Los números desde su invención han servido para contar cosas y por eso existen diferentes sistemas y tipos de números que permiten un mejor conocimiento de las cantidades. Para comprender el sentido numérico, dentro del universo de los números se utilizan diversas clasificaciones. Un tipo de números son los ordinales que sirven para establecer un orden. Por otro lado, existen los cardinales que indican cantidades numéricas de elementos que pertenecen a un grupo o conjunto. Actualmente, el sistema más usado es el sistema numérico decimal pero no es el único que existe. Otras culturas crearon sistemas de numeración distintos al decimal, como por ejemplo, los mayas y los romanos.
NÚMEROS PRIMOS Y COMPUESTOS
De acuerdo a la cantidad de divisores que poseen los número, los podemos clasificar en primos y compuestos. Los números primos son aquellos que solo son divisibles por el número uno y por sí mismos. En cambio, los números compuestos son aquellos que además de ser divisibles por el uno y por sí mismos, también son divisibles por otro u otros números, es decir, tienen más de dos divisores. Todos los números compuestos pueden expresarse como un producto de factores primos.
VALOR POSICIONAL
Una de las principales características de nuestro sistema de numeración decimal es que el valor de los dígitos varía de acuerdo a su ubicación dentro del número. Esta característica se denomina valor posicional y aplica tanto en los números enteros como en los fraccionarios. Una herramienta que nos permite observar directamente el valor de cada dígito de acuerdo al lugar que ocupa es la tabla posicional.
NÚMEROS DECIMALES
Hay números que se ubican entre dos números enteros consecutivos, estos números se denominan números decimales y se caracterizan porque presentan una parte entera y una decimal, que se encuentran separadas por una coma o punto de acuerdo a la convención del país. Los números decimales se clasifican en racionales y en irracionales. Los racionales se pueden representar en forma de fracción, y los irracionales son números infinitos cuya parte decimal no sigue ningún patrón, como sucede en el caso del número pi.
POTENCIAS
La potenciación es una operación compuesta de tres partes fundamentales: el exponente, la base y la potencia. El exponente indica cuántas veces se debe multiplicar la base por si misma. La base es el número que se multiplica por sí mismo las veces que indique el exponente. La potencia es el resultado de la operación de potenciación. Como toda operación matemática, las potencias cumplen con algunas propiedades. Por ejemplo, todo número elevado a 0 es igual a 1. Para resolver potencias se aplican sus propiedades y se realizan multiplicaciones sucesivas de la base.
RAÍZ DE UN NÚMERO
La radicación es la operación inversa a la potenciación y por ello se encuentran estrechamente relacionadas. Esta operación emplea el símbolo (√) denominado radical. Sus elementos principales son el radicando, el índice y la raíz. El radicando es el número al cual se le va a calcular la raíz y se encuentra en la parte inferior del radical. El índice es el número que índica la cantidad de veces en las que debe multiplicarse un número por sí mismo para que el resultado sea igual al radicando, y se ubica en la parte izquierda del radical. La raíz es el resultado de la operación. Para calcular una raíz se debe buscar un número que multiplicado por sí mismo las veces que indique el índice dé como resultado el mismo valor del radicando.
Dentro del universo de los números nos encontramos con un tipo muy especial: el de los decimales. Estos números sirven para representar cantidades menores a la unidad. Sus aplicaciones son muchas y son muy importantes, sobre todo en el ámbito de las mediciones porque permiten establecer valores más exactos.
Características de los números decimales
Los números decimales son los que se encuentran entre dos números enteros. Por ejemplo, entre el 1 y el 2 se ubican: 1,1; 1,2; 1,3…
Este tipo de números no llega a conformar un nuevo entero, por lo tanto su composición es de dos partes: la entera y la decimal. Para dividir ambas partes del número se utiliza la coma.
En algunos países se emplea el punto en vez de la coma para separar a los números decimales de los enteros.
Distintos tipos de decimales
Los números decimales se dividen en racionales e irracionales. Los irracionales son números en los que sus cifras decimales son infinitas y no siguen un patrón. Un ejemplo de estos números es el número pi (π). Los racionales, por su parte, pueden ser expresados en forma de fracción y se dividen en exactos, periódicos puros y periódicos mixtos.
Los números decimales exactos son los que tienen un final, es decir; que la parte decimal del número no es infinita. Por ejemplo: 24,657.
