La recta numérica o recta real está compuesta por distintos conjuntos numéricos ordenados de menor a mayor. Entre ellos, encontramos el conjunto de los números naturales, los números enteros, los números racionales y los números irracionales. Todos juntos completan la recta.
Comparación de cantidades
Si trabajamos con números enteros, comparar es una tarea sencilla. En una recta numérica, los mayores números naturales y decimales son aquellos que están más a la derecha. Por ejemplo, entre el 25 y el 60, el 60 es mayor porque está más a la derecha en la recta numérica. En cambio, si deseamos comparar fracciones, tenemos que considerar los denominadores y los numeradores. Si en dos fracciones los denominadores son iguales, la fracción mayor será aquella que tenga mayor numerador, pero si los numeradores son iguales, la fracción mayor será aquella que tenga menor denominador.
Proporciones
Las proporciones son relaciones entre cantidades. Estas relaciones nos permiten calcular una magnitud desconocida por medio de una relación conocida. Un método de gran utilidad para resolver estos problemas es la regla de tres, la cual puede ser directa (si la proporcionalidad es directa) o inversa (si la proporcionalidad es inversa).
Relaciones Espaciales
Todo el tiempo usamos relaciones espaciales. Estas nos ayudan a no perdernos al ir de compras o a ubicar una ciudad a cierta distancia de la nuestra. Podemos representar posiciones en un croquis, el cual no es tan preciso porque no tiene marcas de distancia, y también podemos hacerlo en un mapa, representación gráfica de un territorio con escalas métricas.
Todos los números se pueden representar en una recta numérica. Esta nos permite comparar números y saber si uno es mayor o menor que otro; como también redondear las decenas o centenas máscercana. Es probable que la hayas visto en las reglas de tu escuela, hoy sabrás cómo graficarlas y usarlas.
¿qUÉ ES LA RECTA NUMÉRICA?
Es una línea recta que tiene una sola dimensión y está compuesta por una sucesión de puntos que se prolongan en una misma dirección hasta el infinito, es decir, que no tiene fin. Si empezamos a contar los números de uno en uno, no terminaríamos nunca porque los números son infinitos.
¿Sabías qué?
El símbolo del infinito es ∞.
¿Cómo graficar una recta numérica?
En un recta numérica podemos graficar los números como puntos que están separados por una misma distancia unos de otros. Los pasos son los siguientes:
1. Dibuja una línea recta con flechas en ambos extremos. Las flechas se colocan para representar que hay números sin fin tanto a la derecha como a la izquierda.
2. Ubica el cero. Ese será el inicio de la recta numérica.
3. Divide la recta en segmentos de la misma distancia y agrega los números.
4. Si deseas representar números grandes, también puedes hacerlo en la recta numérica. Por ejemplo:
De 10 en 10:
De 100 en 100:
De 1.000 en 1.000:
Recuerda que entre número y número hay divisiones más pequeñas que representan las cantidad intermedias. Por ejemplo, entre 1.000 y 2.000 podemos dibujar la recta así:
representación de números en la recta numérica
En una recta numérica podemos ubicar cualquier número. Por ejemplo, si queremos representar el 7.500 tenemos que pensar que se encuentra entre el 7.000 y el 8.000, justo en el medio de ambos. Veamos cómo queda:
– Otro ejemplo:
También podemos representar los valores entre decenas de números grandes. Por ejemplo, para ubicar el número 2.130 tenemos que pensar que está entre el 2.100 y el 2.200. La recta quedaría así:
– Otro ejemplo:
Creación de la recta numérica
La recta numérica es un gráfico unidimensional de una línea recta, fue creada por John Wallis, un matemático Inglés que alrededor de 1670 la empleó para mostrar de modo gráfico los números naturales. A medida que nos movemos hacia la derecha sobre la recta vamos a encontrar números más grandes.
redondeo
Redondear un número significa llevarlo al número natural más cercano terminado en cero, es decir, consiste en encontrar la decena o centena más cercana al número. Por ejemplo, el redondeo del número 2.320 a la centena más cercana es 2.300, porque 2.320 está más cerca de 2.300 que de 2.400.
– Otro ejemplo:
El punto color rojo está ubicado en 4.870, entre el 4.800 y el 4.900, pero ¿a qué centena más cercana está? Como ves, en la recta, el punto rojo está más cerca de 4.900, por lo tanto, el redondeo a la centena de 4.870 es 4.900.
orden numérico
Hay números naturales mayores o menores que otros, a esta relación la llamamos orden. Para representar que un número es mayor, menor o igual a otro usamos los siguientes símbolos:
Símbolo
Significado
>
Mayor que
<
Menor que
=
Igual a
En una recta numérica, los números mayores están más a la derecha y los menores están más a la izquierda.
– Ejemplo:
9.000 es mayor que 1.000 porque está más a la derecha en la recta numérica. Lo representamos así:
9.000 > 1.000
4.840 es menor que 4.890 está más a la izquierda en la recta numérica. Lo representamos así:
4.840 < 4.890
– Otros ejemplos:
2.551 > 2.550
7.013 < 7.020
1.500 > 1.000
¿Sabías qué?
La boca más ancha de los símbolos < y > siempre mira al número más grande; y la parte más fina al número más pequeño.
¡A practicar!
Representa en la recta numérica los siguientes números:
2.160
Solución
9.540
Solución
5.365
Solución
7.615
Solución
2. Observa la recta numérica y luego responde las preguntas:
¿Qué número está representado en el punto de color azul?
Solución
3.300
¿Qué número está representado en el punto de color rosa?
Solución
4.100
¿Qué número está representado en el punto de color lila?
Solución
6.400
¿Qué número está representado en el punto de color negro?
Solución
3.600
¿Qué número está representado en el punto de color verde?
Solución
5.500
¿Qué número está representado en el punto de color naranja?
Solución
6.900
¿Qué número está representado en el punto de color rojo?
Solución
4.100
¿Qué número está representado en el punto de color celeste?
Solución
5.800
3. Redondea las siguientes cantidades a la centena más cercana por medio de la recta numérica.
a. 2.530
Solución
El redondeo a la centena más cercana es 2.500.
b. 5.590
Solución
El redondeo a la centena más cercana es 5.600.
c. 9.970
Solución
El redondeo a la centena más cercana es 10.000.
4. Completa con >, < o = según corresponda.
3.550 _____ 3.549
Solución
3.550 > 3.549
6.701 _____ 6.711
Solución
6.701 < 6.711
1.566 _____ 1.566
Solución
1.566 = 1.566
8.987 _____ 8.985
Solución
8.987 > 8.985
9.620 _____ 9.625
Solución
9.620 < 9.625
4.213 _____ 4.213
Solución
4.213 = 4.213
RECURSOS PARA DOCENTES
Artículo “Recta numérica”
Este recurso te permitirá complementar la información sobre la representación en la recta numérica.