CAPÍTULO 4 / TEMA 5 (REVISIÓN)

Orden y Relaciones | ¿qué aprendimos?

Los números en la recta numérica

La recta numérica o recta real está compuesta por distintos conjuntos numéricos ordenados de menor a mayor. Entre ellos, encontramos el conjunto de los números naturales, los números enteros, los números racionales y los números irracionales. Todos juntos completan la recta.

Los números naturales son llamados así porque fueron los primeros que usó el hombre para contar.

Comparación de cantidades

Si trabajamos con números enteros, comparar es una tarea sencilla. En una recta numérica, los mayores números naturales y decimales son aquellos que están más a la derecha. Por ejemplo, entre el 25 y el 60, el 60 es mayor porque está más a la derecha en la recta numérica. En cambio, si deseamos comparar fracciones, tenemos que considerar los denominadores y los numeradores. Si en dos fracciones los denominadores son iguales, la fracción mayor será aquella que tenga mayor numerador, pero si los numeradores son iguales, la fracción mayor será aquella que tenga menor denominador.

Si comparamos porciones sabremos que la que veamos con mayor superficie será la más grande. Lo mismo pasa con los números racionales.

Proporciones

Las proporciones son relaciones entre cantidades. Estas relaciones nos permiten calcular una magnitud desconocida por medio de una relación conocida. Un método de gran utilidad para resolver estos problemas es la regla de tres, la cual puede ser directa (si la proporcionalidad es directa) o inversa (si la proporcionalidad es inversa).

La torta y otras comidas son elaboradas a partir de recetas pensadas para una cantidad determinada de personas. ¿Y si vienen más invitados? En estos casos, tenemos que recurrir a la regla de tres y ver cuánto de cada ingrediente necesitaremos.

Relaciones Espaciales

Todo el tiempo usamos relaciones espaciales. Estas nos ayudan a no perdernos al ir de compras o a ubicar una ciudad a cierta distancia de la nuestra. Podemos representar posiciones en un croquis, el cual no es tan preciso porque no tiene marcas de distancia, y también podemos hacerlo en un mapa, representación gráfica de un territorio con escalas métricas.

Cuando nos vamos de vacaciones nos llevamos un mapa de rutas para ver qué camino nos conviene tomar o programamos el GPS del vehículo.

CAPÍTULO 4 / TEMA 6 (REVISIÓN)

ORDEN Y RELACIONES | ¿QUÉ APRENDIMOS?

RECTA NUMÉRICA

La recta numérica es un gráfico en el que podemos representar cualquier número que pertenezca al conjunto de los números reales (\mathbb{R}). Tiene intervalos que señalan las unidades y siempre tienen la misma distancia entre un número y su consecutivo. Por otra parte, los distintos tipos de relaciones que existen entre los números se pueden mostrar por medio de los símbolos “<” y “>” que significan “menor que” y “mayor que” respectivamente.

Una regla graduada es muy parecida a una recta numérica.

ORDEN DE NÚMEROS NATURALES Y DECIMALES

Para ubicar los números naturales en la recta numérica ubicamos el 0 en una posición arbitraria y luego colocamos el resto de los números naturales en intervalos regulares. Si deseamos comparar números naturales usamos los símbolos < y > o la recta numérica, pues todo número que esté más a la derecha en la recta siempre será el mayor. Para ubicar números decimales en la recta numérica, debemos agregar subdivisiones entre los números enteros. Cuando queremos compararlos, primero tomamos en cuenta la parte entera y luego comparamos las cifras decimales de izquierda a derecha.

Sí bien algunos expertos afirman que el número cero (0) no pertenece al conjunto de los números naturales, otros aseguran que sí forma parte.

ORDEN DE FRACCIONES

Las fracciones también tiene un lugar en la recta numérica, para esto tenemos que considerar si la fracción es propia o impropia. De ser propia dividimos a la unidad en tantos segmentos como indique el denominador y contamos tantos segmentos como indique el numerador, luego marcamos la fracción. Si la fracción es impropia, tenemos que convertirla primero en un número mixto, en este caso, seguimos el procedimiento anterior pero a partir de la parte entera que tenga el número mixto.

Si comparamos fracciones con igual numerador y diferente denominador, será mayor aquella que tenga menor denominador.

PROPORCIONALIDAD

La proporcionalidad es una relación que existe entre dos magnitudes que podemos medir, y puede ser directa o inversa. Dos cantidades son directamente proporcionales si cuando una aumenta la otra aumenta o si cuando una disminuye la otra también lo hace. Por otro lado, al convertir medidas lo hacemos por medio de una regla de tres, un método muy útil para saber un valor desconocido entre 2 relaciones.

Siempre que vamos a un kiosco, sabemos que mientras más compremos, más tendremos que pagar; eso es porque la “cantidad que compramos” y la “cantidad que debemos pagar” tienen una relación directamente proporcional.

RELACIONES DE TIEMPO

El tiempo es quizás la magnitud más usada y medida diariamente. Sus unidades son variadas y van desde las menores a un día, como los segundos, los minutos y las horas; hasta las que sobrepasan al día como los meses, años y décadas. Si usamos una regla de tres podemos convertir una unidad a otra sin dificultad. También podemos hacer cálculos de suma y resta con el tiempo, esto nos ayuda a saber cuando empezó un partido de fútbol o qué hora salió un tren, por ejemplo.

Los calendarios o agendas son útiles para planificar las actividades a realizar a lo largo del día.