Los números decimales periódicos tienen una parte decimal que contiene una o más cifras que se repiten infinitamente, a esta parte decimal se conoce como período. Cuando dicho período está compuesto por una cifra que se repite infinitamente se lo denomina periódico puro. Por ejemplo: 6,8888… Por otro lado, cuando la parte decimal está compuesta por un número que no se repite y otro que sí se repite se lo denomina periódico mixto. Por ejemplo: 4,287878787…
Para escribir un número decimal periódico (sea puro o mixto), se debe escribir un arco encima de la parte periódica del número para indicar que se repite infinitamente.
– Por ejemplo:
Decimal puro:
Decimal mixto:
¿Sabías qué?
Hay infinitos números decimales entre dos números enteros.
Lectura de números decimales
Para poder leer números decimales debemos tener presente la clasificación de cada cifra según su valor posicional; es decir, tenemos que recordar que las cifras decimales de los números decimales, de izquierda a derecha después de la coma, se denominan: décima, centésima y milésima. Estos serían valores posicionales de la parte decimal del número.
A la hora de leerlo podemos expresar la parte entera seguida de la preposición “con” y luego la parte decimal. Para esta última se lee el número que se forma con las cifras decimales y se asigna el valor posicional de la última cifra decimal. Por ejemplo, para leer el número 6,718 debemos hacerlo de la siguiente manera:
6,718 → “Seis con setecientas dieciocho milésimas”.
Otra manera posible es: leer la parte entera seguida de la palabra “coma” y luego el número que conforma la parte decimal, sin expresar el valor de la posición. Por ejemplo:
6,718 → “Seis coma setecientos dieciocho”.
Cero a la izquierda de la coma
Cuando un decimal tiene un cero a la izquierda de la coma quiere decir que es menor a la unidad y se suele leer solo la parte decimal de acuerdo a su última cifra. Por ejemplo:
0,45 → “Cuarenta y cinco centésimas”.
Otra forma es decir la palabra “cero” seguida de la palabra “coma” y luego el número que conforma la parte decimal, sin expresar el valor de la posición.
0,45 → “Cero coma cuarenta y cinco”.
Para tener en cuenta
Los ceros que están en la última cifra de la parte decimal del número pueden o no leerse.
5,20 = 5,2
Esto se debe a que veinte centésimas es equivalente (es decir que vale lo mismo) a dos décimas, ya que veinte centésimas son veinte partes de cien (20/100) y dos décimas son dos partes de diez (2/10).
Por lo tanto, el número del ejemplo puede leerse de estas dos maneras:
5,20 → “Cinco con veinte centésimas”.
5,2 → “Cinco con dos décimas”.
Redondeo de decimales
En primer lugar, debemos saber que el término “redondear” aplicado a los números decimales quiere decir: aproximar un número a otro (menor o mayor) que tenga menos cifras decimales para lograr reducir la cantidad y poder determinar de forma más fácil la ubicación del número.
– Por ejemplo:
5,649 se puede redondear a 5,65.
8,78 se puede redondear a 8,8.
15,86 se puede redondear a 15,9.
42,39 se puede redondear a 42,4.
Reglas para el redondeo de decimales
Cuando la última cifra decimal es 0, 1, 2, 3 o 4: el número se debe redondear hacia abajo (uno menor). Por lo tanto, se quita la última cifra del número. Por ejemplo: 7,6281 se puede redondear a 7,628.
Cuando la última cifra decimal es 5, 6, 7, 8 o 9: el número se debe redondear hacia arriba (uno mayor). Por lo tanto, se le quita la última cifra al número y se aumenta +1 la penúltima. Por ejemplo: 4,58 se puede redondear a 4,6.
¡A practicar!
1. Escribe en letras como se leerían los siguientes números.
64,15
21,4
9,285
7,406
Solución
64,15 → sesenta y cuatro con quince centésimas. / sesenta y cuatro coma quince.
21,4 → veintiuno con cuatro décimas. / veintiuno coma cuatro.
9,285 → nueve con doscientos ochenta y cinco milésimas. / nueve coma doscientos ochenta y cinco.
7,406 → siete con cuatrocientas seis milésimas. / siete coma cuatrocientos seis.
2. Ubica la coma donde corresponda.
Ocho con trescientas once milésimas → 8311
Solución
8,311
Cincuenta y cuatro centésimas → 054
Solución
,054
Veintisiete con setenta y siete centésimas → 2777
Solución
27,77
3. Escribe en letras los números decimales.
a. 15,02
b. 6,616
c. 71,25
d. 822,3
Solución
a. 15,02 → “quince con dos centésimas.”
b. 6,616 → “seis con seiscientas dieciséis milésimas.”
c. 71,25 → “setenta y uno con veinticinco centésimas.”
d. 822,3 → “ochocientos veintidós con tres décimas.”
