CAPÍTULO 7 / TEMA 7 (REVISIÓN)

ORDEN Y RELACIONES │ ¿QUÉ APRENDIMOS?

SUCESIONES

Las sucesiones son secuencias ordenadas de términos que siguen una determinada regla de recurrencia o patrón. Estas pueden ser aritméticas geométricas. Las aritméticas tienen una diferencia con el término anterior en una cantidad constante, por ejemplo, 2, 4, 6, 8,… En cambio, en las geométricas cada término (excepto el primero) es múltiplo del término anterior de la sucesión, por ejemplo, 2, 4, 8, 16, 32,… Las sucesiones se utilizan en las matemáticas, en entidades financieras, en ciencias naturales, en informática y hasta en el arte.

La espiral de Fibonacci se trata de una espiral áurea que podemos construir a partir de los números contenidos en la sucesión de Fibonacci: 1, 2, 3, 5, 8, 13,…

LA RECTA NUMÉRICA

La recta numérica es una representación gráfica unidimensional que nos permite ubicar los números reales (\mathbb{R}), lo cual resulta de gran utilidad para comparar valores o indicar soluciones de intervalos en las inecuaciones. Se caracteriza por poseer el cero centrado y se considera el origen de la recta; hacia la izquierda se ubican los números negativos y a la derecha los positivos. Entre dos números, será mayor el que esté más a la derecha. Existen métodos para representar con precisión algunos números radicales sobre la recta.

Las reglas graduadas son un ejemplo de rectas numéricas. En estas vemos las divisiones de las unidades enteras que equivalen a las décimas.

PLANO CARTESIANO

Es un sistema de representación bidimensional muy utilizado en matemática y otras áreas para la ubicación de puntos en el plano. Su nombre se debe al filósofo y matemático René Descartes, quien propuso su aplicación en el siglo XVII como una base del sistema de coordenadas rectangulares. Está formado por un eje horizontal denominado eje de las abscisas, que tradicionalmente denotamos con la letra x; y un eje vertical llamado eje de las ordenadas, que por lo general representamos con la letra y. Cada eje se comporta como una recta numérica que se prolonga hasta el infinito.

Por lo general, lo mapas contienen ejes de coordenadas que asemejan el plano cartesiano. Las unión de dos coordenadas dan la ubicación de un punto.

FUNCIONES

Son expresiones matemáticas que indican una relación de correspondencia entre un conjunto de partida y un conjunto de llegada. Para que una relación sea considerada función, debe cumplirse que cada elemento del dominio tenga una sola imagen en el conjunto de llegada. Las funciones pueden ser inyectivas, sobreyectivas o biyectivas.

Las funciones también se pueden clasificar de acuerdo con los operadores que contienen sus términos y estas pueden ser polinómicas, trigonométricas, exponenciales, logarítmicas, entre otras.

FUNCIÓN LINEAL

La función lineal es un tipo de función polinómica cuyo mayor grado de exponente es 1. Su representación gráfica es una línea recta que puede ser descrita a partir de la ecuación explícita: y = mx + b, donde m es la pendiente de la recta y b es su ordenada al origen. Si conocemos la función de la recta podemos graficarla por medio una tabla de valores que cumpla con las soluciones de la función.

Estas gráficas representan dos funciones lineales. Las que no pasan por el origen se llaman funciones afines. Con dos puntos como mínimo se puede construir la recta.

PROPORCIONES

Las proporciones son una medida que relaciona a dos razones mediante una constante. El cociente que resulta de dividir una razón de proporción se conoce como constante de proporcionalidad. Dos magnitudes son directamente proporcionales si al aumentar una cantidad, la otra también aumenta; o si al disminuir una cantidad, la otra también disminuye. En cambio, dos magnitudes son inversamente proporcionales si al incrementar el valor de una, el valor de la otra disminuye; o si al disminuir el valor de una, la otra aumenta.

La cantidad de productos que compramos son directamente proporcionales con el precio, ya que a medida que más compramos más dinero pagamos.

