÍRCULOS?

SON FIGURAS CURVAS CON IGUAL DISTANCIA ENTRE UN PUNTO DE SU EXTREMO Y EL CENTRO.

ALGUNOS EJEMPLOS DE CÍRCULOS SON LOS SIGUIENTES:

LAS FIGURAS CIRCULARES ESTÁN FORMADAS POR UNA LÍNEA CURVA CERRADA Y TIENEN UNA CARACTERÍSTICA FUNDAMENTAL: TODOS LOS PUNTOS DE LA LÍNEA CURVA ESTÁN A LA MISMA DISTANCIA DEL CENTRO DE LA FIGURA. LA LÍNEA QUE BORDEA AL CÍRCULO SE LLAMA CIRCUNFERENCIA. EN LA IMAGEN VEMOS EL TRAZO DE UNA CIRCUNFERENCIA. PARA DIBUJAR CIRCUNFERENCIAS USAMOS UN COMPÁS.

ELEMENTOS DE Los triángulos y cuadriláteros

LADOS

CON CADA UNO DE LOS SEGMENTOS QUE FORMAN LA FIGURA.

TRIÁNGULOS CUADRILÁTEROS

LOS TRIÁNGULOS TIENEN 3 LADOS.

LOS CUADRILÁTEROS TIENEN 4 LADOS.

VÉRTICES

SON LOS PUNTOS DONDE SE UNEN DOS LADOS.

TRIÁNGULOS CUADRILÁTEROS

LOS TRIÁNGULOS TIENEN 3 VÉRTICES.

LOS CUADRILÁTEROS TIENEN 4 VÉRTICES.

ÁNGULOS

SON LAS ABERTURAS QUE SE FORMAN ENTRE DOS LADOS.

TRIÁNGULOS CUADRILÁTEROS

LOS TRIÁNGULOS TIENEN 3 ÁNGULOS.

LO CUADRILÁTEROS TIENEN 4 ÁNGULOS.

ELEMENTOS DEL CÍRCULO

CIRCUNFERENCIA

ES EL LÍNEA CURVA CERRADA.

CENTRO

ES EL PUNTO CENTRAL QUE TIENE LA MISMA DISTANCIA A CUALQUIER PUNTO DE LA CIRCUNFERENCIA.

DIÁMETRO

ES LA DISTANCIA DE UN PUNTO DE LA CIRCUNFERENCIA A OTRO QUE PASA POR EL CENTRO.

RADIO

ES LA DISTANCIA DESDE EL CENTRO DE LA FIGURA HASTA CUALQUIER PUNTO DE LA CIRCUNFERENCIA. EL RADIO ES IGUAL A LA MITAD DEL DIÁMETRO.

AVISOS Y GEOMETRÍA

LA MAYORÍA DE LOS AVISOS COMERCIALES Y DE TRÁNSITO SON FIGURAS PLANAS. POR EJEMPLO, ESTA SEÑAL NOS INDICA QUE PRONTO SE ACERCA UNA CURVA. LA SEÑAL TIENE FORMA DE CUADRILÁTERO PORQUE TIENE 4 LADOS, 4 VÉRTICES Y 4 ÁNGULOS.

TIPOS DE ÁNGULOS

EXISTEN VARIOS TIPOS DE ÁNGULOS Y SU CLASIFICACIÓN DEPENDE DE SU ABERTURA.

ÁNGULO ABERTURA REPRESENTACIÓN
RECTO 90°
AGUDO MENOS DE 90° Y MÁS DE 0°
OBTUSO MENOS DE 180° Y MÁS DE 90°
LLANO 180°

¿SABÍAS QUÉ?
LOS ÁNGULOS SE MIDEN EN GRADOS. EL SÍMBOLO DE LOS GRADOS ES °. 

EL ÁREA Y SUPERFICIE

SI QUEREMOS SABER LA MEDIDA DE LA PARTES EXTERNA DE UN OBJETOS O DE UN TERRENO, TENEMOS QUE CALCULAR SU ÁREA.

LA SUPERFICIE ES LA PARTE EXTERNA DE UN OBJETO Y EL ÁREA ES LA MEDIDA DE LA SUPERFICIE. LA UNIDAD DE MEDIDA ES EL CENTÍMETRO CUADRADO (cm2).

EN LOS RECTÁNGULOS SOLO TENEMOS QUE MULTIPLICAR LA MEDIDA DE LA ALTURA POR LA DEL ANCHO.

ÁREA DE RECTÁNGULO = ALTO × ANCHO

– EJEMPLO:

OBSERVA ESTE RECTÁNGULO. ESTÁ FORMADO POR CUADRADOS MÁS PEQUEÑOS. SI CADA CUADRADO MIDE 1 CENTÍMETRO DE ALTO Y 1 CENTÍMETRO DE ANCHO. RESPONDE:

  1. ¿CUÁNTOS CENTÍMETROS DE LARGO MIDE ESTE RECTÁNGULO?
  2. ¿CUÁNTOS CENTÍMETROS DE ANCHO MIDE ESTE RECTÁNGULO?
  3. ¿CUÁL ES EL ÁREA DEL RECTÁNGULO?