4. Lee y escribe los números que correspondan.
a. Veintiuno con cinco décimas.
b. Doce con cuarenta y cinco centésimas.
c. Ciento veinte con trescientos veinte milésimas.
d. Setenta y cinco centésimas.
Solución
a. 21,5
b. 12,45
c. 120,320
d. 0,75
RECURSOS PARA DOCENTES
Artículo destacado “Números decimales”
El siguiente artículo te permitirá conocer más acerca de los números decimales:
Todos los números se pueden representar en una recta numérica. Esta nos permite comparar números y saber si uno es mayor o menor que otro; como también redondear las decenas o centenas máscercana. Es probable que la hayas visto en las reglas de tu escuela, hoy sabrás cómo graficarlas y usarlas.
¿qUÉ ES LA RECTA NUMÉRICA?
Es una línea recta que tiene una sola dimensión y está compuesta por una sucesión de puntos que se prolongan en una misma dirección hasta el infinito, es decir, que no tiene fin. Si empezamos a contar los números de uno en uno, no terminaríamos nunca porque los números son infinitos.
¿Sabías qué?
El símbolo del infinito es ∞.
¿Cómo graficar una recta numérica?
En un recta numérica podemos graficar los números como puntos que están separados por una misma distancia unos de otros. Los pasos son los siguientes:
1. Dibuja una línea recta con flechas en ambos extremos. Las flechas se colocan para representar que hay números sin fin tanto a la derecha como a la izquierda.
2. Ubica el cero. Ese será el inicio de la recta numérica.
3. Divide la recta en segmentos de la misma distancia y agrega los números.
4. Si deseas representar números grandes, también puedes hacerlo en la recta numérica. Por ejemplo:
De 10 en 10:
De 100 en 100:
De 1.000 en 1.000:
Recuerda que entre número y número hay divisiones más pequeñas que representan las cantidad intermedias. Por ejemplo, entre 1.000 y 2.000 podemos dibujar la recta así:
representación de números en la recta numérica
En una recta numérica podemos ubicar cualquier número. Por ejemplo, si queremos representar el 7.500 tenemos que pensar que se encuentra entre el 7.000 y el 8.000, justo en el medio de ambos. Veamos cómo queda:
– Otro ejemplo:
También podemos representar los valores entre decenas de números grandes. Por ejemplo, para ubicar el número 2.130 tenemos que pensar que está entre el 2.100 y el 2.200. La recta quedaría así:
– Otro ejemplo:
Creación de la recta numérica
La recta numérica es un gráfico unidimensional de una línea recta, fue creada por John Wallis, un matemático Inglés que alrededor de 1670 la empleó para mostrar de modo gráfico los números naturales. A medida que nos movemos hacia la derecha sobre la recta vamos a encontrar números más grandes.
redondeo
Redondear un número significa llevarlo al número natural más cercano terminado en cero, es decir, consiste en encontrar la decena o centena más cercana al número. Por ejemplo, el redondeo del número 2.320 a la centena más cercana es 2.300, porque 2.320 está más cerca de 2.300 que de 2.400.
– Otro ejemplo:
El punto color rojo está ubicado en 4.870, entre el 4.800 y el 4.900, pero ¿a qué centena más cercana está? Como ves, en la recta, el punto rojo está más cerca de 4.900, por lo tanto, el redondeo a la centena de 4.870 es 4.900.
orden numérico
Hay números naturales mayores o menores que otros, a esta relación la llamamos orden. Para representar que un número es mayor, menor o igual a otro usamos los siguientes símbolos:
Símbolo
Significado
>
Mayor que
<
Menor que
=
Igual a
En una recta numérica, los números mayores están más a la derecha y los menores están más a la izquierda.
– Ejemplo:
9.000 es mayor que 1.000 porque está más a la derecha en la recta numérica. Lo representamos así:
9.000 > 1.000
4.840 es menor que 4.890 está más a la izquierda en la recta numérica. Lo representamos así:
4.840 < 4.890
– Otros ejemplos:
2.551 > 2.550
7.013 < 7.020
1.500 > 1.000
¿Sabías qué?
La boca más ancha de los símbolos < y > siempre mira al número más grande; y la parte más fina al número más pequeño.