CAPÍTULO 7 / TEMA 6

PROPORCIONES

La proporción es una medida que utilizamos casi de manera intuitiva para expresar relaciones entre dos magnitudes, tales como la longitud, la masa, el tiempo o las unidades monetarias. El concepto de proporciones está implícito cuando graficamos funciones lineales o al aplicar una regla de tres.

Si para elaborar 10 panes se necesitan 300 g de harina y tú deseas preparar 20 panes, de seguro concluirás en que para duplicar la cantidad de panes, debes duplicar la cantidad de ingredientes, es decir, que utilizarás 600 g de harina. La relaciones (300 g de harina: 10 panes / 600 g de harina: 20 panes) se mantienen constantes, es decir, son proporcionales.

proporción numérica

Las proporciones expresan relaciones entre dos o más razones que se dan de manera constante, es decir, si el cociente entre dos razones (divisiones) diferentes da el mismo resultado, entonces, las dos razones son proporcionales. Supongamos que tenemos dos razones:

\frac{a}{b} \: y\: \frac{c}{d}

Decimos que ambas razones son proporcionales si se cumple que:

\frac{a}{b}=\frac{c}{d}

– Ejemplo:

\frac{3}{4}=\frac{21}{28}, ya que \frac{3}{4}=0,75 y \frac{21}{28}=0,75

Propiedad de las proporciones

En una proporción, siempre se debe cumplir que el producto de los valores medios, debe ser igual al producto de los valores extremos:

\frac{a}{b}=\frac{c}{d}\Leftrightarrow a\times d=b\times c

Donde:

a y d: valores extremos

b y c: valores medios

 

En el ejemplo anterior, \frac{3}{4}=\frac{21}{28} porque 3 × 28 = 84 y 4 × 21 = 84.

 

– Otro ejemplo:

Determina si los rectángulos A y B son proporcionales.

Para saber si ambos rectángulos son proporcionales debemos comparar la relación de sus lados, en otras palabras, dividir la base entre la altura (o puede ser también la altura entre la base) de cada rectángulo, y si dicho cociente es el mismo, decimos que los rectángulos A y B son proporcionales.

Rectángulo A: (9,50 ÷ 7,50) = 1,27

Rectángulo B: (4,75 ÷ 3,75) = 1,27

Puesto que ambos rectángulos tienen la misma relación de proporción, concluimos en que sí son proporcionales.

PROPORCIONALIDAD DIRECTA

Dos magnitudes son directamente proporcionales si al aumentar una cantidad, la otra también aumenta; o si al disminuir una cantidad, la otra también disminuye. La razón entre dos cantidades siempre será la misma y se llama constante de proporcionalidad.

– Ejemplo:

El boleto para entrar al cine cuenta $ 2, 2 boletos cuestan $ 4, 3 boletos cuestan $ 6, …

Cantidad de boletos Precio ($) Constante de proporcionalidad
1 2 2/1 = 2
2 4 4/2 = 2
3 6 6/3 = 2
4 8 8/4 = 2

Observa que al dividir el valor de una magnitud entre otra, el resultado siempre es el mismo, es decir, es constante. Como una magnitud aumenta a medida que la otra aumenta, esta relación (cantidad de boletos-precio) es directamente proporcional.

¿Sabías qué?
Una magnitud es cualquier cualidad de un objeto que podemos medir, como la masa, la longitud, el tiempo o el número de alumnos, por ejemplo.
En una empresa se conoce que por cada artículo que se venda se obtiene una ganancia de $ 2/artículo, de manera que si se realiza una gráfica que relacione las ventas de artículos en función de las ganancias obtenidas, observaremos una recta inclinada en sentido creciente, lo que indica que la proporción es directa.

Desde el punto de vista gráfico podemos deducir que una proporción es directa si la recta que relaciona a los valores de una proporción es creciente de izquierda a derecha, es decir, si su pendiente es positiva.

¿Cómo resolver problemas de proporcionalidad directa?

Las proporciones, al igual que la regla de tres, se utilizan para resolver problemas de proporcionalidad. Sirven para hallar el cuarto término de una proporción si conocemos tres valores.