A. EL RECTÁNGULO TIENE 4 cm DE ALTO.

B. EL RECTÁNGULO TIENE 5 cm DE ANCHO.

C. EL ÁREA DEL RECTÁNGULO ES DE 20 cm2 PORQUE 4 cm × 5 cm = 20 cm2.


– EJEMPLO 2:

¿CUÁL ES EL ÁREA DE ESTE RECTÁNGULO?

EL RECTÁNGULO TIENE 3 cm DE ALTO Y 4 cm DE ANCHO. POR LO TANTO:

ÁREA = 3 cm × 4 cm = 12 cm2

EL RECTÁNGULO TIENE UN ÁREA DE 12 cm2.

¡A PRACTICAR!

1. COLOCAR EL TIPO DE ÁNGULO SEGÚN SU MEDIDA:

  • 160°
SOLUCIÓN
ÁNGULO OBTUSO.
  • 45°
SOLUCIÓN
ÁNGULO AGUDO.
  • 79°
SOLUCIÓN
ÁNGULO AGUDO.
  • 92°
SOLUCIÓN
ÁNGULO OBTUSO.
  • 180°
SOLUCIÓN
ÁNGULO LLANO.
  • 90°
SOLUCIÓN
ÁNGULO RECTO.

 

2. CALCULAR EL ÁREA DE LOS SIGUIENTES RECTÁNGULOS. CADA CUADRO MIDE 1 cm DE ALTO Y 1 cm DE ANCHO.

A. 

SOLUCIÓN

ÁREA = 9 cm x 5 cm

ÁREA = 45 cm2

B. 

SOLUCIÓN

ÁREA = 8 cm x 5 cm

ÁREA = 40 cm2

C. 

SOLUCIÓN

ÁREA = 5 cm × 2 cm

ÁREA = 10 cm2

RECURSOS PARA DOCENTES

Artículo “Área y perímetro de las figuras planas”

En el siguiente artículo se amplía la información sobre área con más tipos de figuras planas.

VER

CAPÍTULO 4 / TEMA 3

FIGURAS PLANAS

TODOS LOS OBJETOS QUE NOS RODEAN TIENEN UNA FORMA Y MUCHOS DE ELLOS SON PLANOS, ES DECIR, SOLO TIENEN DOS DIMENSIONES Y NO TIENEN RELIEVE. LAS FIGURAS PLANAS MÁS COMUNES SON EL CÍRCULO, EL TRIÁNGULO EL CUADRADO Y EL RECTÁNGULO. CON ESTE ARTÍCULO APRENDERÁS A DIFERENCIAR ESTAS FIGURAS.

LAS FIGURAS PLANAS ESTÁN DELIMITADAS POR LÍNEAS RECTAS O CURVAS, ASÍ QUE MUCHOS DE LOS INSTRUMENTOS QUE USAMOS EN LA ESCUELA SIRVEN PARA DIBUJARLAS. POR EJEMPLO, CON LAS REGLAS Y ESCUADRAS PODEMOS DISEÑAR CUADRADOS, RECTÁNGULOS Y TRIÁNGULOS; MIENTRAS QUE CON EL COMPÁS PODEMOS HACER CÍRCULOS Y CIRCUNFERENCIAS CON PRECISIÓN. ¡INTÉNTALO!

¿QUÉ ES UNA FIGURA PLANA?

UNA FIGURA PLANA ES AQUELLA QUE ESTÁ DEFINIDA POR LÍNEAS RECTAS O CURVAS. ADEMÁS, SOLO TIENE DOS DIMENSIONES: ALTO Y ANCHO.

¿VES ALGUNA FIGURA?

ESTE DIBUJO ESTÁ ELABORADO SOLO CON FIGURAS PLANAS, ¿PUEDES RECONOCER ALGUNAS?

¿CUÁLES SON LAS FIGURAS PLANAS?

HAY MUCHOS TIPOS DE FIGURAS PLANAS, LAS MÁS COMUNES SON EL CÍRCULO, EL TRIÁNGULO, EL CUADRADO Y EL RECTÁNGULO.

OBSERVA ESTOS GRUPOS DE FIGURAS, ¿EN QUÉ SE PARECEN?

  • LAS FIGURAS DE COLOR ROJO SON CUADRADOS.
  • LAS FIGURAS DE COLOR AZUL SON CÍRCULOS.
  • LAS FIGURAS DE COLOR AMARILLO SON TRIÁNGULOS.
  • LAS FIGURAS DE COLOR VERDE SON RECTÁNGULOS.