¡A practicar!
Representa en la recta numérica los siguientes números:
2.160
Solución
9.540
Solución
5.365
Solución
7.615
Solución
2. Observa la recta numérica y luego responde las preguntas:
¿Qué número está representado en el punto de color azul?
Solución
3.300
¿Qué número está representado en el punto de color rosa?
Solución
4.100
¿Qué número está representado en el punto de color lila?
Solución
6.400
¿Qué número está representado en el punto de color negro?
Solución
3.600
¿Qué número está representado en el punto de color verde?
Solución
5.500
¿Qué número está representado en el punto de color naranja?
Solución
6.900
¿Qué número está representado en el punto de color rojo?
Solución
4.100
¿Qué número está representado en el punto de color celeste?
Solución
5.800
3. Redondea las siguientes cantidades a la centena más cercana por medio de la recta numérica.
a. 2.530
Solución
El redondeo a la centena más cercana es 2.500.
b. 5.590
Solución
El redondeo a la centena más cercana es 5.600.
c. 9.970
Solución
El redondeo a la centena más cercana es 10.000.
4. Completa con >, < o = según corresponda.
3.550 _____ 3.549
Solución
3.550 > 3.549
6.701 _____ 6.711
Solución
6.701 < 6.711
1.566 _____ 1.566
Solución
1.566 = 1.566
8.987 _____ 8.985
Solución
8.987 > 8.985
9.620 _____ 9.625
Solución
9.620 < 9.625
4.213 _____ 4.213
Solución
4.213 = 4.213
RECURSOS PARA DOCENTES
Artículo “Recta numérica”
Este recurso te permitirá complementar la información sobre la representación en la recta numérica.
Los números decimales son todos aquellos que tienen una parte entera y una parte decimal, es decir, una cantidad menor que la unidad y mayor que cero. Estos números los podemos encontrar en todas partes, como en los precios de los productos del supermercado.
CARACTERÍSTICAS DE LOS NÚMEROS DECIMALES
Los números decimales están formados por dos partes separadas con una coma de la siguiente manera:
Clasificación de números decimales
Números decimales exactos
Tienen un número limitado de cifras decimales. Por ejemplo:
Números decimales periódicos
Tienen una o más cifras decimales que se repiten de forma ilimitada o infinita. Podemos distinguir dos tipos de números decimales periódicos:
Números decimales periódicos puros: son aquellos números en los cuales la parte decimal periódica comienza inmediatamente después de la coma. La parte que se repite indefinidamente en estos números es señalada con una línea horizontal o arco en la parte superior. Por ejemplo:
Números decimales periódicos mixtos: son los que están formados por dos partes decimales: una cifra que no se repite que está justo después de la coma, denominada ante-período; y la parte periódica. Por ejemplo:
Números decimales no periódicos
No tienen cifras decimales con un patrón repetido indefinidamente. Un ejemplo de estos son los números irracionales, como el número pi.
¡A practicar!
Ya que conoces cómo están formados los números decimales, ¡consíguelos en este cuadro!
Solución
Número de Euler
Existen números decimales famosos y uno de ellos es el número de Euler, también denominado constante de Napier. Este número decimal fue utilizado por John Napier para introducir el concepto de logaritmo. No obstante, Leonhard Euler fue quien utilizó la letra e para representar dicha constante en el año 1727. El número es utilizado en cálculo, álgebra y números complejos.
LECTURA DE NÚMEROS DECIMALES
Podemos realizar la lectura de un número decimal de dos formas. Para ello, tomaremos como ejemplo el número 698,754980213, el cual podemos representarlo así de acuerdo a su valor posicional:
Primera forma de leer el número:
Lee la parte entera de izquierda a derecha seguida de la palabra “enteros”.
Lee toda la parte decimal como se lee la parte entera.
Menciona la posición en la que se encuentra la última cifra decimal.
Entonces, el número 698,754980213 se lee “seiscientos noventa y ocho enteros setecientos cincuenta y cuatro millones novecientos ochenta mil doscientos trece milmillonésimas“.
Segunda forma de leer el número:
Lee la parte entera de izquierda a derecha seguida de la palabra “coma”.
Lee toda la parte decimal como se lee la parte entera.
De este manera, el número 698,754980213 se lee “seiscientos noventa y ocho coma setecientos cincuenta y cuatro millones novecientos ochenta mil doscientos trece”.
¡Es tu turno!