– Ejemplo:

1. Si 3 lápices cuestan $ 9, ¿cuántos costarán 9 lápices?

Lo primero que debemos ver en este problema son las magnitudes que intervienen, y en este caso son dos: el número de lápices y el precio. Ambas magnitudes son directamente proporcionales porque a medida que una aumenta también lo hace la otra.

De este problema conocemos 3 cantidades de estas magnitudes y desconoces una cuarta: lo que cuestan 9 lápices.

Resolvemso de la siguiente manera:

Lápices Precio ($)
3 9
9 x

Planteamos la proporción, luego despejamos x:

\frac{3}{9}=\frac{9}{x}\: \: \Leftrightarrow\: \: 3x=9\times 9\: \: \Leftrightarrow \: \: 3x=81\: \: \Leftrightarrow \: \: x=\frac{81}{3}=\boldsymbol{27}

 

Por lo tanto, 9 lápices costarán $ 27.


2. Un ciclista recorre 80 kilómetros en 2 horas. Si mantiene siempre la misma velocidad, ¿cuántos kilómetros recorrerá en 4 horas?

Horas Kilómetros
2 80
4 x

Planteamos la proporción, luego despejamos x:

\frac{2}{4}=\frac{80}{x}\: \: \Leftrightarrow \: \: 2x=4\times 80\: \: \Leftrightarrow \: \: 2x=320\Leftrightarrow \: \: x=\frac{320}{2}=\boldsymbol{160}

 

El ciclista recorrerá 160 kilómetros en 4 horas.

PROPORCIONALIDAD INVERSA

Dos magnitudes son inversamente proporcionales si al incrementar el valor de una, el valor de la otra disminuye; o si al disminuir el valor de una, la otra aumenta. El producto entre dos cantidades siempre será la misma y se llama constante de proporcionalidad.

– Ejemplo:

Una empleada fabrica un paquete de cajas en 9 horas, dos empleadas fabrican un paquete en 4 horas y media, tres empleadas fabrican un paquete de cajas en 3 horas, …

Cantidad de empleadas Horas Constante de proporcionalidad
1 9 9 × 1 = 9
2 4,5 4, 5 × 2 = 9
3 3 3 × 3 = 9
4 2,25 2,25 × 4 = 9

Observa que al multiplicar el valor de una magnitud entre otra el resultado siempre es el mismo, es decir, es constante. Como una magnitud aumenta a medida que la otra disminuye, esta relación (cantidad de empleadas-horas) es inversamente proporcional.

Ciertas proporciones se dan de manera inversa. En la imagen observamos una gráfica que muestra una recta decreciente, la cual indica que al aumentar la dosis de antibiótico en un paciente, disminuye la concentración de bacterias en su organismo. La pendiente de esta recta sería negativa y su valor absoluto indicaría la constante de proporcionalidad.

 

¿Cómo resolver problemas de proporcionalidad inversa?

La regla de tres inversa o las mismas proporciones nos ayudan a resolver situaciones problemáticas que involucren magnitudes inversamente proporcionales.

– Ejemplo:

1. Si 10 albañiles pueden realizar una construcción en 30 días, ¿cuánto demorarán en realizar la misma construcción 20 albañiles?

Lo primero que vemos son las magnitudes: el número de albañiles y los días. Estas dos magnitudes son inversamente proporcionales porque a medida que una aumenta la otra disminuye.

Por lo tanto, planteamos las magnitudes conocidas y desconocidas:

Albañiles Días
10 30
20 x

A partir de estas relaciones, planteamos la proporción. Como la relación es inversamente proporcional invertimos la segunda razón. Luego despejamos x:

\frac{10}{20}=\frac{x}{30}\: \: \Leftrightarrow \: \: 30\times 10=20x\: \: \Leftrightarrow \: \: 300=20x\: \: \Leftrightarrow x=\frac{300}{20}=\boldsymbol{15}

 

Así que 20 albañiles demorarán 15 días en hacer la misma construcción.


