CAPÍTULO 4 / TEMA 5 (REVISIÓN)

Orden y Relaciones | ¿qué aprendimos?

Los números en la recta numérica

La recta numérica o recta real está compuesta por distintos conjuntos numéricos ordenados de menor a mayor. Entre ellos, encontramos el conjunto de los números naturales, los números enteros, los números racionales y los números irracionales. Todos juntos completan la recta.

Los números naturales son llamados así porque fueron los primeros que usó el hombre para contar.

Comparación de cantidades

Si trabajamos con números enteros, comparar es una tarea sencilla. En una recta numérica, los mayores números naturales y decimales son aquellos que están más a la derecha. Por ejemplo, entre el 25 y el 60, el 60 es mayor porque está más a la derecha en la recta numérica. En cambio, si deseamos comparar fracciones, tenemos que considerar los denominadores y los numeradores. Si en dos fracciones los denominadores son iguales, la fracción mayor será aquella que tenga mayor numerador, pero si los numeradores son iguales, la fracción mayor será aquella que tenga menor denominador.

Si comparamos porciones sabremos que la que veamos con mayor superficie será la más grande. Lo mismo pasa con los números racionales.

Proporciones

Las proporciones son relaciones entre cantidades. Estas relaciones nos permiten calcular una magnitud desconocida por medio de una relación conocida. Un método de gran utilidad para resolver estos problemas es la regla de tres, la cual puede ser directa (si la proporcionalidad es directa) o inversa (si la proporcionalidad es inversa).

La torta y otras comidas son elaboradas a partir de recetas pensadas para una cantidad determinada de personas. ¿Y si vienen más invitados? En estos casos, tenemos que recurrir a la regla de tres y ver cuánto de cada ingrediente necesitaremos.

Relaciones Espaciales

Todo el tiempo usamos relaciones espaciales. Estas nos ayudan a no perdernos al ir de compras o a ubicar una ciudad a cierta distancia de la nuestra. Podemos representar posiciones en un croquis, el cual no es tan preciso porque no tiene marcas de distancia, y también podemos hacerlo en un mapa, representación gráfica de un territorio con escalas métricas.

Cuando nos vamos de vacaciones nos llevamos un mapa de rutas para ver qué camino nos conviene tomar o programamos el GPS del vehículo.

CAPÍTULO 1 / TEMA 3

RECTA NUMÉRICA

Todos los números se pueden representar en una recta numérica. Esta nos permite comparar números y saber si uno es mayor o menor que otro; como también redondear las decenas o centenas más cercana. Es probable que la hayas visto en las reglas de tu escuela, hoy sabrás cómo graficarlas y usarlas.

La regla graduada es un instrumento que usamos para medir distancias y para trazar líneas rectas. Es graduada porque tiene marcas que simbolizan la distancia entre un punto y otro. Estas marcas hacen que la regla sea lo más parecido a una recta numérica.

¿qUÉ ES LA RECTA NUMÉRICA?

Es una línea recta que tiene una sola dimensión y está compuesta por una sucesión de puntos que se prolongan en una misma dirección hasta el infinito, es decir, que no tiene fin. Si empezamos a contar los números de uno en uno, no terminaríamos nunca porque los números son infinitos.

¿Sabías qué?
El símbolo del infinito es ∞. 

¿Cómo graficar una recta numérica?

En un recta numérica podemos graficar los números como puntos que están separados por una misma distancia unos de otros. Los pasos son los siguientes:

1. Dibuja una línea recta con flechas en ambos extremos. Las flechas se colocan para representar que hay números sin fin tanto a la derecha como a la izquierda.

2. Ubica el cero. Ese será el inicio de la recta numérica.

3. Divide la recta en segmentos de la misma distancia y agrega los números.

4. Si deseas representar números grandes, también puedes hacerlo en la recta numérica. Por ejemplo:

De 10 en 10:

De 100 en 100:

De 1.000 en 1.000:

 

Recuerda que entre número y número hay divisiones más pequeñas que representan las cantidad intermedias. Por ejemplo, entre 1.000 y 2.000 podemos dibujar la recta así:

Aunque originalmente solo se colocaban los números naturales sobre la recta numérica, es decir, los números que usamos para contar: 1, 2, 3, 4, 5, … Hoy en día podemos representar cualquier tipo de número en ella. Así, podemos encontrar números decimales, como 6,5; números fraccionarios, como 1/2; o números negativos como −9.