Utiliza el primer método para leer estos números decimales:
456,268435
Solución
456,268435 = cuatrocientos cincuenta y seis enteros doscientos sesenta y ocho mil cuatrocientos treinta y cinco millonésimas.
35.413,9346103
Solución
35.413,9346103 = treinta y cinco mil cuatrocientos trece enteros nueve millones trescientos cuarenta y seis mil ciento tres diezmillonésimas.
58,79516428
Solución
58,79516428 = cincuenta y ocho enteros setenta y nueve millones quinientos dieciséis mil cuatrocientos veintiocho cienmillonésimas.
REDONDEO DE NÚMEROS DECIMALES
Todo número decimal puede ser redondeado. El redondeo se refiere a reducir la cantidad de cifras de un número para tener un valor similar. Las reglas son las siguientes:
Redondeo por defecto: si la última cifra del número que deseamos redondear es 1, 2, 3 o 4, la sustituimos por 0, y no variamos la penúltima cifra. Por ejemplo, el número 18,3.
Redondeo por exceso: si la última cifra es 5, 6, 7, 8 o 9, también sustituimos por 0, pero en este caso aumentamos la penúltima cifra en 1. Por ejemplo, el número 45,8.
El símbolo (≈) significa aproximado.
Redondeo por aproximación
Podemos aproximar los números decimales a la unidad más cercana, es decir, acercarlo a un número de la recta numérica que tenga menos decimales que este por medio de las mismas reglas. También los podemos aproximar a las décimas, centésimas, milésimas, etc., más cercanas. Por ejemplo, observa los siguientes números y redondéalos: 18,82653 y 45,73286.
El primer número lo aproximamos mediante la regla de redondeo por defecto, ya que la última cifra está entre 0 y 4. Aquí la cifra se aproximó a la diezmilésima más cercana.
Y para el segundo número seguimos la regla de exceso, ya que la última cifra está entre 5 y 9. Aquí la cifra se aproximó a la a la diezmilésima más cercana.
¡A practicar!
Convierte los siguientes números decimales a enteros por redondeo:
465,568
Solución
466
84,91
Solución
85
14,3
Solución
14
9.214,12
Solución
9.214
Aproxima estos números a las décimas, centésimas o milésimas más cercanas:
326,3462
Solución
326,346
486,945
Solución
486,95
45,87
Solución
45,9
RECURSOS PARA DOCENTES
Artículo “Números decimales”
Este artículo ayuda a complementar la información sobre los números decimales.
Los números son símbolos escritos que reflejan cantidades de objetos reales e imaginarios. Por ejemplo, vemos números en las medidas y posiciones en el orden de llegada de una carrera, en la tabla de puntajes de un juego o en actividades cotidianas, como cuando cambiamos de canal con el control remoto del televisor.
Lectura de números hasta el 10.000
Existen ocasiones en las que usamos números que involucran una, dos, tres o más cifras. Cada una de estas cifras tiene un valor según la posición que tengan dentro del número. De acuerdo a esta posición y a los nombres de cada dígito podremos nombrar números de hasta cinco o más cifras.
Ejemplo:
Si queremos leer el número 542, lo primero que hacemos es ubicar cada cifra en una tabla de valor posicional como esta:
Donde:
U: unidades
D: decenas
C: centenas
Observa que:
El 5 está ubicado en la posición de las centenas → 5 x 100 = 500, se lee “quinientos”.
El 4 está ubicado en la posición de la decenas → 4 x 10 = 40, se lee “cuarenta”.
El 2 está ubicado en la posición de la unidades → 2 x 1 = 2, se lee “dos”.
Por lo tanto, el número 542 se lee: “quinientos cuarenta y dos”.
Otro ejemplo:
Para el leer el número 709 realizamos una tabla de valor posicional y ubicamos sus cifras:
Observa que:
El 7 está ubicado en la posición de las centenas → 7 x 100 = 700, se lee “setecientos”.
El 9 está ubicado en la posición de la unidades → 9 x 1 = 2, se lee “nueve”.
El número 709 se lee: “setecientos nueve”.
¡Atención a los ceros!
¿Qué pasa cuando una posición está ocupada por el cero (0)?
En estos casos no tomamos en cuenta su valor posicional para la lectura del número.
Para leer números mayores a 999 colocamos un punto después de las centenas, es decir, a la izquierda de la tercera cifra. Este punto indica el comienzo de una clase llamada miles.