2. En un campo, 12 caballos consumen una determinada cantidad de alimento en 3 días. Si la cantidad de caballos se triplica, ¿para cuántos días alcanza el alimento?

Como 12 × 3 = 36, realizamos la tabla con estos valores:

Caballos Días
12 3
36 x

Planteamos la proporción, invertimos la segunda razón y luego despejamos x:

\frac{12}{36}=\frac{x}{3}\: \: \Leftrightarrow \: \: 3\times 12=36x\: \: \Leftrightarrow \: \: 36=36x\: \: \Leftrightarrow \: \: x=\frac{36}{36}=\boldsymbol{1}

 

Por lo tanto, si se triplica la cantidad de caballo el alimento alcanzará para un día.

 

¡A practicar!

1. Determina si las siguientes razones son proporcionales:

a) \frac{5}{7}\; y\; \frac{35}{49}

Solución
Sí, porque 5 × 49 = 245 y 7 × 35 = 245. Entonces, \frac{5}{7}=\frac{35}{49}

b) \frac{64}{21}\, y\: \frac{8}{9}

Solución
No, porque 64 × 9 = 576 y 21 × 8 = 168. Entonces, \frac{64}{21}\neq \frac{8}{9} 

c) \frac{11}{13}\; y\; \frac{44}{52}

Solución
Sí, porque 11 × 52 = 572 y 13 × 44 = 572. Entonces, \frac{11}{13}=\frac{44}{52} 

 

2. Los rectángulos A y B son proporcionales, ¿qué altura debe tener X para que el rectángulo A sea proporcional al rectángulo B?

Solución

\frac{3}{4}=\frac{x}{8}\: \Leftrightarrow\: 3\times 8=4x\: \Leftrightarrow \: 24=4x\: \Leftrightarrow \: x=\frac{24}{4}=\boldsymbol{6}

X debe ser igual a 6 m.

3. Dada la siguiente tabla de valores, determina la constante de proporcionalidad que relaciona los valores:

x y Constante
2 3
5 7,5
6 9
8 12
Solución
x y Constante
2 3 3 ÷ 2 = 1,5
5 7,5 7,5 ÷ 5 = 1, 5
6 9 9 ÷ 6 = 1,5
8 12 12 ÷ 8 = 1,5
RECURSOS PARA DOCENTES

Artículo “Proporcionalidad directa e inversa”

En este artículo encontrarás una explicación y ejemplos relacionados con los cálculos de proporcionalidad.

VER

Vídeo “Proporcionalidad directa e inversa”

Este vídeo contiene la explicación para determinar la constante de proporcionalidad en una relación.

VER

CAPÍTULO 4 / TEMA 5 (REVISIÓN)

Orden y Relaciones | ¿qué aprendimos?

Los números en la recta numérica

La recta numérica o recta real está compuesta por distintos conjuntos numéricos ordenados de menor a mayor. Entre ellos, encontramos el conjunto de los números naturales, los números enteros, los números racionales y los números irracionales. Todos juntos completan la recta.

Los números naturales son llamados así porque fueron los primeros que usó el hombre para contar.

Comparación de cantidades

Si trabajamos con números enteros, comparar es una tarea sencilla. En una recta numérica, los mayores números naturales y decimales son aquellos que están más a la derecha. Por ejemplo, entre el 25 y el 60, el 60 es mayor porque está más a la derecha en la recta numérica. En cambio, si deseamos comparar fracciones, tenemos que considerar los denominadores y los numeradores. Si en dos fracciones los denominadores son iguales, la fracción mayor será aquella que tenga mayor numerador, pero si los numeradores son iguales, la fracción mayor será aquella que tenga menor denominador.

Si comparamos porciones sabremos que la que veamos con mayor superficie será la más grande. Lo mismo pasa con los números racionales.

Proporciones

Las proporciones son relaciones entre cantidades. Estas relaciones nos permiten calcular una magnitud desconocida por medio de una relación conocida. Un método de gran utilidad para resolver estos problemas es la regla de tres, la cual puede ser directa (si la proporcionalidad es directa) o inversa (si la proporcionalidad es inversa).