representación de números en la recta numérica

En una recta numérica podemos ubicar cualquier número. Por ejemplo, si queremos representar el 7.500 tenemos que pensar que se encuentra entre el 7.000 y el 8.000, justo en el medio de ambos. Veamos cómo queda:

– Otro ejemplo:

 

También podemos representar los valores entre decenas de números grandes. Por ejemplo, para ubicar el número 2.130 tenemos que pensar que está entre el 2.100 y el 2.200. La recta quedaría así:

– Otro ejemplo:

Creación de la recta numérica

La recta numérica es un gráfico unidimensional de una línea recta, fue creada por John Wallis, un matemático Inglés que alrededor de 1670 la empleó para mostrar de modo gráfico los números naturales. A medida que nos movemos hacia la derecha sobre la recta vamos a encontrar números más grandes.

redondeo

Redondear un número significa llevarlo al número natural más cercano terminado en cero, es decir, consiste en encontrar la decena o centena más cercana al número. Por ejemplo, el redondeo del número 2.320 a la centena más cercana es 2.300, porque 2.320 está más cerca de 2.300 que de 2.400.

– Otro ejemplo:

El punto color rojo está ubicado en 4.870, entre el 4.800 y el 4.900, pero ¿a qué centena más cercana está? Como ves, en la recta, el punto rojo está más cerca de 4.900, por lo tanto, el redondeo a la centena de 4.870 es 4.900.

orden numérico

Hay números naturales mayores o menores que otros, a esta relación la llamamos orden. Para representar que un número es mayor, menor o igual a otro usamos los siguientes símbolos:

Símbolo Significado
> Mayor que
< Menor que
= Igual a

En una recta numérica, los números mayores están más a la derecha y los menores están más a la izquierda.

– Ejemplo:

  • 9.000 es mayor que 1.000 porque está más a la derecha en la recta numérica. Lo representamos así:

9.000 > 1.000

 

  • 4.840 es menor que 4.890 está más a la izquierda en la recta numérica. Lo representamos así:

4.840 < 4.890

– Otros ejemplos:

2.551 > 2.550

7.013 < 7.020

1.500 > 1.000

¿Sabías qué?
La boca más ancha de los símbolos < y > siempre mira al número más grande; y la parte más fina al número más pequeño.

¡A practicar!

  1. Representa en la recta numérica los siguientes números:
  1. 2.160
    Solución
  2. 9.540 
    Solución
  3. 5.365
    Solución
  4. 7.615 
    Solución

2. Observa la recta numérica y luego responde las preguntas:

  1. ¿Qué número está representado en el punto de color azul? 
    Solución
    3.300
  2. ¿Qué número está representado en el punto de color rosa? 
    Solución
    4.100
  3. ¿Qué número está representado en el punto de color lila? 
    Solución
    6.400
  4. ¿Qué número está representado en el punto de color negro? 
    Solución
    3.600
  5. ¿Qué número está representado en el punto de color verde? 
    Solución
    5.500
  6. ¿Qué número está representado en el punto de color naranja? 
    Solución
    6.900
  7. ¿Qué número está representado en el punto de color rojo? 
    Solución
    4.100
  8. ¿Qué número está representado en el punto de color celeste? 
    Solución
    5.800

3. Redondea las siguientes cantidades a la centena más cercana por medio de la recta numérica.

a. 2.530

Solución

El redondeo a la centena más cercana es 2.500.

b. 5.590

Solución

El redondeo a la centena más cercana es 5.600.

c. 9.970

Solución

El redondeo a la centena más cercana es 10.000.

4. Completa con >, < o = según corresponda.

  1. 3.550 ­­­_____ 3.549 
    Solución
    3.550 ­­­> 3.549
  2. 6.701 ­­­­_____ 6.711 
    Solución
    6.701 ­­­­< 6.711
  3. 1.566 _____ 1.566 
    Solución
    1.566 = 1.566
  4. 8.987 _____ 8.985 
    Solución
    8.987 > 8.985
  5. 9.620 _____ 9.625 
    Solución
    9.620 < 9.625
  6. 4.213 _____ 4.213 
    Solución
    4.213 = 4.213
RECURSOS PARA DOCENTES

Artículo “Recta numérica”

Este recurso te permitirá complementar la información sobre la representación en la recta numérica.

VER

Artículo “Redondeo de números naturales”

El siguiente recurso te permitirá enriquecer el redondeo de números en la recta numérica.

VER