De este modo, para escribir y leer correctamente el número 2435, primero colocamos un punto al lado izquierdo de la centena. El punto rojo se lee “mil”:
2.435
Luego ubicamos cada cifra en una tabla posicional. Esta vez, añadimos las unidades, decenas y centenas de mil.
Observa que:
El 2 está ubicado en la posición de las unidades de mil → 2 x 1.000 = 2.000, se lee “dos mil”.
El 4 está ubicado en la posición de la centenas → 4 x 100 = 400, se lee “cuatrocientos”.
El 3 está ubicado en la posición de la decenas → 3 x 10 = 30, se lee “treinta”.
El 5 está ubicado en la posición de las unidades → 5 x 1 = 5, se lee “cinco”.
El número 2.435 se lee: “dos mil cuatrocientos treinta y cinco”.
Ejemplo:
– Lee el número 6.028.
El 6 está ubicado en la posición de las unidades de mil → 6 x 1.000 = 6.000, se lee “seis mil”.
El 2 está ubicado en la posición de la decenas → 2 x 10 = 20, se lee “veinte”.
El 8 está ubicado en la posición de las unidades → 8 x 1 = 8, se lee “ocho”.
El número 6.028 se lee: “seis mil veintiocho”
Representación de cantidades
Para representar cantidades utilizamos 10 dígitos que combinados entre sí forman infinitos números y, como ya sabes, cada dígito cambia su valor según la posición que tenga en el número. Por lo tanto, la misma cifra puede tener distintos valores. Observa:
Esta información es útil si tuviésemos, por ejemplo, que pagar una cuenta y debemos descomponer un número grande. Los billetes y monedas por lo general señalan el valor de una unidad (1), de una decena (10) o de una centena (100). Por ejemplo, si tienes monedas de $ 1 y billetes de $ 10 y $ 100 y debes pagar $ 435, ¿cuántos billetes y monedas tomarías de cada uno?
De la tabla de valor posicional observamos sus valores relativos:
Ahora sabemos que si tomamos 5 monedas de $ 1; 3 billetes de $ 10 y 4 billetes de $ 100, tenemos $ 435. De modo gráfico puedes verlo a continuación:
Podemos concluir que 435 = (4 x 100) + (3 x 10) + (5 x 1)
¡A practicar!
¿Cuántos billetes y monedas de $ 1 , $ 10 y $ 100 necesitarías para formar estas cantidades?
876
Solución
8 billetes de $ 100
7 billetes de $ 10
6 monedas de $ 1
1.000
Solución
10 billetes de $ 100
611
Solución
6 billetes de $ 100
1 billete de $ 10
1 moneda de $ 1
¿Dónde usamos los números?
En los carteles que indican la numeración de las calles. Por ejemplo, calle Maipú del 800 al 900.
En los precios de los productos que se compran y venden en la juguetería. Por ejemplo, una muñeca cuesta $ 850, es decir, ochocientos cincuenta pesos.
En el número que señala la balanza cuando nos pesamos. Por ejemplo, Juan se pesó en la balanza de la farmacia y su peso fue 65 kilogramos.
En el dinero entregado al vendedor cuando se paga el precio de un producto. Por ejemplo, la mamá de Pedro fue a la verdulería y gastó $ 420, entonces le dio al vendedor cuatro billetes de $ 100 y dos billetes de $ 10.
¿Sabías que...?
En el sistema de numeración egipcio se simbolizaban los múltiplos de 10 (1, 10, 100, 1.000, 10.000, 100.000 y 1.000.000) con dibujos denominados ideogramas que representaban conceptos o ideas.
Aproximación por redondeo
Consiste en reducir o aumentar la cantidad del número para acercarlo al número redondo más próximo en la recta númerica. Redondear números te ayudará a manejar mejor los cálculos mentales cuando no necesites una respuesta exacta.
Pasos para aproximar un número a la decena más cercana
1. Identifica la cifra que está en la posición de las unidades.
2. Si la cifra que está en la posición de las unidades es menor que cinco (5), no cambies la decena y escribe un cero (0) en el lugar de las unidades.
3. Si la cifra que está ubicada en la posición de las unidades es igual o mayor que cinco (5), aumenta una unidad en la decena y escribe un cero (0) en el lugar de las unidades.
– Redondea el número 343 a su decena más cercana.
Primero identificamos la unidad:
343
Luego, como la unidad es menor que cinco (3 < 5), mantenemos la decena igual y escribimos un cero (0) en el lugar de la unidades:
343 ≈ 340
Por lo tanto, el número 343 es aproximadamente igual a 340.