La torta y otras comidas son elaboradas a partir de recetas pensadas para una cantidad determinada de personas. ¿Y si vienen más invitados? En estos casos, tenemos que recurrir a la regla de tres y ver cuánto de cada ingrediente necesitaremos.

Relaciones Espaciales

Todo el tiempo usamos relaciones espaciales. Estas nos ayudan a no perdernos al ir de compras o a ubicar una ciudad a cierta distancia de la nuestra. Podemos representar posiciones en un croquis, el cual no es tan preciso porque no tiene marcas de distancia, y también podemos hacerlo en un mapa, representación gráfica de un territorio con escalas métricas.

Cuando nos vamos de vacaciones nos llevamos un mapa de rutas para ver qué camino nos conviene tomar o programamos el GPS del vehículo.

CAPÍTULO 4 / TEMA 3

Proporciones

Cuando hablamos de proporción nos referimos a una relación que existe entre cantidades o magnitudes medibles como el tiempo, la longitud o el peso. Son muy usadas día a día, sobre todo en los recargos y descuentos de un precio. Estas relaciones pueden ser directas o inversas y pueden resolverse por medio de una regla de tres.

Las proporciones son usadas en la cotidianidad, especialmente en la preparación de comidas y postres. Por ejemplo, si deseamos seguir una receta para hacer un pastel para 10 personas, pero esta viene con los ingredientes necesarios para 5 porciones, tenemos que hacer transformaciones entre las magnitudes para saber cuánto de cada ingrediente tendremos que utilizar.

Proporcionalidad directa

Cuando hablamos de proporcionalidad directa nos referimos a que dos cantidades se encuentran relacionadas de tal manera que, cuando una de ellas aumenta o disminuye, la otra lo hace en la misma forma. Es decir, si dividimos ambas cantidades, vamos a obtener como resultado un número constante llamado razón de proporción.

– Ejemplo:

Si un kilogramo de fresas cuesta $ 2,5 ¿cuál es el precio de venta según el peso?

Peso (kg) Precio ($) Razón de proporción ($/kg)
1 2,5 2,5/1 = 2,5
2 5 5/2 = 2,5
3 7,5 7,5/3 = 2,5
4 10 10/4 = 2,5
5 12,5 12,5/5= 2,5

Nota que al dividir una magnitud entre otra el resultado es el mismo.

Regla de tres directa

Una regla de tres es un método para calcular una magnitud desconocida y que es proporcional a otra. Las operaciones que se utilizan para resolver la regla de tres son una multiplicación y una división, pero lo más importante es saber cómo plantear la regla de tres.

– Ejemplo:

Si 1 kg de manzanas cuesta $ 3, ¿cuántos costarán 5 kg de manzanas?

Lo primero que debemos identificar es la clase de proporcionalidad que representa el problema. En este caso, se trata de dos magnitudes directamente proporcionales porque a medida que compramos más manzanas, el costo será mayor. Luego planteamos la regla de tres:

Observa que multiplicamos en diagonal dos magnitudes: 5 kg y $ 3. Luego dividimos entre 1 kg.

Por lo tanto, si 1 kg de manzanas cuesta $ 3, 5 kg de manzanas costarán $ 15.


– Ejemplo 2:

Si Marta compró 1 lápiz y pagó $ 25, ¿cuánto pagará por 10 lápices?

Si 1 lápiz cuesta $ 25, 10 lápices costarán $ 250.

Proporciones corporales

Los egipcios fueron los primeros en tratar de establecer un sistema de proporciones para el cuerpo humano. Para ellos, el cuerpo perfecto debía tener las siguientes proporciones con respecto al tamaño del puño de la persona: 2 veces para la cabeza, 6 veces para las piernas, 10 veces desde los hombros a las rodillas y 18 veces para la longitud de pies a cabeza.

proporcionalidad inversa

Cuando dos magnitudes o cantidades son inversamente proporcionales, quiere decir que a medida que una de estas aumenta la otra disminuye en la misma forma. El producto entre dos cantidades inversamente proporcionales da como resultado un número llamado constante de proporcionalidad.