¿CUÁLES SON LOS ELEMENTOS DE LAS FIGURAS?

CÍRCULO

UN CÍRCULO ES UNA FIGURA PLANA FORMADA POR UNA CURVA CERRADA Y REDONDA QUE SIEMPRE TIENE LA MISMA DISTANCIA DEL CENTRO.

¿CUÁLES SON SUS ELEMENTOS?

EL CENTRO, LA CIRCUNFERENCIA, EL DIÁMETRO Y EL RADIO.

¿SABÍAS QUÉ?
LA LÍNEA QUE BORDEA AL CÍRCULO SE LLAMA CIRCUNFERENCIA.

TRIÁNGULO

UN TRIÁNGULO ES UNA FIGURA PLANA FORMADA POR TRES LADOS.

¿CUÁLES SON SUS ELEMENTOS?

LOS LADOS Y LOS VÉRTICES.

CLASIFICACIÓN DE LOS TRIÁNGULOS

SEGÚN SUS LADOS LOS TRIÁNGULOS PUEDEN SER EQUILÁTEROS, ISÓSCELES O ESCALENOS.

CUADRADO

UN CUADRADO ES UNA FIGURA PLANA CON CUATRO LADOS IGUALES.

¿CUÁLES SON SUS ELEMENTOS?

LOS LADOS Y LOS VÉRTICES.

RECTÁNGULO

UN RECTÁNGULO ES UNA FIGURA PLANA CON CUATRO RECTAS Y CON LADOS OPUESTOS PARALELOS.

¿CUÁLES SON SUS ELEMENTOS?

EL LARGO, EL ANCHO Y LOS VÉRTICES.

 

¿QUÉ ES EL TANGRAM?

ES UN JUEGO DE ORIGEN CHINO EN EL QUE PODEMOS FORMAR DIVERSAS FIGURAS CON SIETE PIEZAS BÁSICAS LLAMADAS “TANS”:

  • CINCO (5) TRIÁNGULOS.
  • UN (1) CUADRADO.
  • UN (1) PARALELOGRAMO.

ESTAS PIEZAS O “TANS” SE GUARDAN DE TAL MANERA QUE FORMAN UN CUADRADO.

FIGURAS PLANAS EN LOS OBJETOS

OBSERVA ESTOS OBJETOS, ¿A CUÁL FIGURA PLANA SE PARECEN?

RESPONDE:

  • ¿CUÁLES OBJETOS SE PARECEN A UN CÍRCULO?
SOLUCIÓN

  • ¿CUÁLES OBJETOS SE PARECEN A UN RECTÁNGULO?
SOLUCIÓN

  • ¿CUÁLES OBJETOS SE PARECEN A UN CUADRADO?
SOLUCIÓN

  • ¿CUÁLES OBJETOS SE PARECEN A UN TRIÁNGULO?
SOLUCIÓN

¡A PRACTICAR!

1. COLOREA LAS FIGURAS DE LA SIGUIENTE MANERA:

  • CÍRCULOS DE COLOR AZUL.
  • TRIÁNGULOS DE COLOR AMARILLO.
  • RECTÁNGULOS DE COLOR VERDE.
  • CUADRADO DE COLOR ROJO.

SOLUCIÓN

2. COLOREA DE ROJO LAS FIGURAS PLANAS FORMADAS POR TRES LADOS Y TRES VÉRTICES.

SOLUCIÓN

3. RESPONDE LAS PREGUNTAS.

  • ¿CUÁNTOS LADOS TIENE EL CUADRADO?
SOLUCIÓN
EL CUADRADO TIENE CUATRO (4) LADOS IGUALES.
  • ¿CUÁNTOS LADOS TIENE UN TRIÁNGULO?
SOLUCIÓN
EL TRIÁNGULO TIENE TRES LADOS.
  • ¿QUÉ ES UNA CIRCUNFERENCIA?
SOLUCIÓN
ES LA LÍNEA QUE BORDEA AL CÍRCULO.
  • ¿QUÉ ES UN TRIÁNGULO ISÓSCELES?
SOLUCIÓN
ES UNA TRIÁNGULO CON DOS LADOS IGUALES.
  • ¿LOS RECTÁNGULOS TIENEN CUATRO LADOS IGUALES?
SOLUCIÓN
NO. LOS RECTÁNGULOS TIENEN DOS LADOS MÁS LARGOS QUE LOS OTROS DOS.
RECURSOS PARA DOCENTES

Artículo “Clasificación de los triángulos”

Con este recurso podrá profundizar sobre los diversos tipos de triángulos, figura básica de la geometría plana.

VER

Artículo “Círculo”

Un círculo es una región plana encerrada por una circunferencia. Todos sus elementos podrá verlos en este artículo.

VER