¿Sabías qué?
El símbolo “≈” se lee “aproximadamente igual a”.
– Redondea el número 2.589 a su decena más cercana.
Primero identificamos la unidad.
2.589
Luego, como la unidad es mayor que cinco (9 > 5), aumentamos la decena una unidad y escribimos un cero en el lugar de las unidades.
2.589 ≈ 2.590
Por lo tanto, el número 2.589 es aproximadamente igual a 2.590.
Pasos para aproximar un número a la centena más cercana
1. Identifica la cifra que está en la posición de las decenas.
2. Si la cifra que está en la posición de las decenas es menor que cinco (5), no cambies la centena y escribe un cero (0) en el lugar de las decenas y de las unidades.
3. Si la cifra que está ubicada en la posición de las decenas es igual o mayor que cinco (5), aumenta una unidad en la centena y escribe un cero (0) en el lugar de las decenas y de las unidades.
– Redondea el número 9.411 a la centena más cercana
Primero identificamos la decena.
9.411
Luego, como la decena es menor que cinco (1 < 5), no cambiamos la centena y escribimos un cero (0) en el lugar de las decenas y de las unidades:
9.411 ≈ 9.400
Por lo tanto, el número 9.411 es aproximadamente igual a 9.400.
– Redondea el número 6.382 a la centena más cercana.
Primero identificamos la decena.
6.382
Luego, como la decena es mayor que cinco (8 > 5), aumentamos la centena una unidad y escribimos un cero en el lugar de las decenas y de las unidades.
6.382 ≈ 6.400
Por lo tanto, el número 6.382 es aproximadamente igual a 6.400.
¡A practicar!
Una familia se va de viaje y cuando llegan al kilómetro 485 hacen una parada para comer en una estación de servicio. Luego siguen su camino. En el kilómetro 495 se detiene el auto por falta de combustible y el padre tiene que salir a buscar gasolina. Él sabe que en el kilómetro 500 también hay una estación de servicio.
¿Hacia dónde le conviene ir si quiere caminar la menor cantidad de kilómetros posible? ¿Hacia la estación de servicio del kilómetro 485 o a la del kilómetro 500?
Solución
Le conviene ir a la estación de servicio del kilómetro 500 porque está a menor distancia que la otra.
Números ordinales
Los números ordinales nos indican la posición en la que se ubica un elemento en una sucesión o lista. Para representarlos usamos números naturales seguidos por una letra que indica el género (masculino-femenino) del sustantivo al que se refieren. Por ejemplo:
El 5.º auto, se lee “el quinto auto”.
La 6.ª mesa, se lee “la quinta mesa”.
Estos números sirven para designar los pisos que hay en un edificio e indicar la dirección de vivienda de una persona. Por ejemplo, departamento A del 2º piso:
Estos son los nombres de los números ordinales del 1 al 50:
Número arábigo
Número ordinal
1.º/1.ª
primero/primera
2.º/2.ª
segundo/segunda
3.º/3.ª
tercero/tercera
4.º/4.ª
cuarto/cuarta
5.º/5.ª
quinto/quinta
6.º/6.ª
sexto/sexta
7.º/7.ª
séptimo/séptima
8.º/8.ª
octavo/octava
9.º/9.ª
noveno/novena
10.º/10.ª
décimo/décima
11.º/11.ª
décimo primero/décimo primera
12.º/12.ª
décimo segundo/décimo segunda
13.º/13.ª
décimo tercero/décimo tercera
14.º/14.ª
décimo cuarto/décimo cuarta
15.º/15.ª
décimo quinto/décimo quinta
16.º/16.ª
décimo sexto/décimo sexta
17.º/17.ª
décimo séptimo/décimo séptima
18.º/18.ª
décimo octavo/décimo octava
19.º/19.ª
décimo noveno/décimo novena
20.º/20.ª
vigésimo/vigésima
30.º/30.ª
trigésimo/trigésima
40.º/40.ª
cuadragésimo/cuadragésima
50.º/50.ª
quincuagésimo/quincuagésima
Para escribir números ordinales mayores al 20 primero se escribe el número ordinal del primer valor relativo, luego se escribe el del segundo, por ejemplo:
25.º es igual a “vigésimo quinto”.
42.º es igual a “cuadragésimo segundo”.
¿Sabías qué?