– Ejemplo:

Carlos compró un pastel en $ 75. Si luego varios amigos deciden colaborar, ¿cuánto tendrán que pagar según el número de amigos que colaboren?

Personas Precio ($) Constante de proporcionalidad (personas × $)
1 75 75 × 1 = 75
2 37,5 37,5 × 2 = 75
3 25 25 × 3 = 75
4 18,75 18,75 × 4 = 75
5 15 15 × 5 = 75

Nota que el producto entre ambas magnitudes es el mismo.

Regla de tres inversa

Al igual que en el caso anterior, la regla de tres es un método para calcular una magnitud desconocida y que es proporcional a otra. También empleamos multiplicaciones y divisiones, pero el orden es diferente.

– Ejemplo 1:

Si 3 pintores terminan de pintar una pared en 75 minutos, ¿cuánto tardarán 5 pintores en pintar la misma pared?

Como ya sabemos, lo primero que debemos hacer es asegurarnos del tipo de proporcionalidad. En este caso, las magnitudes son inversamente proporcionales porque a medida que aumenta la cantidad de pintores, el tiempo que se tardará en pintar la pared disminuye. Luego planteamos la regla de tres:

Observa que multiplicamos de forma lineal las primeras dos magnitudes: 3 pintores × 75 min. Luego dividimos entre 5 pintores.

Por lo tanto, si 3 pintores terminan de pintar una pared en 75 minutos, 5 pintores lo harán en 45 minutos.


– Ejemplo 2:

Un coche que viaja a 100 km/h tarda en llegar 2 horas, si viajase a 40 km/h ¿cuánto tardaría en llegar?

Si el coche viaja a 40 km/h llegará en 5 horas.

¿Sabías qué?
Cuando tres magnitudes o cantidades se relacionan entre sí se usa otro tipo de método llamado regla de tres compuesta.

Aplicaciones

Dentro de las aplicaciones más conocidas de las reglas de tres encontramos problemas que se relacionan con el cálculo de porcentajes. Por ejemplo:

  • Saber el valor de un descuento o un recargo.
  • Calcular qué porcentaje representa un valor del total.
  • Calcular un porcentaje a partir de otro.

Ley de la gravitación

Isaac Newton es uno de los científicos más grandes de todos los tiempos. En 1684 estableció una serie de leyes que llevan su nombre y describió la ley de la gravitación universal. Esta ley establece que:

  • la fuerza que ejerce un objeto con masa sobre otro cuerpo con masa es directamente proporcional al producto de las masas.
  • la fuerza que ejerce un objeto con masa sobre otro cuerpo con masa es inversamente proporcional al cuadrado de la distancia que separa sus centros de gravedad.

¡A practicar!

1. Resuelve estos problemas con regla de tres:

a) Si con 12 metros de tela María puede hacer 18 remeras, ¿cuántas remeras puede hacer con 14 metros de tela?

Solución
21 remeras.

b) Una máquina llena 240 botellas en 20 minutos. ¿Cuántas botellas llenará en una hora y media?

Solución
Llenará 1.080 botellas.

c) Si cierta cantidad de paja alcanza para alimentar a 12 vacas durante 80 días, calcular cuánto duraría la misma cantidad de paja para alimentar a 30 vacas.

Solución
Duraría 32 días.

d) Al abrir 3 de sus desagües, la pileta se vacía en dos horas. ¿Cuánto tardará en vaciarse si abro los 12 desagües?

Solución
Tardará media hora en vaciarse.
RECURSOS PARA DOCENTES

Artículo “Regla de tres”

Con este recurso podrá ampliar la información relacionada con la regla de tres como método para solucionar problemas de proporcionalidad.

VER

Tarjeta Educativa “Regla de Tres Simple”

En la tarjeta encontrará la regla práctica y las características necesarias para emplear correctamente una regla de tres.

VER