El número ordinal correspondiente al once puede ser nombrado como “décimo primero” o “undécimo”. En el caso del número 12, se lo denomina “décimo segundo” o “duodécimo”.
Números romanos
Cuando hablamos de números romanos nos referimos a un sistema de numeración que usa letras mayúsculas para representar cantidades. Está compuesto por siete letras y cada una tiene un valor diferente.
¿Para qué se usan los números romanos en la actualidad?
Nombrar los siglos históricos: siglo I antes de Cristo o siglo XX.
Numerar tomos, capítulos, partes de una obra literaria, actos y escenas de una obra teatral: tomo III, capítulo IV o escena VIII.
Nombrar reyes, papas y emperadores: Felipe IV o Juan Pablo II.
Denominar congresos, campeonatos y festivales: IV Congreso de la infancia o XIII Muestra de cine independiente.
Reglas para escribir números romanos
– Si a la derecha de una letra se escribe otra igual o de menor valor, sus valores se suman. Ejemplo:
VI = 5 + 1 = 6
XXI = 10 + 10 + 1= 21
LXVII = 50 + 10 + 5 + 1 + 1 = 67
– La letra I, colocada a la izquierda de V o X, les resta 1. Ejemplo:
IV = 5 − 1 = 4
IX = 10 − 1 = 9
– La letra X, colocada a la izquierda de L o C, les resta 10. Ejemplo:
XC = 100 − 10 = 90
XL = 50 − 10 = 40
– La letra C, colocada a la izquierda de D o M, les resta 100. Ejemplo:
CD = 500 − 100 = 400
CM = 1.000 − 100 = 900
– No se pueden repetir las letras I, X, C y M más de tres veces seguidas. Ejemplo:
XIII = 10 + 1 + 1 + 1 = 13
XXXIII = 10 + 10 + 10 + 1 + 1 + 1 = 33
MMM = 1.000 + 1.000 + 1.000 = 3.000
– Las letras V, L y D no pueden duplicarse, porque otras ya representan su valor. Ejemplo:
X = 10 (2 veces 5)
C = 100 (2 veces 50)
M = 1.000 (2 veces 500)
– Una raya encima de una letra o grupo de letras multiplica su valor por mil.
a) Escribe los números en cifras o en palabras, según corresponda.
Setecientos cincuenta y dos
Solución
Setecientos cincuenta y dos = 752
Mil cien
Solución
Mil cien = 1.100
1.308
Solución
1.308 = mil trescientos ocho
8.444
Solución
8.444 = ocho mil cuatrocientos cuarenta y cuatro
10.000
Solución
10.000 = diez mil
b) Escribe los números ordinales en palabras:
4.ª
Solución
4.ª = cuarta
7.º
Solución
7.º = séptimo
12.º
Solución
12.º = décimo segundo o duodécimo
17.º
Solución
17.º = décimo séptimo
20.ª
Solución
20.ª = vigésima
23.º
Solución
23.º = vigésimo tercero
34.ª
Solución
34.ª = trigésima cuarta
40.º
Solución
40.º = cuadragésimo
46.ª
Solución
46.ª = cuadragésima sexta
c) Descubre los números romanos que están mal representados y escríbelos correctamente.
Número en sistema decimal
Número en sistema romano
4
IV
9
VIIII
15
VVV
40
XL
150
CL
1.000
CMC
Solución
VIIII no es la representación de 9, porque no se puede repetir la letra I más de tres veces. La escritura correcta es IX.
VVV no es la representación de 15, ya que no se puede repetir la letra V más de tres veces. La escritura correcta es XV.
CMC no es la representación de 1.000, porque hay un símbolo que tiene exactamente ese valor. La escritura correcta es M.
d) Aproxima por redondeo los siguientes números a la decena.
46
Solución
46 ≈ 50
493
Solución
493 ≈ 490
2.456
Solución
2.456 ≈ 2.460
RECURSOS PARA DOCENTES
Artículo “Sistemas de numeración”
Es una lectura ampliatoria sobre la numeración a lo largo de la historia. Una síntesis que contextualiza y explica el funcionamiento de algunos sistemas de numeración que han sentado las bases de lo que hoy conocemos como aritmética: babilónico, egipcio, chino, griego, romano y decimal.
Artículo que explica cómo leer números grandes sin dificultades, a partir de dos saberes básicos en cuanto a la numeración: leer números de tres cifras y reconocer el valor posicional de cada dígito en un número. Recomendado para enseñar lectura y escritura de números a niños de 3.° grado en adelante.